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Abstract: Day traders in the financial markets are under constant pressure to make rapid decisions
and limit capital losses in response to fluctuating market prices. As such, their emotional state
can greatly influence their decision-making, leading to suboptimal outcomes in volatile market
conditions. Despite the use of risk control measures such as stop loss and limit orders, it is unclear if
these strategies have a substantial impact on the emotional state of traders. In this paper, we aim to
determine if the use of limit orders and stop loss has a significant impact on the emotional state of
traders compared to when these risk control measures are not applied. The paper provides a technical
framework for valence-arousal classification in financial trading using EEG data and deep learning
algorithms. We conducted two experiments: the first experiment employed predetermined stop loss
and limit orders to lock in profit and risk objectives, while the second experiment did not employ
limit orders or stop losses. We also proposed a novel hybrid neural architecture that integrates
a Conditional Random Field with a CNN-BiLSTM model and employs Bayesian Optimization to
systematically determine the optimal hyperparameters. The best model in the framework obtained
classification accuracies of 85.65% and 85.05% in the two experiments, outperforming previous
studies. Results indicate that the emotions associated with Low Valence and High Arousal, such as
fear and worry, were more prevalent in the second experiment. The emotions associated with High
Valence and High Arousal, such as hope, were more prevalent in the first experiment employing limit
orders and stop loss. In contrast, High Valence and Low Arousal (calmness) emotions were most
prominent in the control group which did not engage in trading activities. Our results demonstrate
the efficacy of our proposed framework for emotion classification in financial trading and aid in the
risk-related decision-making abilities of day traders. Further, we present the limitations of the current
work and directions for future research.

Keywords: behavioral finance; emotion classification; deep learning; electroencephalography (EEG);
neuro-finance; decision-making

1. Introduction

Emotions are physiological states associated with the neurological system that in-
fluence feelings and rational behavior [1]. Emotions and their management are seen as
essential factors for efficient and intelligent decision-making [2]. Affective computing
is an area of artificial intelligence that focuses on human-computer interactions, such as
recognizing human behavior and emotional states [3].

In recent years, automatic emotion detection has been applied in various areas such as
emotion recognition from movies [4], audio [5], text [6], and facial expressions [7]. With
the development of low-cost wearable technology, non-invasive electroencephalography
(EEG)-based techniques for automatic emotion identification have achieved widespread
popularity and acceptance [8]. With their high temporal precision, EEG waves directly rep-
resent the brain’s neural activity. The information these signals provide is more dependable
than that provided by facial expressions or text since they cannot be falsified or replicated
to feign an emotional state [9]. High-speed computing has allowed machine learning
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techniques to be applied with EEG data to detect emotions even more accurately [10].
EEG has been widely used in areas such as medical research to assess brain function and
neurological conditions. In recent years, machine learning (ML) models have been applied
to EEG signals with explainable AI to develop prediction models for diseases such as stroke
and to evaluate mental workload. Examples of such applications include based stroke
prediction [11,12], assessment of task-induced neurological outcomes after stroke [13],
detection of driving-induced neurological biomarkers [14], and prediction of sleep stages
based on EEG biomarkers [15]. In emotion recognition, each emotion combines valence (a
spectrum of negative to positive emotions) and arousal (the intensity) associated with the
nervous system [16].

In financial markets, day traders are motivated to profit from the market’s price move-
ment in the shortest time feasible while avoiding capital loss. During high-pressure trading
sessions, they seek to adjust to changing market conditions and respond to fluctuating
market conditions, such as volatility, trend reversals, market sentiment, and events, such
as profits and losses. These responses consistently elicit feelings including fear, greed,
hope, calmness, and regret [17,18]. Depending on the trade performance, the emotional
intensity of traders fluctuates at various periods and may influence their rational decision-
making [19]. Day traders operate in a volatile market environment and make use of market
price movements to enter or exit their positions. However, they are constantly pressured to
make split-second judgments. An erroneous entry or exit decision can lead to significant
capital loss [20]. Understanding and classifying their emotions can help them compre-
hend their emotional state and reactions to various events and make rational decisions to
minimize future losses. The psychological and emotional effects of simulated trading can
be comparable to actual trading, as most traders attach emotional importance to money-
related decisions [17]. It has been observed in past literature that some professional traders
tend to hold their positions for too long and sell their winning investments too soon. In
addition, many traders apply limit orders to obtain better prices for their assets [21] and
use stop-loss strategies to limit excessive losses [22].

Being confronted with regular market volatility, risks, and significant pressure to gen-
erate profits while avoiding loss, traders require a systematized framework with ambient
intelligence to comprehend their emotional state when making crucial financial judgments
to optimize their rational decision-making capacity under market risks [23]. In recent
years, many studies have applied deep learning techniques to analyze EEG signals and
use them for emotion classification [8,24–27]. However, the literature on the application of
EEG-based analysis in the context of the stock market and financial trading is relatively
limited [10,17,28,29]. There is a need for research on the identification and classification
of the emotions of day traders in order to gain a deeper understanding of their emotional
states and reactions to the results of their trading decisions. Such understanding has the
potential to aid in the formulation of strategies that can assist day traders in making more
rational decisions, ultimately leading to a reduction in future losses. This is particularly
relevant in the context of volatile markets and the high-pressure environment in which
day traders operate, where the ability to make informed decisions is crucial for minimizing
capital losses.

The objective of this research paper is to determine the valence-arousal state of traders
when they use limit orders and stop loss to their trades and compare their emotional states
when these risk control measures are not applied. Our research question investigates
whether there is a substantial difference between traders’ emotional states in the two
scenarios. We propose a novel framework for multi-trader emotion classification that
uses brainwave signals and deep learning algorithms and signal processing methods.
We contribute to the electroencephalography-based emotion classification literature in
financial trading by creating an EEG database of participants executing trades with and
without stop loss and limit orders in two experiments to classify their emotional states. We
recorded participants’ emotional state using a Self-assessment Manikin in a valence-arousal
environment to answer our research question. The main aims of this research are:
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(1) To provide a technical framework for emotion classification in financial trading using
EEG data and deep learning algorithms.

(2) To determine the most appropriate neural network architecture and optimize it for
improved EEG emotion classification and to achieve state-of-the-art accuracy.

(3) To investigate the influence of limit orders and stop loss on traders’ emotional states
and to generate an electroencephalography dataset for financial trading scenarios.

1.1. Contributions

The major contributions of this work are summarized as follows:

1. This paper contributes to the field of emotion classification in financial trading by
presenting an EEG database collected from 20 participants executing real-time trade
and a framework for emotion classification utilizing EEG data and deep learning
algorithms.

