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Abstract: Predicting anomalies in manufacturing assembly lines is crucial for reducing time and
labor costs and improving processes. For instance, in rocket assembly, premature part failures can
lead to significant financial losses and labor inefficiencies. With the abundance of sensor data in
the Industry 4.0 era, machine learning (ML) offers potential for early anomaly detection. However,
current ML methods for anomaly prediction have limitations, with F1 measure scores of only 50%
and 66% for prediction and detection, respectively. This is due to challenges like the rarity of
anomalous events, scarcity of high-fidelity simulation data (actual data are expensive), and the
complex relationships between anomalies not easily captured using traditional ML approaches.
Specifically, these challenges relate to two dimensions of anomaly prediction: predicting when
anomalies will occur and understanding the dependencies between them. This paper introduces a
new method called Robust and Interpretable 2D Anomaly Prediction (RI2AP) designed to address
both dimensions effectively. RI2AP is demonstrated on a rocket assembly simulation, showing up to
a 30-point improvement in F1 measure compared to current ML methods. This highlights its potential
to enhance automated anomaly prediction in manufacturing. Additionally, RI2AP includes a novel
interpretation mechanism inspired by a causal-influence framework, providing domain experts with
valuable insights into sensor readings and their impact on predictions. Finally, the RI2AP model
was deployed in a real manufacturing setting for assembling rocket parts. Results and insights
from this deployment demonstrate the promise of RI2AP for anomaly prediction in manufacturing
assembly pipelines.

Keywords: anomaly prediction; smart manufacturing; assembly processes; sensor data; time
series analysis

1. Introduction

The manufacturing industry has witnessed multiple evolutionary iterations through-
out its history. From the mechanization of Industry 1.0, the mass production of Industry 2.0,
the automation of Industry 3.0, and, finally, today’s era of smart manufacturing of Industry
4.0 [1]. Each of these revolutions is characterized by specific capabilities introduced to
manufacturing systems to evolve these systems. The era of Industry 4.0 has transformed the
manufacturing landscape with the advent of data-driven smart manufacturing, a paradigm
aiming at utilizing generated data to influence decision-making processes to improve
productivity and efficiency [2].

Time series data have become ever-present within manufacturing systems with the
proliferation of affordable and robust sensors available in the market. Hence, time series
analytics have experienced significant progress in Industry 4.0. An estimated one trillion
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sensors are projected to be utilized in manufacturing facilities by 2025 [3]. The time series
sensor data involved in manufacturing processes can play a pivotal role in analytics-driven
insights into events of interest, such as anomalies.

Specifically, we are interested in utilizing the time series data to predict future anoma-
lies based on historical data and the current status of the manufacturing system [4,5].
However, being able to accurately predict anomalous events in production lines can be
challenging. Real manufacturing datasets can be very imbalanced, as it is rare for anoma-
lies to occur in mature manufacturing processes [6]. Translating the data into meaningful
insights about anomalies (e.g., remedial actions) can be challenging due to the considerable
number of sensors that must be considered. Lastly, the interdependence between the sensor
data and anomaly categories further complicates the prediction problem.

To tackle these challenges, researchers have experimented with data-driven statisti-
cal learning- and ML-based solutions for anomaly prediction. The spectrum of methods
explored includes traditional statistical approaches like ARIMA, exponential smoothing,
and structural models, as well as ML and neural network methods such as gradient boost-
ing, convolutional neural networks, recurrent neural networks, and their variations [7–15].
More details on these early works are available in Section 2 and Appendix A. In recent times,
researchers have drawn inspiration from the success of generative artificial intelligence
(GenAI). This has led to exploring pre-trained foundational time series models such as
TimeGPT and PromptCast. These models are fine-tuned for specific downstream tasks,
such as anomaly prediction [16,17].

Although the methods explored so far have shown promise, they have not achieved
adequate predictive performances (the SOTA F1 measure is 50% in prediction and 66% in
detection— Appendix C) due to several key challenges that still remain: (i) a robust solution
for modeling the rarity of anomalous occurrences, e.g., rocket parts being fitted poorly, do
not frequently occur in mature assembly pipelines, often resulting in a poor predictive
accuracy; (ii) a framework for modeling the two-dimensional nature of the problem, namely,
the prediction of the anomaly(s) at future time steps, along with dependencies among the
anomalies when more than one occurs; and (iii) a lack of high-fidelity simulation data
corresponding to real-world rocket assembly pipelines (the data generated often lack the
stochasticity of real-world pipelines). Beyond prediction-related challenges, there are also
hurdles related to interpreting the result in a domain-expert-friendly manner for informing
insights into improving pipelines [18].

We propose a novel framework for handling the abovementioned challenges, which we refer to as
Robust and Interpretable 2D Anomaly Prediction (RI2AP). Our main contributions are as follows:

• For challenges (i) and (ii) above, we implemented the following strategies. We model
an anomaly using a compositional real-valued number . First, we encode each anomaly
class using a monotonically increasing token assignment strategy (e.g., 0 for none, 1
for the first part falling off, 2 for the second part falling off, and so on). This is done
to capture the monotonically increasing nature of the severity of anomaly categories
in rocket assembly. Next, we represent compositional anomalies using the expected
value of their token assignments. We propose a novel model architecture that predicts
both the sensor values at the next time step, as well as the value assigned to the
compositional anomaly (hence the name 2D prediction). The robustness to rarity is
achieved through modeling the problem using a regression objective, thus preventing
the need for obtaining an adequate number of positive vs. negative class instances or
other ad hoc sampling strategies to handle the rare occurrence.

• For challenge (iii), we use the Future Factories dataset. The dataset originates from a
manufacturing assembly line specifically designed for rocket assembly, adhering to
industrial standards in deploying actuators, control mechanisms, and transducers [19].

• For enabling domain-expert-friendly interpretability, we introduce combining rules
first introduced in the independence of a causal influence framework [20], which were
specifically inspired by real-world use cases such as healthcare cases to allow enhanced
expressivity beyond traditional explainable AI (XAI) methods (e.g., saliency and heat
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maps). We note that although XAI methods are useful for the system developer for
debugging and verification, they are not end-user friendly and do not give end-users
the information they want [18]. We demonstrate how combining rules allows natural
and user-friendly ways for the domain expert to interpret the influence of individual
measurements on the prediction outcome.

• This full investigation aimed to tackle the above challenges to create an adequate
model and fully deploy this model in a real manufacturing system. The results and
insights from this deployment showcase the promising potential of RI2AP for anomaly
prediction in manufacturing assembly pipelines.
Figure 1 shows a summary of the proposed method.

Sensor measurement corresponding 
to Nose Cone Health (m1)

Sensor measurement corresponding 
to Rocket body 2 Health (m2)

Sensor measurement corresponding 
to Rocket body 1 Health (m3)

Sensor measurement corresponding 
to Rocket base Health (m4)

F4(m4 , p4)->
Rocket base

Anomaly

F3(m3 , p3) ->
Rocket body 1

Anomaly

F2(m2 , p2) ->
Rocket body 2 Anomaly 

F1(m1 , p1) -> Nose cone 
Anomaly

Combined rocket assembly anomaly =

 aggr(Nose cone Anomaly, Rocket body 
2   Anomaly, Rocket body 1 Anomaly, 
Rocket base Anomaly) 

aggr  is a nuanced combination 
effect.,
eg., compounding effects of part 
failures (NOISY-OR), critical part 
failure (NOISY-MAX), or simple failure 
(Simple OR).  

