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Abstract: Effective lane detection technology plays an important role in the current autonomous
driving system. Although deep learning models, with their intricate network designs, have proven
highly capable of detecting lanes, there persist key areas requiring attention. Firstly, the symmetry
inherent in visuals captured by forward-facing automotive cameras is an underexploited resource.
Secondly, the vast potential of position information remains untapped, which can undermine de-
tection precision. In response to these challenges, we propose FF-HPINet, a novel approach for
lane detection. We introduce the Flipped Feature Extraction module, which models pixel pairwise
relationships between the flipped feature and the original feature. This module allows us to capture
symmetrical features and obtain high-level semantic feature maps from different receptive fields.
Additionally, we design the Hierarchical Position Information Extraction module to meticulously
mine the position information of the lanes, vastly improving target identification accuracy. Further-
more, the Deformable Context Extraction module is proposed to distill vital foreground elements
and contextual nuances from the surrounding environment, yielding focused and contextually apt
feature representations. Our approach achieves excellent performance with the F1 score of 97.00% on
the TuSimple dataset and 76.84% on the CULane dataset.

Keywords: lane detection; deep learning; Flipped Feature Extraction; Hierarchical Position Information
Extraction; Deformable Context Extraction

1. Introduction

Thanks to the continuous advancements in deep learning and computer vision, neural
network-based lane line detection has significantly improved and achieved excellent per-
formance. Lane detection plays a crucial role in intelligent automated driving, enabling
vehicles to accurately perceive their surroundings and facilitate navigation planning. The
essence of successful lane detection lies not only in identifying the presence of lane lines
but also in precisely determining their spatial locations on the road. As the demands and
expectations for autonomous driving increase, more challenges arise for achieving high
accuracy and generalization capability in lane line detection. It is essential to develop
methods and techniques that can handle various scenarios and environmental conditions
effectively. These challenges emphasize the importance of further improving the accuracy
and robustness of lane line detection systems.

Compared to traditional methods like Hough Line [1,2], deep learning-based methods
have shown significant improvements in detection effectiveness and accuracy for lane
detection. Methods such as SCNN [3] and RESA [4] regard lane detection as a segmentation
task, which results in high computational complexity and poor real-time performance due
to predicting each pixel individually. BézierLaneNet [5] took a different route by employing
the Bézier curve to model lane markings, leading to the proposal of the feature flip fusion,
which is an innovation that partly inspired our work. On another front, UFLD [6,7] aims at
enhancing the speed of inference and proposes a row-wise classification method. LaneATT [8]
proposed an anchor-based detection method and achieved good results in accuracy.
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Although these methods have achieved favorable results, we identify several pressing
issues that remain unaddressed. Firstly, the symmetrical features of images have not been
fully utilized. Secondly, useful position information for locating lane lines still needs to be
explored. Thirdly, obtaining contextual information from the surrounding environment
can assist in lane detection. At the same time, in constantly changing road conditions and
scenes, it is necessary to improve the accuracy and robustness of the detection model. Our
work aims to tackle the outstanding challenges and push the boundaries of lane detection
technology further.

We posit that lane lines inherently possess geometric properties, particularly manifest-
ing in symmetrical attributes. Lane markings typically appear not as isolated entities but
in dual arrangements. Specifically, upon the observation of a right-side lane marking, it is
reasonable to infer the presence of a corresponding left-side marking, an idea that resonates
with BézierLaneNet [5]. However, ref. [5] did not delve extensively into this overarching
structural characteristic. In our research, we hypothesize that post-pixel alignment flipped
features have a profound correlation with the original input features. To capitalize on this
insight, we introduce the Flipped Feature Extraction (FFE) module. Within this module,
we employ dilated convolutions at varying rates to generate multi-scale receptive fields,
thereby capturing rich contextual and advanced semantic information. This strategic design
aids us in enhancing the detection of target objects with greater precision and reliability.

For lane line detection tasks, the process not only involves the identification of lane
lines but also requires a precise determination of their positions, rendering position in-
formation critical to the accuracy of lane detection. As shown in Figure 1, it detected the
presence of the lanes, but it did not accurately predict their locations. Despite its significant
significance, the optimization and role of location information have not been widely dis-
cussed in the literature. In this work, we delve into the enhancement and utility of position
information for lane detection and we propose the Hierarchical Position Information Ex-
traction (HPIE) module, which encodes positional information in both the horizontal and
vertical directions and strengthens the discriminative power of location cues. Our HPIE
module effectively integrates positional information across the feature, thereby improving
the precision of both detection and localization, ultimately contributing to a more accurate
portrayal of lane line positions within the given scene.