2. A hybrid neural architecture is proposed and found to outperform previous studies.
3. The study provides evidence that the use of risk control measures (limit orders and

stop loss) has a significant impact on the emotional state of traders, and these measures
can provoke affective states associated with trading.

4. The empirical results demonstrate that the trading groups exhibit significantly differ-
ent affective states from the control group.

1.2. Paper Structure

The remaining sections of the paper are organized as follows: Section 2 discusses
the data collection procedure, data pre-processing, and the experimental design for the
participants; Section 3 discusses the proposed framework and the deep learning-based
emotion classification strategies utilized; Section 4 analyzes the empirical results; and
Section 5 concludes the paper.

2. Dataset
2.1. Study Participants

We used electroencephalography (EEG) data in this study to validate the self-reported
emotional states of twenty healthy individuals (n = 20, 10 males and 10 females, aged 25 to
60). All participants had prior stock trading experience to maintain the homogeneity of the
group. Each participant was subjected to a single trial of two experiments of 30 min each.
Prior to conducting the experiments, participants received an hour of hands-on training in
the user interface of the simulated trading environment.

2.2. Data Acquisition and Recording Process

The EEG data were collected using the Interaxon Muse 2 headset. The Muse 2 EEG
headset records brainwaves from four channels (AF7, AF8, TP9, and TP10) and a reference
electrode (FPz) that acquires data from the Frontal (AF7 and AF8) and temporoparietal (TP9
and TP10) regions of the brain. Figure 1 depicts the Interaxon Muse 2 EEG headset used for
recording brainwave signals. A new column was added to the dataset to label emotions
at specified timestamps. The raw EEG signals recorded by the Muse 2 headband were
transmitted from a mobile application, called Mind Monitor, to a Windows 10 machine
using Open Sound Control streaming on port 5000 and saved in a flat file. To facilitate
the downsampling of the data and generate a uniform stream frequency, all signals were
recorded with a Unix timestamp. To minimize external noise and distractions, participants
were not exposed to any other external noise or disturbances while conducting the study.

To ensure the integrity of the EEG signals, participants were instructed to minimize
their movement and to keep their eyes open throughout the tasks. When looking at
technical indicator charts, eye blink variability and lateral eye movement events can be
associated with varied attentiveness levels; classification algorithms can account for these
patterns of signal spikes [30]. The eye blink rate, which may affect AF7 and AF8 sensors,
was not encouraged or discouraged to maintain a natural condition.
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tion classification algorithms. We used the digital version of SAM [32] in this study. Figure 
2 shows the categorization of emotions that are captured according to the valence-arousal 
model via a SAM. Valence refers to the positive or negative dimension of emotion, while 
arousal refers to the degree or strength of the emotion. The combinations of valence and 
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(LVLA), and High Valence Low Arousal (HVLA). Hope, fear, regret, and calmness are the 
high-level emotions described by the valence-arousal framework, as depicted in Figure 2. 

Figure 1. The four channels AF7, AF8, TP9, and TP10, highlighted in the 10–20 electrode placement
scheme, and the EEG headband utilized to acquire EEG data.

Throughout the 30-min experiment, participants were shown a Self-Assessment
Manikin (SAM) [31] every minute and asked to rate their emotions on a scale of 1 to
10. The SAM is a tool that facilitates the rapid labeling of emotions without inherent bias
and with less participant fatigue. These self-reported emotions were used as labels by
the emotion classification algorithms. We used the digital version of SAM [32] in this
study. Figure 2 shows the categorization of emotions that are captured according to the
valence-arousal model via a SAM. Valence refers to the positive or negative dimension of
emotion, while arousal refers to the degree or strength of the emotion. The combinations of
valence and arousal can be transposed into several emotional states, namely High Valence
High Arousal (HVHA), Low Valence High Arousal (LVHA), Low Valence Low Arousal
(LVLA), and High Valence Low Arousal (HVLA). Hope, fear, regret, and calmness are the
high-level emotions described by the valence-arousal framework, as depicted in Figure 2.
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3. Proposed Methodology

This section describes the data pre-processing, feature extraction, emotion classifica-
tion processes, and comparison of performance metrics with the benchmark dataset. The
proposed framework for emotion classification consists of several essential steps to ensure
high accuracy in emotion recognition. The first step involves the acquisition and recording
of EEG signals along with the self-labeling of emotions using a Self-Assessment Manikin.
Next, the acquired data undergoes a thorough cleaning and pre-processing stage described
in Section 3.1. This step includes filtering and artifact removal at multiple levels to ensure
that the data is high quality and free from noise and other disturbances that could affect
the results. The pre-processed data undergoes feature extraction through the Independent
Component Analysis (ICA) of various frequency bands, including gamma, beta, alpha,
theta, and delta. This step is crucial as it helps to extract the most relevant information
from the EEG signals for further analysis. Following feature extraction, the data is split
into a training set and a testing set; the training set is then used to train various neural net-
work models, including LSTM, CNN, CNN-LSTM, CNN-BiLSTM, and CNN-BiLSTM-CRF.
Utilizing Bayesian Optimization, the hyperparameters of these classifiers are optimized
to ensure their ideal performance. The final step in the proposed framework involves
classifying emotions into the HVHA, LVHA, LVLA, and HVLA classes using the trained
models. The performance of the models is then evaluated using various performance
metrics, including accuracy, precision, sensitivity, specificity, F-score, ROC, and AUC, and
compared with the previous literature. Figure 3 illustrates a self-explanatory flowchart of
the overall experimental design approach.
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3.1. Pre-Processing of EEG Data

We applied the following process for EEG data preprocessing and artifact removal.
Figure 4 illustrates the steps involved in the data preprocessing procedure:

1. Data collection: We imported the raw EEG data recorded from the Muse 2 headset,
streamed it from the Mind Monitor application (mind-monitor.com, accessed on
22 November 2022), and saved it as a comma-separated file.

2. Downsampling and data cleaning: The raw EEG data was recorded at 256 Hz, but
we downsampled it to 128 Hz using EEGLab software, version 2022.1. To ensure
high-quality data, we removed the first 30 s of data from the beginning of each
participant’s signal which was designated for relaxation. We also removed non-
informative components of the signal, such as missing data, non-numeric values, and
variables related to the heart rate, accelerometer, and gyroscope that were collected
but not studied.

3. Low pass and high pass filtering: During EEG recording, the signals are interrupted
by artifacts caused by eyeblinks, heart rate, and muscular movements such as jaw

mind-monitor.com
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clenches [33]. We eliminated these artifacts from the resampled signal using two
Butterworth IIR (Infinite Impulse Response) filters given by the following expression:

H(s) = 1/(1 + (s/ωc)(2n)) (1)

where H(s) is the transfer function of the filter, s is the complex frequency variable, ωc is
the cutoff frequency of the filter, and n is the order of the filter (i.e., the number of poles in
the filter).