Rocket base

Rocket body 1

Rocket body 2

Nosecone

Figure 1. Shows an abstract illustration of the RI2AP method proposed in this work. Sensor
measurements correspond to the health of different rocket parts. Several function approximations
are then used to predict anomalous occurrences from the sensor measurements, and their outputs
are combined using combining rules. The combining rules allow natural aggregation mechanisms,
e.g., NOISY-OR and NOISY-MAX, as shown in the illustration.

The rest of this paper is organized as follows. Section 2 covers past work on anomaly
detection and prediction within manufacturing processes using univariate and multivariate
sensor data. Through this literature survey, we identify the key research gaps. Section 3
describes the dataset and summary statistics. Section 4 introduces a precise formulation of
the problem aimed at addressing the gaps identified in Section 2. Section 5 details the pro-
posed solution approach (the RI2AP method), design motivations, and other architectural
choices (e.g., function approximator choices). Section 6 provides our experimental setup
and records the improvements of our proposed approach over state-of-the-art baselines for
a robust proof-of-concept (POC) model. Section 7 covers the deployment of the POC model
on the Future Factories manufacturing cell. This includes the deployment plan, technical
details, deployment results, and issues faced in deployment. We conclude the paper in
Section 8 by summarizing the significant this study’s findings and limitations and avenues
for future work.

2. Related Work

Various studies have been conducted on anomaly detection and prediction within
manufacturing processes, specifically leveraging univariate or multivariate sensor data
and employing various algorithmic methodologies. These methods can be categorized
into four major groups: supervised classification and regression [21–26], clustering [27],
meta-heuristic optimization [28], and advanced learning [29] methods.

Wang et al. [21] proposed a method based on recurrent neural networks to detect
anomalies in a diesel engine assembly process, utilizing routine operation data, recon-
structing input data to identify anomaly patterns, and providing insights into the time
step of anomaly occurrences to aid in pinpointing system issues. Ref. [22] addressed the
problem of unexpected assembly line cessation with a unique approach that integrates
Industrial Internet of Things (IIoT) devices, neural networks, and sound analysis to predict
anomalies, leading to a smart system deployment that significantly reduces production
halts. Ref. [23] investigated and developed automatic anomaly detection methods using
support vector machines for in-production manufacturing machines. They considered
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operational variability and wear conditions, achieving a high recall rate without continu-
ous recalibration, specifically in the rotating bearing of a semiconductor manufacturing
machine. Ref. [24] conducted fine-grained monitoring of manufacturing machines, ad-
dressing challenges in data feeding and meaningful analysis, analyzing real-world datasets
to detect sensor data anomalies in pharma packaging, and predicting unfavorable tem-
perature values in a 3D printing machine environment. They developed a parameterless
anomaly detection algorithm based on the random forest algorithm and emphasized the
efficiency of anomaly detection in supporting industrial management. The research con-
ducted by Abdallah et al. [25] analyzed sensor data from manufacturing testbeds using
deep learning techniques, evaluated forecasting models, demonstrated the benefit of careful
training data selection, utilized transfer learning for defect-type classification, released a
manufacturing database corpus and codes, and showed the feasibility of predictive failure
classification in smart manufacturing systems. Park et al. [26] proposed a fast adaptive
anomaly detection model based on an RNN Encoder–Decoder and using machine sounds
from Surface-Mounted Device (SMD) assembly machines. They utilized Euclidean distance
for abnormality decisions, and the proposed approach has its structural advantages over
Autoencoders (AEs) for faster adaptation with reduced parameters.

Chen et al. [27] developed a novel Spectral and Time Autoencoder Learning for
Anomaly Detection (STALAD) framework for in-line anomaly detection in semiconductor
equipment, utilizing cycle series and spectral transformation from equipment sensory
data (ESD). They implemented an unsupervised learning approach with Stacked Autoen-
coders for anomaly detection, designing dynamic procedure control, and demonstrating
its effectiveness in learning without prior engineer knowledge. Saci et al. [28] developed
a low-complexity anomaly detection algorithm for industrial steelmaking furnaces us-
ing vibration sensor measurements, optimizing parameters with multiobjective genetic
algorithms, demonstrating a superior performance over SVM and RF algorithms, and high-
lighting its suitability for delay-sensitive applications and limited computational resources
devices, with a generic applicability to industrial anomaly detection problems. Ref. [29]
investigated anomaly detection and failure classification in IoT-based digital agriculture
and smart manufacturing, addressing technical challenges such as sparse data and varying
sensor capabilities. The study evaluated ARIMA and LSTM models, designed temporal
anomaly detection and defect-type classification techniques, explored transfer learning and
data augmentation methods, and demonstrated improved accuracies in failure detection
and prediction. However, to the best of the authors’ knowledge, none of the studies have
studied how to model the interdependencies of anomalies in a manufacturing setting.

3. Future Factories Dataset

We used the Future Factories (FF) dataset [30] generated by the Future Factories
team operating at the McNair Aerospace Research Center at the University of South
Carolina, which has been made available publicly. A visual representation of the FF setup is
included in Appendix E. The dataset consists of measurements from a simulation of a rocket
assembly pipeline, which adheres to industrial standards in deploying actuators, control
mechanisms, and transducers. The data consist of several assembly cycles with several
kinds of measurements, such as the conveyor variable frequency, drive temperatures,
conveyor workstation statistics, etc., for a total of 41 measurements. In this work, we
first utilized, XGBoost 2.0.1, and its coverage measure to narrow down 20 out of the
41 measurements that contain high information content. XGBoost has achieved a SOTA
performance on anomaly detection and prediction (prediction refers to the identification
before the anomalous event, and detection refers to the identification after the event),
and therefore, we used it to narrow down our feature selection (please refer to Appendix B
for coverage plots and an example of a learned tree from the XGBoost model). Each
assembly cycle is associated with one among eight different anomaly types. Upon domain
expert consultation, we further grouped the anomaly types into five distinct categories:
a None type, Type 1: one rocket part is missing, Type 2: two rocket parts are missing, Type 3:
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three rocket parts are missing, and Type 4: miscellaneous anomalies. Tables 1 and 2 describe
the dataset and anomaly statistics, respectively.

Table 1. FF Dataset and its statistics.

Dataset Artifact Statistic

Rarity percentage 13.36%
Frequency 10 Hz

Data collection period 6 h
Original features 41
Selected features 20

Number of data points 211,546
Train/test split 80:20
Train samples 169,236
Test samples 42,309

Table 2. Anomaly types in FF Dataset.

Anomaly Type and Notation Sub Type Count Percentage

Nosecone Removed Type 1 9043 4.27%
BothBodies and Nose Removed Type 3 4405 2.08%
TopBody and Nose Removed Type 2 5904 2.79%
Body2 Removed Type 1 3306 1.56%
Door2_TimedOut Type 4 3711 1.75%
R04 crashed nose Type 4 1631 0.77%
R03 crashed tail Type 4 1426 0.67%
ESTOPPED Type 4 273 0.13%
No anomaly None 183,272 86.63%

4. Problem Formulation

In this section, we formally characterize the problem. We begin with clarifying nota-
tions denoting the dataset components, followed by the encoding method for the target
variable, i.e., the anomalous events. Equipped with the appropriate notations, we describe
the task that we aimed to solve in this work.