Figure 1. Inaccurate lane localization.

We also propose a novel Deformable Context Extraction (DCE) module that is de-
signed to meticulously extract fine-grained information from the surrounding environment.
Its capability aids significantly in detecting lane line objects by focusing on salient and
discriminative features. The DCE module not only outputs relevant response features
but also effectively filters out noise interference, thereby enhancing the robustness and
precision of the detection process. It contributes to an overall improvement in the system’s
lane line detection capabilities, especially under complex and challenging scenarios where
discerning between actual lane lines and potential distractions is crucial.

In this paper, we integrate the aforementioned modules into our proposed network
architecture: FF-HPINet. The main contributions of this paper can be summarized as follows:

• We propose the Flipped Feature Extraction (FFE) module, which models the symmetric
properties of lane lines and utilizes multi-scale receptive fields to collect contextual
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information, establishing effective interaction between flipped features and original
features, enhancing the detection of target objects.

• We propose the Hierarchical Position Information Extraction (HPIE) module, which
effectively aggregates positional information within feature maps, enhancing localiza-
tion precision.

• We propose the Deformable Context Extraction (DCE) module, which meticulously
extracts subtle and fine-grained information from the complex surrounding environ-
ment. It is adept at identifying and outputting relevant response features that are
crucial for accurate lane line detection, boosting the overall performance and reliability
of our proposed lane detection model.

• Our proposed FF-HPINet has demonstrated excellent performance on TuSimple and
CULane datasets, achieving remarkable results in the field of lane detection.

2. Related Work
2.1. Lane Detection

The frameworks for lane detection in deep learning can be categorized into three main
types: segmentation-based, anchor-based, and parameter-based approaches.

The segmentation-based approach involves treating the lane detection task as a seman-
tic segmentation problem, where each pixel is classified to determine whether it belongs to
a lane line or not. This approach includes models such as SCNN [3], RESA [4], LaneNet [9],
and [10–15]. The CurveLanes-NAS [16] utilize neural architecture search (NAS) to search
for a better network while requiring high GPU hours. These methods rely on pixel-by-pixel
prediction of the entire image, resulting in high computational complexity. They require a
significant amount of GPU time and might not deliver real-time performance.

In the domain of anchor-based approach, Line-CNN [17], LaneATT [8], and UFLD [6,7]
are notable examples, with the Line-CNN being the pioneer of this approach. They use
predefined anchors to identify potential locations of lane markings. Instead of segmenting
every pixel, this method focuses on classifying and regressing anchor boxes that are likely
to contain lane segments, which typically reduces computation compared to segmentation
methods and can improve real-time performance since it narrows down the search space
for detecting lanes. However, these methods do not perform well enough in challenging
scenarios and cannot effectively address detection challenges in complex scenarios.

The work [18] pioneers the parameter-based approach, wherein polynomial curves
are leveraged to model lane markings. PolyLaneNet [19] takes a direct route by applying
polynomial regression for the prediction of these parameters. LSTR [20] adopts transform-
ers [21] for predicting polynomials. Meanwhile, BézierLaneNet [5] resorts to the Bézier
curve in its regression method for lane line delineation. Despite the inherent advantage of
parameter-based methods in delivering faster processing speeds, their overall performance
often does not excel compared to alternative methodologies.

2.2. Context Information

Lane markings are typically found in specific environments, and the surrounding
contextual information has been proven instrumental in enhancing detection accuracy. The
work [22] suggests that effective contextual information can be employed to aid in the
detection of the target object. Moreover, ref. [23] demonstrates a notable improvement in
detection accuracy through the collection of contextual information. Further to this line of
inquiry, ContextNet [24] introduces a ContextNet module designed to capture and harness
the contextual information encircling the proposal region, thereby contributing to enhanced
detection performance. Bell et al. propose leveraging recurrent neural networks (RNNS)
to gather and integrate both internal and external information from within the proposal
area in the Inside–Outside Net (ION) [25]. Chen et al. propose a context-aware refinement
algorithm that significantly enhances the precision of object proposals across various
regions through the meticulous extraction and utilization of rich contextual information [26].
Furthermore, Chen et al. propose a knowledge graphs framework for exploiting relational
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and contextual information to infer occluded objects [27]. In VSSA-NET, Yuan et al. make
modifications to the Long Short Term Memory (LSTM) network to encode the contextual
features [28]. Recently, vision Transformer [29] has gained significant popularity in the field
of computer vision. It is capable of gathering global information and establishing long-range
dependencies. Consequently, numerous studies have been proposed. On this basis, many
works [30–33] have been proposed, promoting its application in the field of vision. The design
of these methods is relatively complex, we adopt a relatively simple but effective design.