We used two Butterworth IIR filters to eliminate artifacts from the resampled signal
caused by eyeblinks, heart rate, and muscular movements. A low-pass filter was applied
at 45 Hz and then a high-pass filter at 1 Hz. Before filtering, we visually inspected the
data and deleted any parts containing significant artifacts to minimize the spread of these
artifacts during filtering. We only filtered continuous data segments and avoided filtering
across boundaries to prevent filtering artifacts.

4. Notch filtering: To reduce noise from the 50 Hz frequency in the EEG signals, we
used a notch filter to eliminate line noise originating from the electrical power sup-
ply. This step ensured that the EEG data was free from such noise and ready for
further analysis.

5. Channel rejection: We conducted checks to remove faulty channels by examining
channels with no EEG activity for more than 5 s, channels with high noise (high
standard deviation relative to other channels), and channels with low correlation with
other channels (low correlation to other channels using a rejection threshold of 0.70).

6. Automated Signal rejection (ASR) algorithm: We employed the ASR algorithm [34] for
additional rejection of bad data segments based on the number of channels exceeding
a 20 (default value) standard deviation threshold within a time window of 5 s. This
allowed us to further reject portions of data that may have been missed by the
earlier steps.

7. Independent Component Analysis: We applied the ICA method [35] to further min-
imize the effects of artifacts such as ECG, EMG, EOG, and others that may still be
present in the data despite multiple levels of cleaning. ICA is a successful method for
dealing with artifacts such as muscle movements, eye blinks, lateral eye movements,
heart rate, and others. However, to avoid strong artifacts affecting the data, we filtered
them out in previous steps as ICA may not be able to remove them effectively.

Visual inspection: Finally, we removed any remaining artifacts manually using the
visual inspection method in EEGLab with a sliding window of 30 s. Figures A1 and A2 in the
Appendix A show the EEG signals before and after visual inspection and artifact rejection.
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3.2. Feature Extraction

After obtaining the cleaned EEG signals, we applied Independent Component Analysis
(ICA) [35] on all four recorded channels to extract the features. ICA is a feature extraction
method that decomposes a multivariate signal into independent components. In addition to
the extraction of features, ICA also eliminates embedded artifacts that could be missed out
in the manual artifact removal process. The ICA algorithm decomposes a non-stationary
signal contained with several mixed frequencies into distinct, independent components
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(signals), each corresponding to a different frequency band. Each frequency band is
associated with different emotional states. Table 1 shows the power spectrum of frequency
bands that are associated with different emotional states [36]. The ICA method extracts
gamma, beta, alpha, theta, and delta frequencies for each of the four channels. Consequently,
each experiment with a single trial generated 20 features per dataset.

Table 1. Emotional state association of brainwaves at different frequency bands.

Frequency Band Frequency Range Emotional State Association

Gamma >30 Hz
Problem-solving, concentrating, associated with
positive valence. Arousal increases with
high-intensity stimuli

Beta 13–20 Hz Awake, busy, normal activities, and alert
Alpha 8–13 Hz Relaxed, calm, and reflective
Theta 4–7 Hz Deep relaxation
Delta 0–4 Hz REM sleep and dreaming

3.3. Emotion Classification Algorithms

This section discusses the neural network classifiers used for emotion classification
following the input data’s successful preprocessing and feature extraction. To perform
emotion classification, we used five different types of neural networks, namely, LSTM, CNN,
CNN-LSTM, CNN-BiLSTM, and CNN-BiLSTM-CRF. Bayesian Optimization optimizes the
hyperparameters of these classifiers.

3.3.1. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of recurrent neural network that is de-
signed to model long-term dependencies in sequential data. Each LSTM cell takes in a
sequence of input vectors x1, x2, . . . , xT and produces a corresponding sequence of out-
put vectors h1, h2, . . . , hT . The input vectors xt and output vectors ht at each time step
t can have different shapes and dimensions depending on the specific task and dataset.
Mathematically, the LSTM model can be represented by the below equations:

it = σ(Wixt + Uiht−1 + bi) (2)

ft = σ
(

W f xt + U f ht−1 + b f

)
(3)

ct = ftct−1 + ittanh(Wcxt + Ucht−1 + bc) (4)

ot = σ(Woxt + Uoht−1 + bo) (5)

ht = ottanh(ct) (6)

where it, ft, ct, and ot are intermediate variables; ht represents the output of the LSTM
cell at time step t; xt and ht−1 are the input data and previous hidden state at time step t,
respectively; U and W are weight matrices, and b is a bias vector. The sigmoid function is
represented by σ, and the hyperbolic tangent function is represented by tanh.

3.3.2. Convolutional Neural Network

A Convolutional Neural Network (CNN) consists of three layers, namely, a convolu-
tional layer, a pooling layer, and a fully connected layer [37]. The output of every layer
is connected to a small neighborhood in the input through a weight matrix also known
as a filter or kernel. Each filter is moved around the input giving rise to one 2D output.
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The outputs corresponding to each filter are stacked, giving rise to an output volume. The
convolution operation of a 2D input signal x(p, q) can be expressed as follows:

y(m, n) =
∞

∑
p=0

∞

∑
q=0

x(p, q)h(m− p, n− q) (7)

where y(m, n) is the output obtained after the convolution operation and h is the kernel
coefficient of the system.

Following a series of convolutions, there is a pooling layer that is used to reduce the
dimensionality of feature vectors. The main job of a pooling layer is to provide translational
invariance by subsampling the input feature vector. The pooling layers are followed by
a fully connected layer that acts as a classifier. Figure 5 shows the basic structure of a
CNN model.
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3.3.3. CNN-LSTM

A CNN-LSTM model integrates the CNN model for feature selection with a Long
Short-Term Memory (LSTM) model for time series prediction. A convolutional layer in this
model identifies the important features in the input data [38]. Pooling reduces the data
dimensions. The pooling layer interfaces with LSTM and linked layers (also known as
dense layers). The combined CNN-LSTM model can be expressed as follows:

ht = LSTM(xt, ht−1) (8)

yt = CNN(ht) (9)

where xt represents the input data at time t, ht−1 represents the hidden state of the LSTM
at time t− 1, and ht represents the hidden state of the LSTM at time t.