4.1. Notations

Consider an assembly cycle that assembles a rocket from the set of parts P = {p1, p2, p3,
. . . }. Parts pi with lower values for i represent parts at the rocket’s lower end; otherwise,
higher values for i represent parts at the rocket’s upper (or nose) end. Each cycle occurs
over a sequence of t = 1, 2, . . . , T discrete time steps. We referred to [30] for details on the
definition of a time step (e.g., sampling rate). At each time step t, a group of 20 sensor mea-
surements are collected (see Section 3); we denote them as the set Mt = {mt

1, mt
2, . . . , mt

20}.
Anomalies during a cycle are recorded by a separate mechanism and categorized as None or
Types 1–4 as in Section 3. We denote anomaly Type 1 as the singleton tuple a1 = (pi), pi ∈ P,
and Type 2 as the two-tuple a2 = (pi, pj), pi, pj ∈ P, i < j, Type 3 as the three-tuple
a3 = (pi, pj, pk), pi, pj, pk ∈ P, i < j < k. In a single cycle, parts falling off follow a
compositional pattern, where the bottom parts of the rocket detach before the top parts.
However, the time gap between these occurrences is nearly instantaneous and cannot be
captured within discrete time steps. Consequently, only one type of anomaly from the set
A = {a0, a1, a2, a3, a4} is recorded at each time step. It is important to note that, in reality,
a combination of failures can occur. This is why we define each anomaly using indexed
parts pi, pj, pk, i < j < k, where the ordering of the indices is representative of the spatial
structure of the rocket (bottom to top). The miscellaneous anomaly type Type 4 is denoted
as a4 = (pi, pj, pk), pi, pj, pk ∈ P. The ordering of indices is not important since they
correspond to crashes (see Table 2) and are, therefore, unrelated to the spatial structure of
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the rocket. Finally, the None type is denoted as a0 = (None). In the next subsection, we
describe how the anomalies were encoded in our work given the above notations.

4.2. Anomaly Encodings

Recall A to be the set {a0, a1, a2, a3, a4}. To capture the compositional nature of the
anomalies, we perform token assignments to each anomaly type as follows: token(a0) = [0],
token(a1) = [i], token(a2) = [ i+j

2 ], and token(a3) = [ i+j+k
3 ]. It is clear that this token assign-

ment is monotonically increasing, which is representative of the spatial structure of the rocket,
and also captures an increasing degree of severity (more parts falling off vs. fewer parts falling
off, as mentioned in the main contributions from Section 1). For a4, we perform the token as-
signment as token(a4) = max({token(a3 = (pi, pj, pk)) | pi, pj, pk ∈ P})+ 1, i.e., miscellaneous
anomalies are assigned the maximum possible value since they correspond to crashes
that are considered the most severe. Note that anomaly Type 4 is not related to the spatial
structure of the rocket.

4.3. Why Not Simple “One-Hot” Encoding for Anomaly Types?

Extensive prior work on anomaly detection for the specific case of rocket assembly
studied in this paper has shown that “one-hot” encoding and other similar data refor-
matting techniques lead to poor performances for ML classifiers. Appendix C shows the
SOTA results achieved using “one-hot”-encoded labels. Our problem formulation more
naturally captures the dataset characteristics for the anomaly prediction problem with high
fidelity. Additionally, the SOTA results clearly demonstrate that “one-hot” encoding does
not achieve a satisfactory performance.

4.4. Task Description

At each time step t, an anomaly at ∈ A either occurs or does not. The goal is to predict
measurements Mt = {mt

1, mt
2, . . . , mt

20} and the token assignment of the anomaly type
token(at) at time step t (two-dimensional prediction). This prediction is performed multiple
times, and the evaluation metrics are recorded.

5. The RI2AP Method

In this section, we will first describe the RI2AP method (illustrated in Figures 2 and 3),
subsequently explain the motivations for the method design, and finally elaborate on the
detailed model architecture used in the RI2AP method. Consider a series of measurements
up to time step t− 1, denoted by the data list Xt−1 = [M1 = {m1

1, m1
2, . . . , m1

20}, . . . , Mt−1 =

{mt−1
1 , mt−1

2 , . . . , mt−1
20 }]. Here, Mt represents the set of all 20 measurements at time t, and

each of the mt
l represents one of these measurements at time step t. We first construct a set

of 20 different function approximators from these measurements:

{Fl : (m1
l , . . . , mt−1

l ; θl) → (mt
l , token(at)) | l ∈ [1, .., 20]} (1)

(a) (b)Set of Measurements

Input Sequence

Predictions

. . .

. . .

. . .

. . .

. 

. 

.

. 

. 

.

. 

. 

.

Function Approximator

Combining Rule

Parameters of      (   = 1 to 20)and

Measurements

Time Step

Anomaly Token

Figure 2. Illustrates the RI2AP method. (a,b) correspond to Equations (1) and (2), respectively.
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Figure 3. Detailed illustration of RI2AP.

Fl represents a function approximator and is associated with a specific measurement
mt

l at time step t. There are 20 such function approximators, indexed by l from 1 to 20.
θl represents the parameters associated with the lth function approximation F1. Here,
the parameters are learned during the training process and are used to transform the input
measurements into the predicted measurement mt

l and an associated token token(at). Then,
we combine the set of all 20 outputs from each of the Fl using a combining rule denoted as
aggr to yield a final value at

f inal [31]. This operation is described using the equation

at
f inal = aggr({(mt

l , token(at)) | l ∈ [1, .., 20]}) (2)

5.1. Design Motivations
5.1.1. Why Separate Function Approximators and Combining Rules?

When domain experts analyze sensor measurements to understand their influence
on the presence or absence of detected anomalies (typically conducted post anomaly oc-
currence), they initially examine the impacts of individual measurements separately. This
approach stems from the fact that each measurement can strongly correlate independently
with anomaly occurrences. An anomaly typically occurs when multiple measurements
independently combine, with well-defined aggregation effects, to cause the anomaly. Due
to this reason, we employ combining rules introduced in the independence of the causal
influence framework [32], specifically designed for such use cases. These rules provide a
natural and domain-expert-friendly way to express realistic aggregation effects, offering
options like a simple OR, Noisy-OR, Noisy-MAX, tree-structured context-specific influ-
ences, etc, leading to enhanced interpetability. Additionally, as combining rules inherently
represent compactly structured Bayesian networks, methods from the do-calculus can be
applied to isolate and study various combinations of anomaly-causation models, making
them uniquely suitable for our use case [33,34].
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5.1.2. Why Not Standard XAI Methods?

As briefly alluded to in Section 1, a qualitative issue with XAI methods is that they
are primarily useful to ML researchers to gain insights into model behaviors and require
some postprocessing or organization before end-users or domain experts can understand
the model outcomes. They are developer friendly and not domain expert friendly. Additionally,
there are also mathematical instability issues with XAI methods that raise questions about
the robustness and reliability of the explanations provided. Specifically, XAI techniques are
based on approximating the underlying manifold using a simpler surrogate, e.g., approx-
imating a globally complex and non-linear function with a linear (LIME) or fixed-width
kernel method (SHAP) for a particular test instance of interest [35,36]. This surrogate model
needs training using a representative set, a challenging proposition to ensure in cases with
class rarity such as anomaly prediction, resulting in surrogate model variability (producing
different explanations for the same prediction when different instances of the surrogate
model are applied) [37].

The combining-rules approach used in our work is readily interpretable by the domain
expert due to its natural functional forms. Second, it comes with the calibration advantages
of probabilistic models—predicted probabilities can be well calibrated to align with ex-
perimental observations due to factors that facilitate robustness, e.g., Bayesian estimation,
do-calculus, uncertainty modeling, and model interpretability.