3. Method

In this section, we will introduce the lane detection network: FF-HPINet, as shown
in Figure 2. Subsequently, we will introduce the details of the modules designed in our
proposed lane detection method.

Backbone DCE
Anchor-based
Feature
Pooling

Regression
loss

Classification
loss

HPIEFFE

Figure 2. The overview of our FF-HPINet for lane detection pipeline.

3.1. Network Overview

The FF-HPINet shown in Figure 2 consists of a backbone, a Flipped Feature Extraction
(FFE) module, a Hierarchical Position Information Extraction (HPIE) module, a Deformable
Context Extraction (DCE) module, and following an anchor-based feature pooling, the
classification loss and the regression loss.

3.2. Flipped Feature Extraction

Given that the input image is captured by a camera mounted at the front of the car, our
primary focus lies in exploiting the symmetry property of the lane lines. Specifically, the
existence of a right lane line often indicates the presence of a corresponding left lane line.
To capture this symmetry, we utilize the flip feature technique. The Feature Flip Fusion
proposed in [5] has demonstrated promising results, but we recognize that the fusion may
be considered rudimentary and lacks a thorough exploration of the relationship between
the flipped and original features.

To address this limitation and enhance the extraction of semantic context from larger
receptive fields, inspired by [5,34], we introduce our Flipped Feature Extraction (FFE),
shown in Figure 3, which aims to better leverage the symmetry feature of lane lines while
capturing rich contextual information from different receptive fields. By doing so, we aim
to improve the accuracy and reliability of lane line detection in complex road environments.

Flip

CConv

Conv

Deform
Conv

Offsets

r=1

r=1

C

C C

C
r=2 r=4

r=2 r=4

 

Flipped Feature Extraction(FFE)

C Concat Addition 

Conv

Figure 3. Architecture of Flipped Feature Extraction (FFE).
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In the images captured by the on-board front camera, the feature alignment process
becomes necessary due to the incomplete left-right symmetry. To achieve this, we start
by horizontally flipping the original feature X ∈ RC×H×W and concatenate it with the
original feature for the network to learn the offsets required for feature alignment, it can be
formulated as

X f lip = X.flip(−1), (1)

X0 = Conv(X), (2)

of f sets = Conv(Cat(X0, X f lip)). (3)

Then, deformable convolution [35] is applied on the flipped feature, resulting in the
acquisition of a modulated flipped feature:

X
′
f lip = DeformableConv(X f lip, of f sets). (4)

To extract rich contextual information and the several feature maps in different recep-
tive fields from the two features, we employ multi-path dilated convolutional layers [23]
with varying dilation rates [34]. In our approach, we employ three different dilation rates:
1, 2, and 4. To effectively model contextual dependencies between the original and flipped
features, we incorporate cross connections between them. This involves splicing each fea-
ture map in the original branch with a pre-flipped feature map from the flipped branch
before passing them through a dilated convolution layer. For example, before the feature
fed into the second convolutional layer, we concatenate the feature:

X1 = Cat(Convr=1(X0), X
′
f lip), (5)

X2 = Cat(X0, Convr=1(X
′
f lip)). (6)

This process is repeated before the convolutional layers. By creating cross connections
between the original and flipped features, we allow for continuous interactions and splicing,
facilitating the propagation of features and maximizing the extraction of rich semantic
attributes. This approach also helps establish contextual dependencies between the two
branches. Concurrently, the use of dilated convolution layers with different dilation rates
facilitates the fusion of features from multiple receptive fields.

Finally, to maintain the original feature map’s dimension and improve discrimination
between foreground and background information, we sum the high-level semantic feature
maps from both branches. The feature map is then fed into a 1 × 1 convolutional layer,

Xout = Conv(X1out + X2out), (7)

which ensures the network can effectively discern between different regions of interest in
the feature map while preserving the overall structure.

3.3. Hierarchical Position Information Extraction

The image feature extracted from FFE contains rich contextual information, which
helps to distinguish foreground from background; however, it cannot help us to improve
the accuracy of localization of the lanes. To solve this problem, inspired by [36–38], we
propose Hierarchical Position Information Extraction (HPIE), as shown in Figure 4, which
aims to collect accurate position information. We will commence by elucidating Position
Information Extraction (PIE), an integral precursor and component of our proposed HPIE,
followed by a comprehensive overview of our proposed HPIE.