3.3.4. CNN-BiLSTM

A CNN-BiLSTM [39] model incorporates the CNN for feature selection and the bidirec-
tional LSTM (BiLSTM) model for time series forecasting. A BiLSTM model has an auxiliary
LSTM layer that reverses the information flow. As the direction of the input sequence is
reversed due to the additional LSTM layer, the model can consider incoming information
from both forward and reverse directions. Figure 6 shows a schematic structure of a CNN
model combined with an LSTM or BiLSTM model.
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The CNN-BiLSTM model can be expressed as follows:

h f
t = LSTM

(
xt, h f

t−1

)
(10)

hb
t = LSTM

(
xt, hb

t+1

)
(11)

yt = CNN
([

h f
t , hb

t

])
(12)

where xt represents the input data at time t, h f
t−1 and hb

t+1 represent the forward and

backward hidden states of the BiLSTM at time t− 1 and t + 1, respectively, and h f
t and hb

t
represent the forward and backward hidden states of the BiLSTM at time t. The function
LSTM represents the LSTM network, which processes the input data xt and hidden state
h f

t−1 or hb
t+1 to produce the hidden state h f

t or hb
t . The function CNN represents the

CNN network, which processes the concatenated hidden states
[

h f
t , hb

t

]
yt to produce the

output yt.

3.3.5. CNN-BiLSTM with Conditional Random Field

Conditional Random Field (CRF) is a type of probabilistic graphical model that can be
used to model the relationships between different variables in a dataset. EEG data contains
complicated temporal correlations between the data and labels as a result of fluctuating
emotional states in response to price changes and losing or winning a transaction, therefore,
establishing the appropriate label sequence can be a challenging task. The addition of a
CRF layer facilitates the modeling of these dependencies and thus helps to improve the
accuracy of predictions in a CNN-BiLSTM model for the classification of emotions from the
EEG data. The CRF layer [40] can be defined as follows:

Let y = (y1, . . . , yT) be the sequence of labels and x = (x1, . . . , xT) be the sequence of
input features. The CRF layer computes the conditional probability of the label sequence
given the input features as follows:

p(y | x) =
1

Z(x)

T

∏
t=1

ψt(yt, yt−1, x) (13)

where Z(x) is the normalization factor, also known as the partition function, and ψt is the
transition score from label yt to label yt−1 at time step t.

The transition scores are defined as:

ψt(yt, yt−1, x) = exp

(
K

∑
k=1

tr(k, yt, yt−1) · emit(k, yt, xt)

)
(14)

where K is the number of classes, tr(k, yt, yt−1) is the transition weight from class k at time
step t− 1 to class k at time step t, and emit(k, yt, xt) is the emission weight from class k at
time step t to the input features xt.

3.3.6. Hyperparameter Optimization

We applied the Bayesian Optimization [41] approach to find the best possible values
for the hyperparameters of the specified models. Bayesian Optimization is well-suited
for tackling black-box optimizations and noisy functional evaluations, and it is more
efficient than manual network-tuning or traditional approaches such as the Grid-Search
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and Randomized-Search in high-dimensional datasets. Table A1 in Appendix A shows
the search space employed by the Bayesian Optimization technique for all classifiers. The
optimization process considers the learning rate, dropout rate, count of hidden layers,
neuron count per layer, batch size, activation function, optimizer, number of CNN filters,
kernel size, pooling size, and type, among other hyperparameters.

In this paper, we used the same search space configuration for both experiments. To
optimize the hyperparameters, we utilized the Adaptive Experimentation (AE) library [42]
in Python programming language. AE is a widely adopted multi-objective optimiza-
tion framework that has been employed effectively by Facebook in numerous real-world
online experiments.

3.4. Performance Metrics and Experimental Software

In this research, accuracy, precision, recall (sensitivity), specificity, and negative pre-
dicted values from the confusion matrix are used as the performance metrics for classifica-
tion algorithms.

Accuracy is the ratio of the number of true positives and true negatives to the total
number of predictions made by the model. It is given by the below expression:

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Precision refers to the proportion of correctly classified positive instances classified as
positive by the classifier. Mathematically, it is given by:

Precision = TP/(TP + TN) (16)

Recall (Sensitivity, True Positive Rate) is the proportion of positive instances that were
correctly classified as positive by the classifier. The recall is given by:

Recall = TP/(TP + FN) (17)

The NPV (Negative Predicted Value) measures the proportion of negative instances
that were correctly classified as negative by the classifier. NPV is expressed as follows:

NPV = TN/(TN + FN) (18)

The F1-Measure represents the harmonic mean of precision and recall. F1-Measure
provides a comprehensive evaluation of the classifier’s performance considering both
precision and recall. It is given by:

F1−Measure = 2× (Precision × Recall)/(Precision + Recall) (19)

where TP = True Positives (number of instances correctly classified as positive), TN = True
Negatives (number of instances correctly classified as negative), FP = False Positives
(number of instances incorrectly classified as positive), and FN = False Negatives (number
of instances incorrectly classified as negative).

4. Experiments

The proposed emotion classification framework compares participants’ emotional
state when trading with predetermined risk locking to their emotional state when trading
without risk locking. Each experiment was simulated using live Bitcoin market data with
1-min interval candlestick charts for a duration of 30 min. In the experiments, participants
were given a starting balance of USD 10,000 for use in simulated trades. The initial trading
amount was uniform across all participants and was not adjusted based on individual
characteristics or prior trading experience. The initial amount was set at a relatively large
sum in order to give participants the opportunity to experience a wide range of potential
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outcomes and to allow for the analysis of their emotional responses under different trading
actions (buy, hold, and sell).

In the first experiment, participants were given a set of predetermined risk-locking
measures to use while making simulated trades. These measures included a pre-defined
stop loss of 1% of the traded value and a 1% purchase limit order of the traded value,
which were set based on the anticipated 30-min price volatility. A stop loss is a risk
management tool that automatically closes a trade when the loss reaches a predetermined
price threshold, helping to prevent the trader from incurring further losses. A buy limit
order is an order to buy a security at a specified price or lower. It is automatically executed
when the price reaches the upper limit of the specified threshold. These risk-locking
measures were intended to help participants manage their potential losses and make
informed trading decisions.

In contrast, the second experiment did not have any predetermined buy limit orders
or stop loss measures to lock in risks. Participants were given the freedom to make trading
decisions based on their own assessment of the market and to profit from fluctuations in
Bitcoin’s price by buying, holding, or selling their holdings.

A control group was employed in this study to establish a baseline for comparison
with the trading groups. The control group refrained from any trading activity and was not
provided with the options of buy, sell, or hold actions. Instead, the affective states of the
control group were derived solely from observing the market data. We aimed to discern any
significant distinctions in emotional responses that could be attributed to trading activity
by comparing the affective states of the control group with those of the trading groups.

The subsequent section describes how each electrode’s raw EEG data was converted
into brainwaves (delta, theta, alpha, beta, and gamma frequencies) which were then
categorized into different emotional states using machine learning algorithms.