5.2. Function Approximation Methods

Section 5, Equation (1) introduced the general form for the function approximation
used in the RI2AP method. For ease of the explanation of the architecture, we will consider
the function approximation architecture corresponding to measurement l, given by

Fl : (m1
l , . . . , mt−1

l ; θl) → (mt
l , token(at)) (3)

This model parameterized by θl takes as input the data list Xl = [m1
l , . . . , mt−1

l ], i.e., the mea-
surements corresponding to l up to time step t − 1, and produces the output (mt

l , token(at)),
i.e., the measurement value and the anomaly type token(at) at time step t.

5.2.1. Long Short-Term Memory Networks (LSTMs)

A natural choice for such a time step-dependent prediction scenario is any recurrent
neural network (RNN)-based method modified to emit two-dimensional outputs [38].
The set of equations below describes an abstraction of the LSTM modified for our setting:

Fl : LSTMCellst−1
1 ([m1

l , . . . , mt−1
l ]; θl ,H)

→ LSTMoutput = (mt
l , token(at))

(4)

Here, H denotes the hyperparameters such as choice of optimizer, learning rate scheduler,
number of epochs, batch size, number of hidden layers, and dropout rate.

5.2.2. Transformer Architecture—Decoder Only

The current SOTA model in RNN-based models is the Transformer architecture, which
has been employed successfully in a wide variety of application domains [39]. We used
two types of Transformer architectures in our experimentation: (i) our own decoder-only
implementation modified to produce two-dimensional outputs at each autoregressive
step [40] and (ii) TimeGPT [16], a foundational time series Transformer model.

The set of equations below describes an abstraction of the decoder-only Transformer
architecture modified for our setting:

Fl : TransformerBlocksB
1 ([m

1
l , . . . , mt−1

l ]; θl , AttnMask,H)

→ Transformeroutput = (mt
l , token(at))

(5)
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Here, AttnMask denotes the attention mask required for the autoregressive decoder-only
architecture (to prevent it from looking at future parts of the input when generating
each part of the output). B represents the number of Transformer blocks. H denotes the
hyperparameters such as choice of optimizer, learning rate scheduler, number of epochs,
batch size, number of feedforward layers (with default hidden layer size), number of blocks,
number of attention heads, and dropout rate.

5.2.3. Method of Moments

In “A Kernel Two-Sample Test for Functional Data”, Wynee et al. [41] demonstrated
that when comparing data samples with imbalanced sizes, using first-order moments, specif-
ically sample means, is more suitable as a feature to identify discriminatory patterns.
Intuitively, employing sample means or averages helps alleviate the impact of significant dif-
ferences in sample sizes. Narayanan et al. [42] leveraged ideas from Shohat and Tamarkin’s
book and generalized this idea to nth-order moments, providing theoretical proof and ex-
perimental observations that validate the method’s robustness to sample imbalances [43,44].
Let moments([m1

l , . . . , mt−1
l ]) denote the moments of the input list. The set of equations

below describes an abstraction of the method of moments for our setting:

moments([m1
l , . . . , mt−1

l ]; NN(θNN ,H))

= E
[
[NN([m1

l , . . . , mt−1
l ])1, . . . , NN([m1

l , . . . , mt−1
l ])n]

]
,

NN([m1
l , . . . , mt−1

l ])j ∈ RD×2, ∀j ∈ {1, . . . , n}

(6)

where NN denotes a feedforward neural network that encodes the measurements at
different time steps into a dense matrix of size D × 2 (D is the output dimension of the
penultimate layer of the neural network). θNN denotes the parameters of the network, H
denotes the hyperparameters, such as the number of hidden layers and their sizes, and n
denotes the nth order moment. The reason for the neural network in this setup is to be able
to learn a mapping from the inputs to a transformed basis, over which the moments are
calculated. For a normally distributed sample, it is clear that the first- and second-order
moments (mean and variance) of the measurements (before transformation to any other
basis) are sufficient to characterize the distribution. However, in our case, the underlying
data distribution is unknown. Therefore, we equip the function approximator with a
neural network that can be trained to map inputs to a transformed basis, ensuring that the
calculated moments sufficiently characterize the distribution.

We chose the function approximator choices of the LSTM and Transformer models as they
represent the SOTA models in sequence modeling. We chose the method of moments due to its ideal
theoretical properties (robustness to noise and class imbalance) with respect to our problem setting.

6. Experiments and Results
6.1. Function Approximator Setup Details
6.1.1. LSTM

The preprocessed dataset was divided into training and testing sets, with the training
set encompassing the initial 80% of the temporal data, and the remaining 20% allocated to
the test set. Sequences were constructed from the normalized data utilizing a look-back
length (context window) of 120. We used PyTorch Lightning’s Trainer to train and validate
the model. The training process was set up with the Mean Squared Error (MSE) loss
function, and the AdamW optimizer, with its learning rate scheduler. The hyperparameters
tuned included the number of epochs, batch size, hidden layers, and dropout rate. Early
stopping was implemented, and the best checkpoint, determined by the reduction in MSE,
was saved during training to monitor the validation loss.
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6.1.2. Transformer (Ours)

As mentioned in Section 5, we implemented our own decoder-only Transformer setup.
The preprocessed data were split into training and testing sets using the same splitting
method used for the LSTM in the section. Subsequently, the data were normalized and
transformed into sequences of a look-back length of 120 for training the Transformer
model. Once again, the training process was set up with an MSE loss function, AdamW
optimizer, and a learning rate scheduler. The model was trained and validated using Py-
Torch Lightning’s Trainer module, with early stopping implemented to prevent overfitting.
The training progress was monitored and logged, and the best model checkpoint was saved
based on the validation loss. The model’s hyperparameters included the number of epochs,
batch size, number of feedforward layers (with a default hidden layer size = 2048), number
of blocks = 6, number of attention heads, and dropout rate.

6.1.3. TimeGPT

The dataset was preprocessed before being divided into two subsets, training and
testing, each with 97,510 and 2000 rows. Both sets were then standardized using a standard
scaler. The training of the model was performed using the timegpt.forecast method, and hy-
perparameter tuning was performed using finetune_steps, which performs a certain number
of training iterations on our input data and minimizes the forecasting error. However,
given Nixtla’s current constraints, more hyperparameter tuning beyond finetune_steps, such
as modifying the learning rate, batch size, or dropout layers, was not possible due to a
lack of precise insights into the model’s architecture. It is worth noting that the TimeGPT
SDK and API have no restrictions on dataset size if a distributed backend is used. Other
essential parameters used in the model included the frequency, level, horizon, target column,
and time column. More information is provided in Appendix D.

6.1.4. Method of Moments

The preprocessing steps are similar to the LSTM and Transformer cases. The order of
moments n was taken as 2 (starting from 0), and the number of hidden layers in the neural
network NN were 2. The loss function was MSE, and the optimizer used was AdamW.
Root Mean Squared Error (RMSE) scores were calculated for the predictions, and the best-
performing checkpoint was stored (best performing in terms of training loss). The training
progress was monitored and logged, and the best model checkpoint was saved based on
the validation loss.

We will now report the evaluation results. Table 3 provides a list of abbreviations,
which we use in the result tables.

Table 3. List of abbreviations.