Positional information is pivotal for accurate localization and essential in effectively
capturing the objects of interest. Consequently, we incorporate the design in [36] to build
our PIE to augment the discriminative power of location information and thereby achieve
more precise object localization.
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We apply average pooling along the horizontal and vertical directions to obtain the
global position information encoding,

Fh = AvgPoolx(F), (8)

FW = AvgPooly(F). (9)

Next, we concatenate the feature maps generated by the encodings from (8) and (9).
The concatenated feature maps are then processed through convolutional layers, followed
by a non-linear activation function, resulting in the feature map F

′
:

F
′
= NonLinear(Conv(Cat(Fh, Fw))). (10)

The feature map F
′

encodes and merges the rich position information globally. Subse-
quently, we split the feature map F

′
, both are then activated independently through convo-

lutional layers and the sigmoid function, which enables us to obtain F
′
h and F

′
w and preserve

accurate positional information along horizontal and vertical directions, respectively. By
utilizing F

′
h and F

′
w as weights, which are multiplied with the original input feature,

F
′′
= F × F

′
h × F

′
w, (11)

we generate a feature map that effectively embeds the global positional information within
its representation.

PIE

PIE

PIE

PIE
Conv

Conv

Conv

PIE

Split

Split

Split

Concat

Concat

PIE

PIE

PIE
ConcatConv

ConvConcat

Hierarchical Position Information Extraction(HPIE)

Residual

X Avg Pool Y Avg Pool

Concat + Conv

BatchNorm + Non-linear

Conv Conv

Sigmoid Sigmoid

Re-weight

 Position Information Extraction(PIE)

Figure 4. Architecture of Hierarchical Position Information Extraction (HPIE).

In order to improve the effectiveness of location information extraction, we intend
to apply the PIE module multiple times. We ingeniously integrated PIE into HPIE while
promoting cross channel integration of information, deepening the architecture of the
model, while maintaining its accuracy in extracting location information.

Specifically, we split the feature map equally along the channel dimension into m
groups, denoted as f i ∈ RC/m×H×W , where i = 1, 2, . . . , m. For each group, the feature
map is fed into a convolutional layer followed by a PIE module. Subsequently, we split it
into two parts f i,1 and f i,2, and concatenate them with the features from the preceding and
succeeding branches respectively and the feature passes through the PIE module again:

f
′
i =


PIE( f i,1) i = 1

PIE(Cat( f i−1,2, f i,1)) 1 < i < m

PIE(Cat( f i−1,2, f i)) i = m

(12)
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Through this approach, the current group can effectively utilize the position infor-
mation obtained from the other group, enabling rich reuse of location information. This
facilitates sufficient communication between groups, ultimately leading to improved accu-
racy of the location information. In addition, it also facilitates cross channel information
fusion and increases model depth. By allowing groups to share and exchange relevant
location information, the effectiveness of location information has been improved.

3.4. Deformable Context Extraction

In this section, we introduce the Deformable Context Extraction (DCE) module based on
deformable convolution [35], as shown in Figure 5, which is designed to effectively extract
foreground details and contextual information from the surrounding environment, thereby
achieving local pixel alignment and significantly enhancing the precision of lane detection.

Conv Conv

Conv

Deform 
Conv

Norm  

Deformable Context Extraction(DCE)

Addition Multiplication

Offsets

Weights

Figure 5. Architecture of Deformable Context Extraction (DCE).

Given an input feature Y ∈ RC×H×W , the intermediate feature map Y0 is first obtained
through convolutional layers

Y0 = Conv(Y). (13)

Two independent convolutional layers are employed to compute the offsets O and the
weights W, and can be formulated as:

O = Conv(Y0), (14)

W = Conv(Y0). (15)

The offsets O refers to the deformable convolution sampling offsets, the weights W
represent the intensity response of each pixel within the feature map. The original input
feature and the computed offsets are jointly fed into the deformable convolution layer to
derive a feature map encapsulating the rich surrounding information. By multiplying this
feature map with the weights, that is

Y
′
= W · DeformableConv(Y , O), (16)

it selectively strengthens the relevant response features while suppressing non-relevant
ones, thereby improving the discriminative power of the feature responses. Finally, a
residual term is added to the feature map to address the issue of vanishing gradients,

Yout = Y + Norm(Y
′
), (17)

ensuring effective backpropagation during the learning process and further boosting the
overall performance of our model in detecting lane lines accurately.
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4. Experiments
4.1. Datasets