All experiments were executed on a Windows 10 operating system, equipped with an
Intel Core i5 processor with 8 cores operating at a frequency of 2.30 GHz, 20 GB of RAM,
and an NVIDIA GeForce GTX 1050 graphics processing unit. The data preprocessing and
deep learning techniques were implemented utilizing Python 3.7.3 (64-bit), TensorFlow 2.6,
and CUDNN 10.1.105. The EEG analysis was performed utilizing the MNE library 1.3.0
(https://mne.tools, accessed on 23 December 2022) and Matlab’s EEGLab toolbox.

5. Results and Analysis
5.1. Network Architecture Suggested by Bayesian Optimization

Table 2 presents the suggested network architecture for both Experiment 1 and Ex-
periment 2 based on the hyperparameter values obtained using Bayesian Optimization.
We utilized these hyperparameter values for the deep learning models used for emo-
tion classification. The CNN portion of the models used 128 CNN filters with a kernel
size of 3, a pooling layer with a size of 2, and a max pooling type as obtained from
Bayesian Optimization.

Table 2. The suggested network architecture based on the hyperparameter values obtained using
Bayesian Optimization for both experiments.

Experiment Model Dropout
Rate

Learning
Rate

Hidden
Layers

Neurons per
Layer

Activation
Function Batch Size Optimizer

Experiment 1 LSTM 0.022 0.0001 3 461 linear 32 adam
Experiment 1 CNN 0.262 0.001 3 463 relu 8 adamx
Experiment 1 CNN-LSTM 0.045 0.0010 2 450 relu 8 adam
Experiment 1 CNN-BiLSTM 0.220 0.0310 2 515 relu 32 adam
Experiment 1 CNN-BiLSTM-CRF 0.210 0.0128 3 535 relu 64 adam
Experiment 2 LSTM 0.025 0.0105 3 444 linear 64 adamx
Experiment 2 CNN 0.202 0.0610 3 401 relu 4 adam
Experiment 2 CNN-LSTM 0.039 0.0120 2 494 relu 8 adamx
Experiment 2 CNN-BiLSTM 0.210 0.0262 2 463 relu 8 adam
Experiment 2 CNN-BiLSTM-CRF 0.097 0.0121 3 470 relu 32 adamx

https://mne.tools
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5.2. Distribution of Valence-Arousal for Experimental Groups

Figure 7 presents the distribution of valence-arousal for both experimental groups.
In both experiments, the most dominant emotion is High Valence High Arousal (HVHA),
followed by Low Valence Low Arousal (LVLA), Low Valence High Arousal (LVHA), and
High Valence Low Arousal (HVLA). Upon further analysis, it can be observed that while
the overall emotion experienced by participants in both experiments is similar, there is
a notable difference in the distribution of emotions experienced under different trading
strategies. Specifically, Experiment 1, which employed predetermined stop loss and limit
orders to lock in profit and risk objectives, exhibited a higher frequency of HVHA and
LVLA compared to Experiment 2, which did not utilize such risk-locking techniques.
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conducted with and without risk locking via limit order and stop loss. The second group, which did
not use stop loss and limit orders to lock in the risks and book the profits, demonstrated twice (26%)
as much Low Valence and High Arousal (the emotion of fear) as the first group (13%), which did
utilize these measures.

5.3. Effect of Stop Loss and Limit Orders on Participant Emotions

The results of Experiment 1 showed that the use of stop loss and limit orders on trades
was associated with a higher High Valence High Arousal (HVHA) emotion (56%) compared
to the group in Experiment 2, which did not use these risk-locking criteria (46%). In other
words, the test group that utilized stop loss and limit orders was 17.85% more hopeful
than the group that did not use these criteria. The frequency of Low Valence Low Arousal
(LVLA) emotions was similar between the two groups, although there was a marginally
higher frequency in Experiment 1.

One of the most notable findings of this study was that the use of stop loss and limit
orders were associated with a lower frequency of Low Valence High Arousal (LVHA, or
fear) emotions. Specifically, participants in Experiment 1 who employed these risk-reward
control measures reported LVHA emotions of 13%, compared to 26% in the group that
traded without these measures in Experiment 2. This difference can be attributed to the
ability of stop loss and rules to minimize the impact of volatility and significant losses [22].
Consequently, traders experience less fear when entering or exiting positions due to these
risk control methods.

Another notable finding was the absence of High Valence Low Arousal (HVLA, or
calmness) emotions in the second group. This may be expected, as it is rare for traders to
exhibit calmness during highly volatile short-term trading sessions. In comparison, the
frequency of HVLA emotions was low but detectable in the first group. Overall, these
results suggest that the use of stop loss and limit orders is associated with higher frequencies
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of HVHA and lower frequencies of LVHA emotions, indicating that managing risks in this
way may lead to more hopeful and less fearful traders.

5.4. Analysis of Classification Accuracies in Experiments 1 and 2

The classification accuracies for each participant in Experiment 1 and Experiment 2
are presented in Tables 3 and 4, respectively. The classification accuracy of each participant
is dependent on variances in their physiological features and the intensity or complexity
of their conveyed emotions. The results of the ablation study demonstrate the mean
classification accuracy for each participant using a 10-fold cross-validation technique for
both Experiments 1 and 2. Results from Experiment 1 show that the CNN-BiLSTM-CRF
model achieved the highest mean accuracy of 85.65%, followed by the CNN-BiLSTM,
CNN-LSTM, and CNN models. In Experiment 2, the highest mean accuracy of 85.05%
was also obtained by the CNN-BiLSTM-CRF model, with similar performance for the
CNN-BiLSTM, CNN-LSTM, and CNN models. The results of this study suggest that
the incorporation of a CRF layer in the CNN-BiLSTM architecture improves the overall
accuracy of emotion classification.

Table 3. Mean classification accuracy with a 10-fold cross-validation technique for each participant
in Experiment 1. Ten test runs were performed on each model, and the average of the results
was calculated.

Participant LSTM CNN CNN-LSTM CNN-BiLSTM CNN-BiLSTM-CRF

1 59.06 64.03 66.43 75.72 78.77
2 79.16 84.49 84.56 85.68 89.91
3 61.11 67.58 69.30 68.97 76.90
4 78.83 79.32 80.47 85.92 86.12
5 69.24 72.90 77.66 81.58 85.98
6 84.49 88.03 85.16 86.82 89.79
7 75.01 80.35 85.82 85.59 89.63
8 80.77 85.25 84.47 87.52 89.54
9 74.69 76.38 78.00 79.33 84.31
10 73.03 76.63 76.48 82.69 84.90
11 63.90 70.60 73.53 74.19 79.90
12 62.66 65.54 70.88 70.58 79.88
13 67.52 80.22 81.52 79.04 86.19
14 72.61 75.18 79.73 85.71 88.84
15 83.41 84.46 85.57 87.55 89.71
16 75.10 75.85 81.55 82.53 86.82
17 80.87 82.75 82.98 85.46 89.89
18 77.65 77.80 79.13 75.98 83.89
19 74.90 71.58 76.35 82.35 84.75
20 70.80 65.72 79.36 86.62 87.21

Mean Accuracy 73.24 76.23 78.95 81.49 85.65 **
The numbers in bold represent the mean accuracy; ** denotes the highest accuracy reported.