Variable Abbreviation Variable Abbreviation

Anomaly Label D LoadCell_R04 V15
SJointAngle_R03 V1 BJointAngle_R04 V16
Potentiometer_R04 V2 Potentiometer_R03 V17
VFD2 V3 Potentiometer_R01 V18
LoadCell_R02 V4 Potentiometer_R02 V19
LJointAngle_R01 V5 LoadCell_R03 V20
BJointAngle_R03 V6 Nosecone Removed A1
UJointAngle_R03 V7 BothBodies and Removed A2
VFD1 V8 TopBody and Nose Removed A3
RJointAngle_R04 V9 Body2 Removed A4
SJointAngle_R02 V10 Door2_TimedOut A5
LJointAngle_R04 V11 R04 crashed nose A6
SJointAngle_R04 V12 R03 crashed tail A7
LoadCell_R01 V13 ESTOPPED A8
TJointAngle_R04 V14 No anomaly A9
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6.2. Evaluation Results Using Individual Measurements

We present Mean Squared Error (MSE) values and additionally categorize regression
values based on token assignment, aligning them with the closest ground truth values.
This categorization is crucial for computing traditional classification-based metrics, en-
hancing the interpretability of results for domain experts. The precision, recall, F1 score,
and accuracy results for the LSTM and Transformer are detailed in Table 4. RMSE and MSE
comparison results are provided in Table 5 in the same section. Table 6 summarizes aggre-
gated measurements for all anomaly types. Notably, the TimeGPT model performed poorly;
however, it is important to highlight that we lacked access to the model for fine-tuning on
our dataset. The LSTM model outperformed the Transformer, possibly due to Transformers
losing temporal information and facing overfitting issues related to the quadratic complexity
of attention computation [45–47]. The method of moments demonstrates a significantly better
performance among function approximators, supporting our expectation that it is particularly
well suited for robust anomaly prediction within the experimental context of this study.

6.3. Evaluation Results with Combining Rules

We used two separate combining rules, Noisy-OR and Noisy-MAX, as introduced
in the independence of the causal influence framework [20]. Combining rules combines
probability values and not regression values. Therefore, we used the sigmoid of the binned
regression values (binned to the closest token assignment) to convert the closeness value
into a number between 0 and 1. This number denotes the probability of the influence of the
corresponding measurement on the prediction outcome.

The precision, recall, and F1 measures of the LSTM and Transformer models with the
Noisy-OR combining rule are reported in Table 7, and those for the Noisy-MAX combining
rule in Table 8. Here, we notice that the Noisy-OR rule results in better predictions com-
pared to the Noisy-MAX rule. This shows that the severity of the anomalous occurrence
compounds with multiple failing parts and does not depend on any single critical part
failure (recall the illustration from Figure 1). The precision, recall, and F1 measures for the
method of moments with Noisy-OR and Noisy-MAX are shown in Table 9. As expected
again, the method of moments achieved superior results in predicting anomalies. We also
examined how different anomaly types with varying rarities affect the performances of
different models. The findings demonstrate that regardless of the rarity of an anomaly,
the method of moments outperformed the other function approximator choices, which, in
contrast, exhibit results with significant variance, as shown in Figures 4 and 5. A compar-
ison of RMSEs among the different function approximator choices using the combining
rules is presented in Table 10 and Figure 6. Consistently, the method of moments exhibited
a superior performance, showing lower RMSE values compared to other function approxi-
mators. This reaffirms its predictive effectiveness, particularly in addressing the infrequent
occurrence of anomalies.

Anomaly Type
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Figure 4. Comparison of F1 score with the LSTM model, Transformer, and the method of moments
using Noisy-OR. (A1:A5, A9—see Table 3).
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Figure 5. Comparison of F1 score with the LSTM, Transformer, and the method of moments using
Noisy-MAX. (A1:A5, A9—see Table 3).
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Figure 6. Loss/error comparison of different function approximator choices and combining
rule predictions.

Table 4. Evaluation results of baselines in univariate predictions: precision, recall, F1 score, and
accuracy ∗.

B LSTM Transformer TimeGPT

S 42,189 42,299 2000

M P R F1 A P R F1 A P R F1 A

V1 0.2 0.3 0.3 0.7 0.2 0.3 0.2 0.2 0.5 0.5 0.5 0.9
V2 0.8 0.7 0.8 0.9 0.2 0.1 0.2 0.3 0.5 0.5 0.5 0.9
V3 0.9 0.8 0.9 0.9 0.2 0.3 0.2 0.5 0.5 0.5 0.5 1
V4 0.9 0.9 0.9 0.9 0.2 0.1 0.1 0.1 0.5 0.5 0.5 1
V5 1 1 1 1 0 0.1 0 0.1 0.2 0.1 0.1 0.8
V6 0.9 0.9 0.9 0.9 0.2 0.2 0.1 0.5 0.5 0.5 0.5 0.9
V7 0.9 0.9 0.9 0.9 0.2 0.3 0.2 0.6 0.2 0.1 0.16 0.9
V8 0.9 1 1 1 0.4 0.4 0.4 0.7 0.5 0.5 0.5 1
V9 1 0.9 0.9 1 0.2 0.3 0.3 0.6 0.3 0.3 0.3 0.9
V10 0.9 0.9 0.9 0.9 0.3 0.3 0.2 0.5 0.2 0.1 0.1 0.7
V11 0.9 0.9 0.9 0.9 0 0.1 0 0 0.2 0.2 0.8 0.9
V12 0.4 0.5 0.3 0.5 0.4 0.3 0.4 0.7 1 1 1 1
V13 0.7 0.7 0.7 0.9 0.3 0.4 0.4 0.6 0.5 0.5 0.5 1
V14 0.9 0.9 0.9 1 0.6 0.7 0.5 0.7 0.5 0.5 0.5 0.9
V15 1 1 1 1 0.2 0.3 0.1 0.5 0.3 0.3 0.3 1
V16 0.8 0.7 0.7 0.8 0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.9
V17 0.9 0.9 0.9 0.9 0.3 0.4 0.3 0.6 0.5 0.5 0.5 0.9
V18 1 1 1 1 0.2 0.2 0 0.1 0.5 0.5 0.5 1
V19 0.9 0.9 0.9 0.9 0.3 0.4 0.3 0.2 0.5 0.5 0.5 0.9
V20 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.5 0.5 0.5 0.9

∗ B—Baseline models, S—Support, M—Performance metric, P—Precision, R—Recall, F1—F1 Score, A—Accuracy,
V1:V20—see Table 3.
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Table 5. Evaluation results of baselines in univariate predictions: RMSE and MSE ∗.