To evaluate the performance of our proposed method, we conducted experiments on
two widely used lane detection benchmark datasets: TuSimple [39] and CULane [3]. The
TuSimple dataset is taken under good weather conditions with stable lighting conditions,
which is relatively easy. It comprises high-quality images captured by a car driving on
California highways. It includes 3626 images for training and 2782 images for testing, all of
which have dimensions of 1280 × 720 pixels. The CULane dataset is a large-scale dataset; it
is collected from urban and highway scenes, covering nine different challenging scenarios,
i.e., normal, crowded, dazzle, shadow, no line, arrow, curve, cross, and night conditions.
It consists of 88,880 images for training and 34,680 images for testing, all of the image are
1640 × 5920 pixels.

4.2. Evaluation Metrics

The evaluation metrics for the TuSimple dataset include accuracy, false positive rate
(FP), and false negative rate (FN); the accuracy is calculated by:

accuracy =
∑clip Cclip

∑clip Sclip
, (18)

where Cclip is the number of points predicted correctly, and Sclip is the number of ground
truth points in the clip. A predicted point within 20 pixels of the ground truth points is
considered correct, and the predicted lane is considered as a true positive if the accuracy is
greater than 85%.

For CULane, the lanes are considered to be 30 pixels wide. If the intersection-over-
union (IoU) between predictions and ground truth is larger than 0.5, the predicted lanes
are considered true positives. We also use the rate of false negative (FN) and false positive
(FP) to evaluate our method.

Another evaluation metric we use is the F1 score, it is formulated as:

F1 =
2 × Precision × Recall

Precision + Recall
, (19)

where Precision = TP
TP+FP , Recall = TP

TP+FN .

4.3. Implementation Details

We use ResNet-18 and ResNet-34 [40] as the backbone networks to create different
versions of our proposed FF-HPINet. The input resolution is 360 pixels in width and 640 pix-
els in height. During the training phase, we apply data augmentation techniques, which
consist of random horizontal flips and random affine transformations. We set the number
of training epochs differently: 15 epochs for CULane [3] and 100 epochs for TuSimple [39],
with a batch size of eight images per iteration. The model optimization strategy employed
is the Adam optimizer, initially set with a learning rate of 0.0003, and the learning rate
decay follows the cosine annealing strategy. We experiment with three distinct dilated rates
r = 1, 2, 4 in the FFE module. The number of groups in the HPIE module is m = 4.

4.4. Comparison Results

We show our results on the TuSimple dataset in Table 1 and provide a visualization
of the experimental results in Figure 6. As illustrated in Table 1, our proposed method
obtained the highest F1 score. We observed that SCNN [3] achieved the best FN score
of 1.80%, but its FP score was relatively poor at 6.17%. In comparison, our R18 version
of FN achieved a commendable score of 2.81%, while our FP score remained good at
3.50%. Furthermore, our R34 version demonstrated a balanced performance with an FP
score of 3.12% and an FN score of 2.88%, indicating a strong equilibrium between false
positive and false negative. Due to the small scale of the dataset and the fact that the
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dataset was shot on a well-lit highway with simple scenes, other methods have already
achieved impressive results with a small performance gap. However, our method still
achieves a remarkable F1 score of up to 97.00%, which is significantly better than the other
methods. The visualization results also demonstrate the robustness of our method. From
the figure, it is evident that our predicted lane lines align precisely with the actual lane
markings, demonstrating the efficacy of our proposed HPIE in assisting the network in
precise lane line localization. In Figure 6, focusing on the following images, the image in
the middle of the second column shows that the right lane is not fully visible due to vehicle
obstruction; the image at the bottom of the first column shows the left lane line obstructed;
the two images below the third column show vehicles blocking the lane lines on both sides
of the view. As our proposed FFE can leverage the symmetric presence of lane lines, and
our DCE can utilize contextual information from the surrounding environment, despite
facing these visual obstacles, our method is still able to successfully and accurately identify
the presence of lanes, demonstrating its strong robustness and accuracy.

Table 1. Comparison results on the TuSimple dataset.