Furthermore, it can be observed from Figure 8 that there is a clear progression in
terms of accuracy as the model complexity increases, with LSTM achieving the lowest
accuracy and CNN-BiLSTM-CRF achieving the highest accuracy. The CNN-BiLSTM-CRF
model achieved the highest mean accuracy with the least deviation in performance, unlike
LSTM and the CNN models which exhibited high variability in their performance. The
CNN-BiLSTM-CRF model produced the highest mean accuracy with the least performance
variance in contrast to other competitive models. This can be attributed to the use of a
CRF layer which helps to regularize the model and reduce overfitting, resulting in more
consistent and reliable performance. Additionally, it allows the model to consider the
context of previously predicted classes, thus enforcing smoothness constraints on the
predicted sequence and aligning predictions from different parts of the sequence. This can
help mitigate the effect of outliers in the data.
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Table 4. Mean classification accuracy for each participant in Experiment 1 using a 10-fold cross-
validation technique. Ten test runs were performed on each model, and the average of the results
was calculated.

Participant LSTM CNN CNN-LSTM CNN-BiLSTM CNN-BiLSTM-CRF

1 52.42 65.44 62.97 73.09 76.88
2 82.25 84.36 80.92 81.42 90.10
3 57.14 59.63 70.03 71.56 75.62
4 80.25 83.39 84.95 87.43 86.10
5 63.21 68.15 69.67 80.32 83.96
6 79.13 80.88 81.03 86.10 88.80
7 68.52 73.08 81.87 84.28 87.72
8 74.50 84.23 81.20 84.28 87.79
9 69.50 76.64 75.79 78.51 82.92
10 76.59 74.44 81.17 84.26 88.73
11 61.73 65.19 72.65 74.53 81.87
12 59.84 66.78 72.61 73.01 80.49
13 65.39 75.70 82.89 79.36 82.88
14 75.63 72.25 73.62 77.38 84.19
15 78.53 78.82 81.83 84.13 89.59
16 76.08 68.74 83.71 78.66 86.84
17 82.35 86.80 83.72 78.65 88.45
18 75.59 73.21 80.88 77.57 83.57
19 79.53 72.31 74.39 82.81 87.95
20 75.02 58.71 81.40 81.35 86.58

Mean Accuracy 71.66 73.44 77.87 79.94 85.05 **
The numbers in bold represent the mean accuracy. ** denotes the highest accuracy reported.
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5.5. Influence of Non-Systematic Factors and Subject Level Differences

In this study, an exhaustive methodology was applied to preprocess the EEG data for
all participants. However, it is possible that other non-systematic factors may have affected
the EEG signals of some participants. Therefore, the reported accuracy differs on an indi-
vidual basis. Compared to other participants, subjects 1, 3, 11, and 12 reported marginally
inferior accuracy in both experiments. Further investigation using spectral analysis of the
EEG data for these participants may be necessary to understand this phenomenon.

5.6. Comparison of Precision, Recall, F1-Measure, Specificity, and NPV

Tables 5 and 6 present the mean classification performance metrics of EEG emotion
classification models in Experiments 1 and 2. In Experiment 1, the model with the highest
performance across all metrics (precision, recall, F1-measure, specificity, and NPV) is CNN-
BiLSTM-CRF. Similarly, in Experiment 2, the performance metrics for various models reveal
that CNN-BiLSTM-CRF is the most robust model. The results show that the addition of a
Conditional Random Field (CRF) layer to the CNN-BiLSTM model improves the overall
performance of the model by capturing the dependencies between the output labels and
providing more accurate predictions.

Table 5. The mean classification performance metrics with a 10-fold cross-validation technique across
all participants in Experiment 1. Ten test runs were performed on each model, and the average of the
results was calculated.

Classifier Accuracy Precision Recall F1-Measure Specificity NPV

LSTM 73.24 0.8187 0.7335 0.7651 0.7369 0.7249
CNN 76.23 0.8380 0.7657 0.7912 0.7818 0.7760

CNN-LSTM 78.95 0.8532 0.7862 0.8138 0.8172 0.8000
CNN-BiLSTM 81.49 0.8708 0.8135 0.8364 0.8353 0.8207

CNN-BiLSTM-CRF 85.65 0.8981 0.8601 0.8725 0.8688 0.8575

Table 6. The mean classification performance metrics with a 10-fold cross-validation technique across
all participants in Experiment 2. Ten test runs were performed on each model, and the average of the
results was calculated.