B LSTM Transformer TimeGPT

S 42,189 42,189 2000

M R′ M′ TR′ R′ M′ TR′ R′ M′ TR′

V1 0.7 0.5 0.7 6.4 41.1 29.2 1.1 1.2 1.6
D 0.6 0.4 1.3 1.8 1.9 3.7
V2 0.7 0.5 0.7 0.5 0.3 2015.4 1.7 2.9 1.3
D 0.8 0.6 0.6 0.4 0.8 0.7
V3 0.8 0.6 0.7 3.6 13.2 9.8 1.1 1.2 0.8
D 0.4 0.2 2.09 4.2 0 0
V4 1 1 0.7 4.1 17.1 12.4 1.2 1.5 0.9
D 0.2 0.4 1.9 3.8 0.3 0.1
V5 0.4 0.2 0.5 2.7 6.9 5.7 1 1 1.7
D 0.6 0.4 1.8 3.5 2.2 4.7
V6 0.6 0.4 0.6 5.8 33.9 24.1 1 1 0.8
D 0.5 0.3 1.8 3.4 0.5 0.3
V7 0.6 0.4 0.6 4.6 22 16 1 1 1.3
D 0.5 0.2 1.4 2 1.6 2.6
V8 0.1 0.1 0.1 0 0 2.8 1 1.1 0.7
D 0.1 0.1 1 1 0.2 0
V9 0.9 0.9 0.8 6.4 41.2 29 1 1 1.4
D 0.4 0.1 1.4 2 1.7 2.8
V10 0.5 0.2 0.5 5.6 32.3 23 1 1 2.3
D 0.5 0.2 1.6 2.6 3.1 9.9
V11 0.9 0.8 0.7 2.6 6.9 16.5 1.3 1.7 1.3
D 0.2 0.1 1.8 3.5 0.9 0.9
V12 0.9 0.8 1.3 9.2 85.1 60.3 1.3 1.6 1.2
D 1.7 2.9 1.04 1.1 0 0
V13 1 1 0.7 7.1 50.5 35.8 1.1 1.3 0.9
D 0.4 0.2 1 1 0.5 0.2
V14 0.9 0.7 0.7 7.6 58 41 4.1 16.6 3.1
D 0.3 0.1 1.1 1.4 0.7 0.5
V15 1 0.9 0.7 57.2 3274 2315.1 1 1 0.8
D 0.2 0 1.7 3 0.3 0.1
V16 1.1 1.1 1 6.4 41 29 2.1 4.2 1.6
D 0.8 0.7 1.7 3 0.8 0.7
V17 0.8 0.6 0.6 56.2 3166.8 2239.2 0.8 0.7 0.9
D 0.4 0.2 1.4 2 0.8 0.6
V18 0.4 0.1 0.5 30.7 948 670.3 1 1 0.7
D 0.5 0.3 2.05 4.2 0.2 0
V19 0.6 0.4 0.7 46.3 2141.8 1514.4 0.9 0.8 0.9
D 0.8 0.7 5.9 3.5 0.7 0.4
V20 0.8 0.6 0.6 36.8 1352.1 956.1 1 1.1 0.9
D 0.3 0 2.6 6.7 0.8 0.6

∗ B—Baseline models, S—Support, M—Performance metric, R′—RMSE, M′—MSE, TR′—Total RMSE, V1:V20—see
Table 3.

Table 6. Evaluation results of RI2AP: precision, recall, F1 score, and accuracy ∗.

Model RI2AP

S 11,927

M P R F1 A

V1 0.6 1 0.7 0.7
V2 1 1 1 1
V3 1 1 1 1
V4 1 1 1 1
V5 0.8 1 0.9 0.9
V6 0.7 0.8 1 0.8
V7 1 1 1 1
V8 0.8 1 0.9 0.8
V9 1 1 1 1
V10 0.8 1 0.9 0.8
V11 1 1 1 1
V12 1 1 1 1
V13 0.8 1 0.9 0.8
V14 1 1 1 1
V15 0.8 1 0.9 0.8
V16 0.8 0.9 1 0.8
V17 1 1 1 1
V18 1 1 1 1
V19 1 1 1 1
V20 1 1 1 1

∗ S—Support, M—Performance metric, P—Precision, R—Recall, F1—F1 Score, A—Accuracy, V1:V20—see Table 3.
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Table 7. Evaluation results: Noisy-OR results of LSTM and Transformer ∗.

AT
LSTM Transformer TimeGPT

P R F1 A P R F1 A P R F1 A

A9 0.9 0.9 0.9 0.9 0.6 0.8 0.7 0.4 0.9 1 0.9 0.9
S-382328 S-38465

A1 0.9 0.8 0.8 0.2 0.3 0.2 0 0 0 0
S-224081 S-699

A2 0.7 0.8 0.7 0.2 0.1 0.2 0 0 0 0
S-77556 S-237

A3 0.7 0.9 0.8 0.3 0.2 0.2 0 0 0 0
S-89768 S-717

A4 0.8 0.8 0.8 0.3 0.2 0.2 0 0 0 0
S-64471 S-169

A5 0.1 0.1 0.1 0.3 0.1 0.1 0 0 0 0
S-5576 S-313

MA 0.7 0.7 0.7 0.3 0.3 0.3 0.2 0.2 0.2
∗ AT—Anomaly type, P—Precision, R—Recall, F1—F1 Score, A—Accuracy, S—Support, MA—Macro average,
A1:A9—see Table 3.

Table 8. Evaluation results: Noisy-MAX results of baselines ∗.

AT
LSTM Transformer TimeGPT

P R F1 A P R F1 A P R F1 A

A9 0.7 1 0.8 0.5 0.3 0.4 0.3 0.4 0.7 1 0.8 0.7
S-12626 S-1354

A1 0.5 0.4 0.5 0.2 0.3 0.2 0 0 0 0
S-11377 S-348

A2 0.1 0.1 0.1 0.2 0.1 0.2 0 0 0 0
S-3664 S-113

A3 0.1 0.1 0.1 0.2 0.1 0.2 0 0 0 0
S-4170 S-56

A4 0.2 0.3 0.3 0.2 0.2 0.2 0 0 0 0
S-6762 S-22

A5 0.1 0.1 0.1 0.2 0.1 0.1 0 0 0 0
S-3590 S-107

MA 0.4 0.5 0.4 0.2 0.2 0.2 0.2 0.2 0.2
∗ AT—Anomaly type, P—Precision, R—Recall, F1—F1 Score, A—Accuracy, S—Support, MA—Macro average,
A1:A9—see Table 3.

Table 9. Evaluation results: Noisy-OR and Noisy-MAX results of RI2AP ∗.

AT
Noisy-OR Noisy-MAX

P R F1 A S P R F1 A S

A9 1 1 1 0.8 2000 1 1 1 0.6 100
A6 0.5 0.6 0.5 1600 0.4 0.5 0.5 100
A1 0.8 0.8 0.9 1989 0.4 0.5 0.5 100
A2 0.8 0.8 0.8 2011 1 0.5 0.7 200
A3 0.9 0.6 0.8 2800 0.3 0.4 0.5 53
A7 1 0.9 1 2200 0.6 0.4 0.5 82
A4 0.9 0.9 0.9 1800 0.5 0.4 0.4 65
A5 0.9 0.9 0.9 1900 1 0.9 0.9 100
A8 1 0.9 1 2100 1 0.9 1 100

TS 18,000 900
∗ AT—Anomaly type, P—Precision, R—Recall, F1—F1 Score, A—Accuracy, S—Support, TS: Total Support,
A1:A9—see Table 3.
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Table 10. Evaluation results: combining rules (RMSE).

Baseline Noisy-Max Noisy-OR

LSTM 2.04 0.99
Transformer 6.64 3.24
TimeGPT 3.2 1.19
RI2AP 0.57 0.23

7. Deployment of RI2AP

The deployment of the proposed RI2AP method was carried out in the Future Factories
cell, which is shown in Figure A4. The deployment plan, technical details, results, and issues
faced in deployment are as follows.

7.1. Deployment Plan

1. Input: The first step involves gathering and organizing saved models for important
sensor variables, ensuring that they are ready for deployment. These saved models
constitute the baselines and the proposed linear model based on the method of
moments. An important task in this step is to verify the availability and compatibility
of these models to be deployed in the FF setup.

2. Data Preparation: This step involves integrating real-time data with server and
Program Logic Controller (PLC) devices, enabling the collection of real-time data
for analysis. Anomaly simulation mechanisms were developed to simulate various
anomalies in the FF cell, tailored to each modeling approach, while normal event
simulation was also conducted for training and testing purposes.