Method F1 Accuracy FP FN

SCNN [3] 95.97 96.53 6.17 1.80
LaneNet [9] 94.80 96.40 7.80 2.44

SAD-R18 [11] 93.79 96.02 7.86 4.51
SAD-R34 [11] 94.68 96.24 7.12 3.44
E2E-R18 [14] 96.40 96.04 3.11 4.09
E2E-R34 [14] 96.58 96.22 3.08 3.76

LSTR [20] 96.85 96.18 2.91 3.38
LaneATT-R18 [8] 96.71 95.57 3.56 3.01
LaneATT-R34 [8] 96.77 95.63 3.53 2.92

RESA-R18 [4] 96.61 96.70 3.95 2.83
RESA-R34 [4] 96.94 96.82 3.63 2.48

Eigenlanes [41] 96.40 95.62 3.20 3.99
UFLDv2-R18 [6] 96.16 95.65 3.06 4.61
UFLDv2-R34 [6] 96.22 95.56 3.18 4.37

BézierLaneNet-R18 [5] 95.05 95.41 5.30 4.60
BézierLaneNet-R34 [5] 95.50 96.65 5.10 3.90

FF-HPINet-R18 96.84 95.63 3.50 2.81
FF-HPINet-R34 97.00 95.67 3.12 2.88

R18 denotes ResNet-14, R34 denotes ResNet-34. The best results are in bold.

The results of our FF-HPINet testing on the CULane dataset, as well as comparisons
with other methods, are presented in Table 2. As shown in the table, our proposed method
is significantly superior to other methods. The R34 version of our FF-HPINet achieved an
impressive F1 score of 76.84%. Additionally, our approach has demonstrated commendable
performance under crowd, no line, and night conditions. Our method attained an impres-
sive score of 75.05% in crowd condition, 49.55% in no line condition, and 71.69% in night
condition, outperforming other methods. The good performance signifies the method’s
remarkable capability to effectively exploit the copious amounts of high-level semantic data
embedded in the vicinity of lane lines under adverse conditions. As a result, our approach
significantly enhances the precision and reliability of detecting and localizing these lane
lines amidst a variety of challenging circumstances. The results of testing on the CULane
dataset are shown in Figure 7. From Figure 7, our method effectively detects and locates
lanes across all scenarios. Thanks to the HPIE module, our FF-HPINet predicted lane line
trajectory overlaps almost perfectly with the white markings on the ground. Specifically, it
is evident that our proposed method exhibits accurate lane line detection and localization
even in challenging lighting conditions, such as dazzle light and night scenarios. Owing to
the FFE module’s capacity to harness the inherent symmetry properties of the image, our
method skillfully utilizes information from the lane line to accurately infer the position of
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the unseen lane line, detecting precise lane depiction. Furthermore, our method demon-
strates resilience in environments where the lane lines are confounded by the presence
of analogous semantic features on the road surface, such as those found in areas marked
with directional arrows. It indicates that the DCE module enables our model to focus on
areas related to lane markings while ignoring and suppressing interference information
from arrows. This highlights the robustness and adaptability of our approach in handling
complex and challenging real-world driving situations.

Figure 6. Visualization results of our FF-HPINet on TuSimple dataset.

Normal Crowd Dazzle

Shadow No line Arrow

Curve Cross Night

Figure 7. Visualization results of our FF-HPINet on CULane dataset.
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Table 2. Comparison results on the CULane dataset.

Method Total Normal Crowd Dazzle Shadow No Line Arrow Curve Cross Night

SCNN [3] 71.60 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10
SAD-R18 [11] 70.50 89.80 68.10 59.80 67.50 42.50 83.90 65.50 1995 64.20
SAD-R34 [11] 70.70 89.90 68.50 59.90 67.70 42.20 83.80 66.00 1960 64.60

CurveLane-L [16] 74.80 90.70 72.30 67.70 70.10 49.40 85.80 68.40 1746 68.90
E2E-R18 [14] 70.80 90.00 69.70 60.20 62.50 43.20 83.20 70.30 2296 63.30
E2E-R34 [14] 71.50 90.40 69.90 61.50 68.10 45.00 83.70 69.80 2077 63.20

LaneATT-R18 * [8] 74.81 90.91 72.66 65.28 70.59 47.89 85.16 62.72 1193 68.84
LaneATT-R34 * [8] 76.60 92.12 74.91 66.97 77.75 49.24 88.24 67.54 1313 70.55

RESA-R34 [4] 74.50 91.90 72.40 66.50 72.00 46.30 88.10 68.60 1896 69.80
LaneAF-ENet [42] 74.24 90.12 72.19 68.70 76.34 49.13 85.13 64.40 1934 68.67
UFLDv2-R18 [6] 75.00 91.80 73.30 65.30 75.10 47.60 87.90 68.50 2075 70.70
UFLDv2-R34 [6] 76.00 92.50 74.80 65.50 75.50 49.20 88.80 70.10 1910 70.80

BézierLaneNet-R18 [5] 73.67 90.22 71.55 62.49 70.91 45.30 84.09 58.98 996 68.70
BézierLaneNet-R34 [5] 75.57 91.59 73.20 69.20 76.74 48.05 87.16 62.45 888 69.90

FF-HPINet-R18 75.85 91.45 73.36 67.20 72.48 49.12 86.78 64.39 1002 70.35
FF-HPINet-R34 76.84 91.92 75.05 66.80 76.18 49.55 87.76 68.06 1061 71.69

* Results tested on our device using the weights provided by the author. The best results are in bold.