Classifier Accuracy Precision Recall F1-Measure Specificity NPV

LSTM 71.66 0.8075 0.7128 0.7514 0.7045 0.7387
CNN 73.44 0.8200 0.7328 0.7673 0.7434 0.7629

CNN-LSTM 77.87 0.8471 0.7832 0.8046 0.7558 0.7830
CNN-BiLSTM 79.94 0.8598 0.7948 0.8228 0.8449 0.8214

CNN-BiLSTM-CRF 85.05 0.8949 0.8434 0.8678 0.8570 0.8531

5.7. ROC Analysis of Cross-Validated Emotion Classification Performance

Figures 9 and 10 depict the mean cross-validated Receiver Operating Characteristic
(ROC) curves for the training and test data in Experiments 1 and 2, respectively. The ROC
curve helps analyze the performance of binary classifiers and exhibits the relationship
between the True Positive Rate (TPR) and False Positive Rate (FPR) (FPR). The Area Under
Curve (AUC) is used to evaluate the overall performance of a classifier, with a larger
AUC value indicating a superior classifier. In Figures 9 and 10, the cross-validated ROC
curves of the models are displayed for the training and test data in Experiment 1 and
Experiment 2, respectively. A thorough analysis of the figures highlights the robustness of
the CNN-BiLSTM-CRF model, as it consistently achieves a significantly higher Area Under
Curve (AUC) than the other models across all four classes in both experiments. This result
suggests that the proposed model performs better in accurately classifying emotions.
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quadrant indicates improved model performance. (b) ROC curves for emotion classification in Ex-
periment 1, using cross-validated training and test datasets for Low Valence Low Arousal (LVLA) 
class. (c) ROC curves for emotion classification in Experiment 1, using cross-validated training and 
test datasets for Low Valence High Arousal (LVHA) class. (d) ROC curves for emotion classification 
in Experiment 1, using cross-validated training and test datasets for High Valence Low Arousal 
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Figure 9. (a) ROC curves for emotion classification in Experiment 1, using cross-validated training
and test datasets for High Valence High Arousal (HVHA). The curve shift towards the upper-left
quadrant indicates improved model performance. (b) ROC curves for emotion classification in
Experiment 1, using cross-validated training and test datasets for Low Valence Low Arousal (LVLA)
class. (c) ROC curves for emotion classification in Experiment 1, using cross-validated training and
test datasets for Low Valence High Arousal (LVHA) class. (d) ROC curves for emotion classification
in Experiment 1, using cross-validated training and test datasets for High Valence Low Arousal
(HVLA) class.
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Figure 10. (a–c) ROC curves for emotion classification in Experiment 2, using cross-validated train-
ing and test datasets for all four emotion classes: High Valence High Arousal (HVHA), Low Valence 
Low Arousal (LVLA), and Low Valence High Arousal (LVHA). (d) ROC curves for emotion 

Figure 10. (a–c) ROC curves for emotion classification in Experiment 2, using cross-validated training
and test datasets for all four emotion classes: High Valence High Arousal (HVHA), Low Valence Low
Arousal (LVLA), and Low Valence High Arousal (LVHA). (d) ROC curves for emotion classification
in Experiment 2, using cross-validated training and test datasets for all four emotion classes: High
Valence Low Arousal (LVLA).
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5.8. Contribution of EEG Features in the Proposed Model

In this section, we discuss the results of feature importance obtained for Experiment 1,
Experiment 2, and the control group which performed no trading activity.

The results of the deepSHAP algorithm’s feature importance analysis in Exper-
iments 1 and 2 are shown in Figure 11a,b. The results in Experiment 1 indicate that
the most significant features, in order of importance, were gamma_Af7, gamma_AF8,
gamma_TP9, gamma_TP10, beta_AF8, alpha_AF7, delta_TP9, beta_TP10, and alpha_AF8.
Out of the total 20 features present in the EEG dataset, the dominance of gamma-related
features can be linked to their association with problem-solving, concentration, and pos-
itive valence, as well as the increased arousal that typically results from high-intensity
feelings dominated by the outcomes of win or loss. Conversely, Theta-related features,
which are associated with deep relaxation and REM sleep, were the least significant
and can be closely tied to the HVLA emotion class. This is supported by the dis-
tributions of valence-arousal shown in Figure 7, which suggest that, despite having
trading experience, the participants in the study did not exhibit a significant amount of
HVLA emotion.
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BiLSTM-CRF) for Experiment 1 and Experiment 2, respectively.

The feature importance analysis in Experiment 2, shown in Figure 11b, shows
that beta-related features are the most dominant followed by gamma and alpha-related
features, while theta and delta-related features are the least significant. According to
Table 1, Beta related features are closely associated with concentration and decision-
making. Figure 12a,b shows the proposed model’s local feature contributions. The
local approach offers a deeper understanding of the relationship between individual
EEG features and their impact on class predictions for individual instances. The feature
importance for specific instances is consistent with the results of the global method, with
gamma and beta-related features remaining the most important features and theta and
delta being less significant.
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The global and local feature importance for the control group is shown in Figure 13a,b.
The participants in this group simply observed the market data without performing any
actual trading activity. This group serves as a baseline for comparison with Experiment
1 and Experiment 2 which involved active trading activity. The global and local feature
importance analysis of the control group shows that the Delta and Theta-related features
are the most dominant features along with a minor contribution from Alpha AF8 (global)
and Alpha AF7 (local). According to Table 1, Delta and Theta are associated with peaceful
states and resting states. This state can be most closely linked to HVLA (calmness) as
shown in Figure 2. This contrasts with the dominant features observed in Experiment 1
and Experiment 2 where gamma, beta, and alpha are associated with problem-solving,
concentrating, and actively thoughtful states. Moreover, the results indicate that HVLA
was negligible in Experiment 1 and absent in Experiment 2, which suggests that even
experienced traders find it challenging to remain calm during the event of a win or loss.
However, when they are not actively engaged in trading, HVLA becomes dominant.
The difference in the feature importance between the control and trading groups can be
attributed to the effect of trading activity.

5.9. Comparison with Previous Works

In addition to the ablation experiments, we also compared our research results to
those of other closely related studies. These studies employed similar self-labeling and
emotion identification methods as our own but used different experimental scenarios for
financial trading. Table 7 presents this comparison of the classification performance of the
methodology proposed in this paper and earlier EEG-based emotion recognition studies in
financial trading. Table 7 shows that the CNN-BiLSTM-CRF classifier achieved a superior
accuracy of 85.65% compared to previous works. In the context of similar multi-class
emotion categorization studies, it can be inferred that the proposed methodology is both
effective and competitive.

Table 7. Comparing our classification performance to previous EEG-based emotion recognition
studies in financial trading.

Reference Classifier Accuracy (%)

[17] Deep Learning and Random Forest 83.18
[10] k-Nearest Neighbors(k-NN) 75.00

Our Proposed Method CNN-BiLSTM-CRF 85.65
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6. Discussion

The present study aimed to determine the emotional state of traders when utilizing
limit orders and stop loss in their trades and compare it to when these risk control measures
were not applied. A novel framework for multi-trader emotion classification using EEG
signals and deep learning algorithms was proposed and utilized. The study made several
important contributions to the field of emotion classification in financial trading. Firstly, a
new EEG database was created and the proposed framework was shown to outperform
previous studies, achieving state-of-the-art accuracy levels of 85.65% and 85.05% in two
experiments. The model was robust with regard to artifacts, with multiple levels of artifact
removal implemented, and its performance was evaluated across multiple performance
metrics. Furthermore, feature contribution was explained using deepSHAP. The Self-
assessment Manikin was used for self-labeling, providing a more reliable and accurate
measurement of emotional states. The results demonstrated an association between the
application of stop loss and limit orders as risk management measures and a reduction in
the frequency of fear (measured by LVHA) among traders. This decrease in fear was linked
to the effectiveness of stop loss and limit orders to offset the effects of market volatility,
prospective losses, and significant gains. One limitation of this study is the exclusive use of
a homogeneous group of experienced participants with prior trading experience. Future
research may broaden the EEG data sample by incorporating participants from a broader
range of backgrounds, including novice traders.