3. Experimentation: This step involves feeding the prepared real-time data into the
baseline models to analyze and predict outcomes.

4. Output: The output includes generating predictions for normal and anomalous events
in the future based on the deployed models.

5. Validation: The validation of the results was carried out through expert validation,
where domain experts in the FF lab validated the results obtained from the deployed
models. The predictions were cross-checked with findings from previous research or
empirical observations to ensure their accuracy and reliability.

6. Refinement: The refinement of the models was undertaken based on validation
results and feedback from domain experts, ensuring that the deployed models were
effective and accurate. An iterative improvement process was implemented, involving
refinement, testing, and validation cycles to continually enhance the effectiveness and
accuracy of the deployed models.

7.2. Technical Details of Deployment

With an abundance of industrial communication protocols available within manu-
facturing systems, a successful deployment strategy hinges upon utilizing the correct
technologies to enable the proper functioning of the trained model. The Future Factories
cell has two main communication protocols utilized throughout the equipment. The first
uses MQTT as the main pathway to send and receive data. This is performed by collecting
the data on an edge device present within the cell and publishing the data to a public
MQTT broker for different assets to access. However, since this method utilizes a public
broker, the lag increases between the time it is generated and the time it is received.

To ensure that the model operates as intended, it must receive data as near to real time
as possible. As such, the MQTT pathway might introduce some errors in the forecasting
timing. The other data pathway available utilizes OPC UA. In this option, the PLC present
in the system hosts a local OPC UA server that receives data from the PLC every 10 ms
and broadcasts them to any client connected to the server. As such, this path presents a
more adequate solution. The full deployment architecture can be seen in Figure 7. In this
architecture, the trained model is deployed on a separate machine connected to the same
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network as the OPC UA server. The machine hosts an application that searches for the
required data tags in the OPC UA information model and feeds them into the model. Once
the next time step is predicted, it can be relayed back to the system through the server as
well and take any corrective actions if needed.

Figure 7. Deployment architecture of forecasting model.

7.3. Results of Deployment and Discussion

During the deployment phase, various types of anomalies, as outlined in Table 2,
were systematically simulated to evaluate the efficacy of the deployed models. Data
generated from relevant robots and sensors, capable of capturing these anomalies within the
assembly pipeline, were fed into the models developed through the R12AP training process.
Representative illustrations depicting this process are presented in Figures 8 and 9. This
methodology facilitated the comprehensive testing and validation of the deployed system’s
capability to predict and respond to diverse anomaly scenarios within the manufacturing
environment, thereby ensuring its robustness and reliability in practical applications.

In Figures 8 and 9, denoted as Sensor prediction and Label, respectively, we delineate
the essence of our predictive models’ output. The former signifies the projected next sensor
reading, while the latter distinguishes between anomalous and normal states. Upon re-
viewing the snapshots, an observation arises: there are instances where the model flags a
state as anomalous despite the absence of any actual anomaly.

The reason for false predictions is analyzable vis-a-vis the parameters of the combining
rule. Specifically, the lack of intricate contextual interactions between the predictor variables
(the multiple sensors) is omitted due to their separation during modeling, resulting in
an insufficient understanding of the status of the system. However, the causal-influence
framework allows natural extensions to other dependency structures (relating the influence
among the multiple sensors), such as general Directed Acyclic Graph (DAG) forms. It is
evident that our proposed methodology RI2AP, employing combining rules, represents a
more sufficient solution in this context, primarily due to its enhanced interpretability and
alignment with domain experts’ requirements.

We plan to pursue this avenue in proposing a solution to this issue. The advantage
of our framework is that it helps inform remedial measures during iterative development
with the end goal of obtaining a robust deployment. The initial findings in deployment
represent the nascent phase in a more extensive deployment regimen. Looking ahead, our
further work in deployment entails implementing the combined model that we proposed,
which will be tailored explicitly to the requirements of manufacturing environments.



Sensors 2024, 24, 3244 17 of 25

Figure 8. Deployment Result 1—Potentiometer R02 Sensor and Anomaly type: Body2Removed.

Figure 9. Deployment Result 2—Potentiometer R03 Sensor and Anomaly type: R04 crashed nose.

7.4. Engineering Challenges Faced in Deployment

During the deployment of RI2AP within the real manufacturing environment at the FF
laboratory, several challenges arose that required careful attention and resolution. Primarily,
significant effort was dedicated to adapting the code to seamlessly align with the format
of the input data stream, ensuring smooth integration and functionality. Additionally,
sensor-related issues emerged, with some sensors failing to generate acceptable values,
necessitating intervention from domain experts to troubleshoot and rectify the discrepancies.
Another hurdle involved the simulation of anomalies, which posed difficulties in accurately
replicating real-world scenarios. Moreover, the process of selecting suitable robots and
sensor values for testing alongside simulated anomalies proved to be intricate, requiring
close collaboration and expertise from the FF lab’s domain specialists to navigate effectively.
Through concerted efforts and the expertise of the involved stakeholders, these challenges
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were addressed and managed, contributing to the advancement and refinement of RI2AP’s
deployment in the manufacturing environment.

8. Conclusion, Future Work, and Broader Impact

This paper introduced a novel methodology, RI2AP, for anomaly prediction, designed
to address unique challenges related to anomaly prediction in rocket assembly pipelines. We
employed combining rules for an enhanced domain-expert-friendly interpretation of the re-
sults. Empirical evaluations demonstrated the effectiveness of our proposed methodology.

8.1. Future Work

Equipped with a proof-of-concept implementation of our proposed method, we will
explore several enhancements in future work. Firstly, we will learn a multisensor function ap-
proximator that considers all 20 measurements simultaneously, utilizing a neural network,
and track the performance gap between our current implementation and the multisensor
model’s accuracy. This approach aims for precise quantification, balancing the trade-
off between accuracy and interpretability while integrating multiple individual-function
approximators. Secondly, we intend to investigate the impact of alternative combining
rules, such as tree-structured conditional probability effects, and leverage do-calculus to
manage potential backdoors and confounding factors. This step expands the exploration
of combining rules beyond our current approach. Lastly, to enhance the interpretability
of our methodology for domain experts, we propose developing higher-level represen-
tations of causal phenomena related to anomalies. This involves exploring connections
between sensor measurements and high-level constructs (such as structural integrity or
gripper failures), offering insights beyond ground-level sensor readings in understanding
anomalous occurrences.

8.2. Broader Impact

While the focus of this paper has been the application of the RI2AP method to rocket
assembly, the techniques proposed in this paper are fundamental and broadly applicable
to other domains with similar problem characteristics, namely, rare-event categories, de-
pendencies between events, and causal structures between factors affecting the rare events.
Importantly, the proposed model was designed to be robust to inherent stochasticity (noise
and anomalies) in processes that produce time series data collected from physical sensors
and contain expressive mechanisms for deriving explanations (that support causality),
facilitating insights that are readily interpretable by the end-user. Example applications
include rare-event prediction in other manufacturing pipelines, corner-case prediction
in healthcare applications (cases that deviate from the standard treatment protocol), etc.
Finally, due to the unified handling of the causal-influence frameworks that adeptly deals
with symbolic variables and powerful function approximation architectures that handle
real-valued variables, natural extensions toward incorporating neuro-symbolic or generally
statistical/symbolic/probabilistic approaches (with uncertainty estimation) are potentially
promising avenues to explore.
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Appendix A. Supervised Learning Methods in Time Series Forecasting and Anomaly
Detection and Prediction

Over the decades, the field of time series has witnessed the origin of various gen-
eral forecasting methods for time series. These methods include traditional statistical
approaches like Autoregressive Integrated Moving Average (ARIMA) [7], exponential
smoothing [8], structural models [9], and Machine Learning (ML) approaches like Boost-
ing algorithms [10], recurrent neural networks (RNN) [11], Long Short-Term Memory
(LSTM) [12], and Deep Learning (DL)-based methods like convolutional neural networks
(CNNs) [13]. More recently, there has been the invention of a surge array of Transformer-
based models for time series forecasting [48–51]. Studies like [14,15] are some examples
where Transformer-based models have been used in anomaly prediction.