4.5. Ablation Study

To validate the effectiveness of our proposed modules, we carried out ablation studies
utilizing the R18 version on the CULane dataset. The empirical outcomes of these experi-
ments are systematically presented in Table 3, allowing for a comprehensive assessment of
the contribution and effectiveness of our proposed modules.

Table 3. Ablation study on the CULane dataset.

Model FFE HPIE DCE F1

1 ✓ 75.36
2 ✓ 75.44
3 ✓ 75.16
4 ✓ ✓ 75.61
5 ✓ ✓ 75.62

FF-HPINet ✓ ✓ ✓ 75.85

4.5.1. Effectiveness of FFE

As illustrated in Table 3, in Model 3, where the F1 score was originally 75.16%, the
adoption of FFE led to an increase to 75.61% in Model 4—a significant uplift of 0.45%.
Further, upon appending the FFE module to Model 5, we derived the FF-HPINet model,
which achieved the superior F1 score of 78.85%, reflecting a net gain of 0.23%. Our FFE can
leverage the characteristic of lanes existing in pairs, inferring the existence and position of
the right lanes based on those on the left side of the vehicle. This is particularly useful in
scenarios where there is a lack of visual representation of lane markings, thereby assisting
the model in detecting them. The quantitative jump serves as empirical validation of the
positive impact and effectiveness of the FFE module in enhancing the model’s capabilities.

4.5.2. Effectiveness of HPIE

In Table 3, after incorporating the HPIE module into Model 3 and obtaining Model 5,
there was a discernible improvement in performance as evidenced by the score leap from
75.16% to 75.62%, reflecting a net gain of 0.46%. Model 4, in contrast, without the inclusion
of HPIE, achieved an F1 score of 75.61%. However, when equipped with the HPIE module,
our FF-HPINet achieved a remarkable F1 score of 75.85%, showcasing its superior perfor-
mance. Thanks to the enhanced positioning accuracy of lanes achieved by our HPIE, the
model’s detection performance and robustness have been significantly improved.
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4.5.3. Effectiveness of DCE

As depicted in Table 3, our experiments demonstrate notable improvements in per-
formance when incorporating the DCE module into the model. Particularly, with the
integration of DCE, Model 4 achieved an improved F1 score of 75.61%, surpassing the
Model 1 score of 75.36%. Compared with Model 2, Model 5 demonstrates a notable im-
provement by enhancing the F1 score from 75.44% to 75.62% upon the integration of DCE.
These results highlight the efficacy of the proposed module in enhancing the performance
of our models. It validates that the DCE enables the network to collect and utilize contextual
information, focus more on lane line areas, and ignore interference information, thereby
improving the detection accuracy of the model.

4.6. Analysis

Setting of r. In our experimentation, we varied the dilated rate across four different
values, and the corresponding results are tabulated in Table 4. It is observed that when
we configured the dilated rate r = 1, 2, 4, the model delivered its optimal performance,
attaining an F1 score of 75.85%. This peak performance is closely tied to the specific input
image size chosen for our experiments. It is important to note that for alternative network
architectures, a change in the predefined input size would likely necessitate adjustments to
the optimal dilated rate setting to maintain or improve performance.

Table 4. Setting of r.

r F1 FPS

r = 1, 2, 4 75.85 144
r = 1, 2, 8 75.56 144
r = 1, 4, 8 75.63 144
r = 2, 4, 8 75.45 144

Setting of m. To investigate the effect of varying the group count in the HPIE module
on the experimental outcomes, we carried out a series of tests, and the resultant data are
compiled in Table 5. Upon setting the number of groups m = 2, the model achieved an F1
score of 75.36%, concurrent with a peak FPS of 165. When doubling the number of groups
m = 4, the F1 score reached its zenith at 75.85%, albeit with a corresponding FPS reduction
to 144. Nevertheless, we consider this FPS rate to be adequate for practical purposes. Upon
further increment to eight groups, m = 8, the F1 score dipped slightly to 75.66%. The slight
decrease is due to excessive inter-group information fusion, which leads to the introduction
of information redundancy and has a negative impact on overall performance.