Table 8 summarizes various studies by presenting the models used, the feature ex-
traction methods employed, the number of participants involved, and the advantages
and disadvantages of each study. This comparison highlights each study’s strengths and
weaknesses and serves as a baseline for the performance of the current study and future
works in this area.
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Table 8. Comparing the proposed framework with past studies.

Study Model(s) Feature Extraction Participants Advantages Disadvantages

[17]
Multi-layer

Feedforward ANN
andRandom Forest

Differential Entropy
(DE),

Differential Asymmetry
(DASM), and

Rational Asymmetry
(RASM).

10 (5 Males,
5 Females)

High accuracy (82.61%) with real
market data and simulated money,
feature correlation explained using

statistical methods, and
self-labeling performed with SAM.

Accuracy was reported as the only
metric, with the performance of the
deep learning algorithm lower than
random forest. Little focus was on

artifact removal.

[10]
kNN, Multi-layer
Perceptron, and
Random Forest

High-Order-Crossing
(HOC)

8 (4 Males,
4 Females)

A simulated work environment for
a competitive setting.

HVLA class was not considered,
small dataset (eight participants),
highest accuracy (75%) was lower
compared to other relevant works.

[43] Multi-layer Perceptron Kernel Density
Estimation (KDE)

1 Active
investor

Displays emotion distribution in
the valence-arousal quadrant and

examines the impact of fear on
investors’ rational decision-making.

Only one participant was
considered and did not report any

classification metrics obtained from
the MLP model; only emotion
distributions were reported.

Our work

LSTM, CNN,
CNN-LSTM,

CNN-BiLSTM, and
CNN-BiLSTM-CRF

Independent
Component Analysis

(ICA)

20 (10 Males,
10 Females)

High accuracy (85.65% and 85.05%)
in two experiments,

robust to artifacts with multi-level
removal, rigorous evaluation

procedure, feature contribution
explained with deepSHAP, and new

findings on LVHA emotions and
stop loss/limit orders.

Did not explore the applicability of
the proposed architecture to other

domains. The work used
experienced traders and future

research needs to expand the EEG
dataset to a more diverse

population including beginners.

7. Limitations and Future Work Directions

While the findings of this study are promising for modulating the affective states of
participants, it is essential to acknowledge and consider the limitations in the context of
future research in this area.

Emotion is a complex subconscious process regulated by the amygdala in the brain [44].
This study uses the participants’ self-reported feelings as a measure of emotion by employ-
ing the digital variant [32] of SAM [45] which is one of the most accepted measurement tools
for human emotions. However, self-reported feelings characterized by valence and arousal
provide a limited understanding of the complexity of emotions. Therefore, future studies
should incorporate additional physiological features such as cardiovascular (heart rate,
heart rate variability, and inter-beat intervals), electrodermal, and respiratory data, among
others as suggested by [9]. This analysis may aid in further enhancing the understanding
of the emotional elicitation process during trading activities.

Secondly, it is important to note that EEG signals are susceptible to various external
factors such as noise, incorrect electrode placement, and environmental conditions. In
addition, participants’ physical and mental states can be influenced by individual biases,
personal factors, mood, and past experiences, which can result in variations in their emo-
tional responses. A small change in any of these factors can lead to signal distortion or
changes in emotional response. While our study employed rigorous preprocessing methods
to mitigate the effects of external factors on EEG signals, it is important to acknowledge
that these factors can never be fully eliminated. Thus, future studies may benefit from
continued efforts to optimize data collection and preprocessing techniques.

Third, the participant group in this study is a reasonably homogeneous group of
traders to replicate everyday work activities in a competitive environment. However,
future studies could investigate more heterogeneous participant groups to obtain more
generalizable results and broaden the scope of our work.

8. Conclusions

The main objective of this study was to investigate the effect of using stop loss and limit
orders on the emotional state of traders during short-term trading sessions. A deep learning-
based valence-arousal framework for emotion classification was developed and applied to
EEG data collected from 20 participants who participated in two single-trial experiments.
The first group of participants was required to trade with stop loss and limit orders, while
the second group was instructed to trade without using these risk control measures. The
participants self-labeled their emotional states using a Self-assessment Manikin.



Sensors 2023, 23, 3474 23 of 26

We proposed a hybrid neural architecture combining a Conditional Random Field layer
with a CNN-BiLSTM model and used Bayesian Optimization to determine the optimal
hyperparameters for multi-trader emotion classification. The results showed that the
CNN-BiLSTM-CRF model achieved the highest mean accuracy and least deviation in
performance. The model outperformed the previous literature in EEG-based multi-class
emotion recognition. Our findings revealed that the group trading with stop loss and limit
orders exhibited a greater HVHA (more hope) and a lower LVHA (less fear). In addition,
HVLA (emotion of calmness) was found to be insignificant regardless of whether traders
applied risk control via limit orders and stop loss or not.

The findings of this study have substantial implications for day traders and portfolio
managers. The results of this research can help traders better understand their emotional
state and develop positive decision-making skills and the EEG dataset generated can be
used for future behavioral finance studies focusing on financial trading. In future research,
we plan to expand our EEG dataset through additional testing on a larger sample size and
more diverse population in order to gain a deeper understanding of the emotional states
in financial trading scenarios. We also intend to explore the applicability of the proposed
emotional classification architecture to other domains.
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Appendix A

Table A1. Search space configuration for hyperparameter optimization for both experiments.

Hyperparameter Name Type Bounds Values Description

Learning rate range {0.001, 0.01} - The learning rate for network weights

Dropout rate range {0.001, 0.25} - The use of a regularization dropout to ignore a
subset of neurons

Count of hidden layers range {1, 5} - Number of hidden layers
Neuron count per layer range {350, 550} - Neurons in each layer

Batch size choice - {8, 16, 32, 64} Batch Size for a single pass
Activation function choice - {linear, relu} Activation function for the network

Optimizer choice - {rms, adam, adamx, sgd} Optimizer for reducing the loss function
CNN filters choice - {32, 64, 128, 256} Number of convolutional filters
Kernel size choice - {2, 3, 4, 5} Kernel size for convolutional layers

Pooling size and type choice - {2, 3, 4} and {‘max’, ‘average’} Pooling size and type
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have been eliminated and the signal appears clean. 
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Figure A1. The raw EEG signal of Participant 1 after artifact removal using a sliding window size of
30 seconds. The green-highlighted boundaries indicate spikes caused by artifacts such as eye blinking.
The hyphen (-) in the figure serves as a representation of the minus sign (−) in EEGLab.
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Figure A2. The raw EEG signal of Participant 1 after artifact removal using a sliding window size
of 30 seconds. Regarding the boundary markers, it can be observed that the artifact-induced spikes
have been eliminated and the signal appears clean.
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