While existing forecasting models, predicated on statistical, ML, and DL techniques,
have demonstrated efficacy in certain contexts, the introduction of Transformer-based
forecasting methods represents a contemporary shift in the landscape. However, it can be
observed empirically that certain prior models like statistical approaches have exhibited
superior performances compared with Transformers due to various limitations within
the Transformers. In time series forecasting, Transformers suffer from issues like loss
of time series temporal information, the quadratic complexity of sequence length, slow
training and inference speed due to the encoder-decoder architecture, and overfitting
issues [6,45–47]. Consequently, this investigation has further led researchers to explore
linear forecasting-based methods [45] in forecasting, and they achieved more success
compared with Transformer-based models.

Presently, Generative Artificial Intelligence has exhibited remarkable success, experi-
encing rapid advancements, particularly in the domains of Natural Language Processing
(NLP) and Computer Vision (CV). Recent successes in Large Language Models (LLMs) in
the above-mentioned domains have the potential to inspire a more comprehensive analysis
of time series compared to traditional statistical methods, including ML and DL methods.
The emergence of pre-trained foundational models and their immense success in NLP
and CV has influenced the birth of pre-trained foundational models like TimeGPT [16],
Lag-Llama [52], PreDcT [53], and PromptCast [17] for time series. Of these pre-trained
models, TimeGPT [16] and PromptCast [17] have been focused on their applicability to
anomaly detection and prediction.

Appendix B. XGBoost Feature Coverage Plots

In our study, we initially employed XGBoost to assess the total coverage of features.
Total coverage refers to the cumulative contribution of individual features toward the
predictive performance of the model. XGBoost is the current SOTA algorithm for anomaly
prediction. Given its efficacy, we leveraged XGBoost to obtain the importance of each
feature and subsequently focused on the top 20 features based on their contributions.
The decision to select a subset of features was rooted in the pragmatic necessity of man-
aging dimensionality and enhancing model interpretability. For clarity and due to space
constraints, we delineated the feature importance graph into two graphs, as shown in
Figure A1. Furthermore, we explicitly highlight the top 20 features selected for further
analysis, as shown in Figure A2. We also show the XGBoost tree in Figure A3, which shows
the feature importance in the decreasing depth.

https://github.com/ChathurangiShyalika/RI2AP
https://github.com/ChathurangiShyalika/RI2AP
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Figure A1. Feature importance scores using XGBoost Cover measure for all the features.
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Figure A3. XGBoost tree.

Appendix C. Initial Experiments on Anomaly Detection and Anomaly Prediction

Appendix C.1. Anomaly Detection

We conducted preliminary anomaly detection experiments using XGBoost to classify
anomaly types, as detailed in Table A1. The original dataset was randomly split into
training and testing sets with an 80:20 ratio. All 41 features from the original dataset were
utilized, employing one-hot encoding, represented as the following dictionary. The results
revealed a classification accuracy of 91%.

Appendix C.2. Anomaly Prediction

Preliminary experiments for anomaly prediction were conducted utilizing XGBoost to
classify events as anomalous or not (normal), as elaborated in Table A2. The initial dataset
was randomly partitioned into training and testing sets at an 80:20 ratio. All 41 features
from the original dataset were employed, and one-hot encoding was applied, representing
1 for anomalies and 0 for normal events. The prediction was made one minute in advance.
The outcomes demonstrated a classification accuracy of 97%.

# One h o t e n c o d e d anomaly d i c t i o n a r y
l a b e l s = { ’No_Anomaly ’ : A9 , ’ Nosecone_Removed ’ : A1 ,

’ BothBodies_and_Nose_Removed ’ : A2 ,
’ TopBody_and_Nose_Removed ’ : A3 , , ’Body2_Removed ’ : A4 ,
’ Door2_TimedOut ’ : A5 , ’ R04_crashed_nose ’ : A6 ,
’ R03_crashed_ta i l ’ : A7 , ’ESTOPPED ’ : A8}
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Table A1. Initial experiments on anomaly detection ∗.

AT P R F1 S A

A9 0.91 1 0.95 36,383

0.91

A1 0.75 0.06 0.1 1813
A2 0.98 0.18 0.31 904
A3 0.89 0.06 0.11 1145
A4 0.96 0.63 0.76 636
A5 1 1 1 792
A6 1 0.99 1 332
A7 1 0.95 0.97 255
A8 0.61 0.98 0.75 49

MA 0.9 0.65 0.66 42,309
∗ AT—Anomaly type, P—Precision, R—Recall, F1—F1 Score, A—Accuracy, S—Support, MA—Macro average,
A1:A9—see Table 3.

Table A2. Initial experiments on anomaly prediction ∗.

P R F1 S A

NA 0.9 0.9 0.9 3516 0.97A 0.5 0.1 0.1 121

MA 0.7 0.5 0.5
∗ NA—Not Anomalous, A—Anomolous, P—Precision, R—Recall, F1—F1 Score, A—Accuracy, S—Support, MA—
Macro average.

Appendix D. More Details on TimeGPT Model

TimeGPT [16,54] is a pre-trained generative model for time series data developed by
Nixtla. It is capable of generating precise predictions for untrained time series utilizing
solely past values as inputs. Unlike traditional LLMs, TimeGPT focuses specifically on
time series forecasting tasks such as demand forecasting, anomaly detection, and financial
forecasting. In implementing the TimeGPT model, we followed these steps: tokenizing the
description column, dividing the data into training and testing sets (97,510 and 2000 rows,
respectively), and addressing TimeGPT’s forecasting limitations of only predicting 2000 val-
ues similar to the last 20–30 values of the training dataset. We structured the data to include
a mix of non-anomalous (0) and anomalous (9) values in the final 20 entries. Both datasets
were scaled using a standard scaler. Training data were then converted from a wide to
a long format and were assigned a column name as a unique ID. Here, unique_id is the
new column that indicates the original series, and value is the corresponding value for each
series on each date. We renamed _time as ds and invoked the timegpt.forecast method using
the timegpt-1-long-horizon model to predict 2000 values, and we used the finetuning_steps
parameter to increase the accuracy. The final dataframe included ds, Parameter 1, and De-
scription. Here, Parameter 1 is the feature, and Description is the response variable of the
dataset. Predicted values were adjusted to match the original data, and the RMSE and
MSE scores were calculated for both Description and Parameter 1. A classification report
was generated for the Description column, reflecting the model’s two-class predictions.
Finally, we produced saved individual predictions with descaled Parameter 1 values and
used redefined predicted description values for the Description column.
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Appendix E. Future Factories Setup

Figure A4. Some images from FF Cell: R01—Robot 1, R02—Robot 2, R03—Robot 3, R04—Robot 4.
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