Table 5. Setting of m.

m F1 FPS

m = 2 75.36 165
m = 4 75.85 144
m = 8 75.66 128

4.7. Limitation and Discussion

The design of the Flipped Feature Extraction module is grounded in images captured by
the front-facing camera. With a deep understanding of the underlying distribution patterns
within the datasets, the model demonstrates outstanding adaptability and remarkable flex-
ibility when dealing with images from such angles. However, its performance may be less
effective when processing images captured by side-view or rear-view cameras, reflecting its
inherent inductive bias. The adoption of image flipping implicitly assumes a certain degree of
symmetry in the road environment and lane lines along the horizontal axis. This assumption
holds true for the majority of road scenes across the datasets. However, in cases of significantly
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asymmetric road configurations or unique scenarios, such as temporary construction areas,
the performance enhancement is marginally lower than in symmetrical scenarios.

In the dazzle scenario, when compared with the top-performing method Bézier-
LaneNet, our model’s performance lags somewhat. While BézierLaneNet achieves an
F1 score of 69.20%, our method garners a score of 66.80%—a difference of 2.4% lower.
This disparity can be traced back to the core architectural decisions in our methodological
approach. Our method is founded on detection principles and heavily depends on the
textural information embedded within image features. Unfortunately, under severe light-
ing conditions, such textural details can become distorted or lost, leading to a decline in
detection precision. On the contrary, BézierLaneNet takes a different route, predicting lane
lines as continuous curves and representing them in a parameterized format. This strategy
renders the model more resilient to variations in feature texture, enabling it to maintain a
consistent level of performance under adverse lighting scenarios. In our ongoing research,
we aim to tackle this specific issue head-on by refining our method to better cope with
drastic lighting conditions and improve the robustness of our lane detection model.

Based on the data provided in Table 2, it is evident that not only our proposed method
but also all comparison methods are difficult in the no line condition. Unlike situations where
lane markings are partially or completely invisible due to lighting, occlusion, and other factors,
the no line scene itself does not delineate lane markings, nor does it exhibit any discernible
visual cues related to the lane. This is a significant obstacle for lane detection systems. In this
case, the algorithm must utilize other contextual information, including inferring the existence
and position of lane markings based on the vehicle’s heading, surrounding environment, and
possible lane standard widths. In addition, the network also needs to estimate the range or
length of lane markings, which requires advanced intelligent prediction and understanding of
the driving environment. Finding solutions will be an interesting thing in future work.

Curved lane lines are a typical and frequent occurrence on many roads; however, the
CULane dataset presents a certain degree of bias in that the majority of its lane lines are
straight, with only a minority being curved. This inherent imbalance leads to the observation
that all evaluated methods, including ours, demonstrate reduced performance in the curve
scene. Despite this limitation, our method has nonetheless managed to deliver respectable
results, achieving an F1 score of 68.06% in the curve scenario. Moving forward, we are
committed to enhancing the model’s generalizability, aiming to optimize its performance on
a wider variety of road geometries.

5. Conclusions

In this work, we introduce a lane detection network named FF-HPINet, which in-
novatively integrates unique architectural components to address the challenges in lane
detection tasks. To begin with, acknowledging the intrinsic geometric symmetry of lane
lines, we designed the Flipped Feature Extraction (FFE) module. This module exploits the
symmetry property to forge strong connections between mirrored and original feature rep-
resentations, thereby bolstering the network’s capacity to discern and localize lane regions
of interest more effectively. Additionally, for precise localization of lane lines, we propose
the Hierarchical Position Information Extraction (HPIE) module. The module ingeniously
captures location information in both horizontal and vertical dimensions and partitions
the features into multiple groups. This strategy not only enriches the reuse of positional
information but also facilitates cross channel information fusion and increases model depth
without compromising on the accuracy of location information. Furthermore, we design
the Deformable Context Extraction (DCE) module, which excels in extracting foreground
details and contextual information from the immediate environment. By achieving local
pixel alignment, this module amplifies the intensity response of the targeted areas while
suppressing irrelevant signals, thereby refining the network’s overall detection abilities and
delivering enhanced performance in diverse and intricate scenarios. Experimental results on
CULane and TuSimple datasets demonstrate the effectiveness of our FF-HPINet. In future
research, we will continuously strive to improve the detection accuracy in complex scenes. Ad-
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ditionally, we will explore the application of self-supervised and weakly-supervised learning
in the field of lane detection to enhance the model’s adaptive ability.
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