Exploring the Relationship between Behavioral and Neurological Impairments Due to Mild Cognitive Impairment: Correlation Study between Virtual Kiosk Test and EEG-SSVEP
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Behavioral Features
2.3. Neurological Features
2.4. Data Analysis
2.5. Multimodal Learning
3. Results
3.1. Differences in Behavioral Features between Healthy Controls and Amnestic Mild Cognitive Impairment Patients
3.2. Differences in Neurological Features between Healthy Controls and Amnestic Mild Cognitive Impairment Patients
3.3. Correlation between Behavioral and Neurological Features
3.4. Multivariate Statistical Analysis of Healthy Controls and Patients with Amnestic Mild Cognitive Impairment
3.5. Multimodal Learning Performance Using Both Behavioral and Neurological Features
3.6. Comparative Analysis of Early Amnestic Mild Cognitive Impairment Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warpechowski, M.; Warpechowski, J.; Kulczyńska-Przybik, A.; Mroczko, B. Biomarkers of Activity-Dependent Plasticity and Persistent Enhancement of Synaptic Transmission in Alzheimer Disease: A Review of the Current Status. Med. Sci. Monit. 2023, 29, e938826. [Google Scholar] [CrossRef]
- Shukla, A.; Tiwari, R.; Tiwari, S. Review on Alzheimer Disease Detection Methods: Automatic Pipelines and Machine Learning Techniques. Sci 2023, 5, 13. [Google Scholar] [CrossRef]
- Wei, X.; Du, X.; Xie, Y.; Suo, X.; He, X.; Ding, H.; Zhang, Y.; Ji, Y.; Chai, C.; Liang, M.; et al. Mapping Cerebral Atrophic Trajectory from Amnestic Mild Cognitive Impairment to Alzheimer’s Disease. Cereb. Cortex 2022, 33, 1310–1327. [Google Scholar] [CrossRef]
- Tuena, C.; Pupillo, C.; Stramba-Badiale, C.; Stramba-Badiale, M.; Riva, G. Predictive Power of Gait and Gait-Related Cognitive Measures in Amnestic Mild Cognitive Impairment: A Machine Learning Analysis. Front. Hum. Neurosci. 2024, 17, 1328713. [Google Scholar] [CrossRef]
- Yoon, E.J.; Lee, J.-Y.; Kwak, S.; Kim, Y.K. Mild Behavioral Impairment Linked to Progression to Alzheimer’s Disease and Cortical Thinning in Amnestic Mild Cognitive Impairment. Front. Aging Neurosci. 2023, 14, 1051621. [Google Scholar] [CrossRef]
- Chong, A.; Ha, J.M.; Chung, J.Y.; Kim, H.; Choo, I.H. Modified RCTU score: A semi-quantitative, visual tool for predicting alzheimer’s conversion from aMCI. Brain Sci. 2024, 14, 132. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-Based Therapy for Alzheimer’s Disease: Challenges, Successes and Future. Signal Transduct. Target. Ther. 2023, 8, 248. [Google Scholar] [CrossRef]
- Mohs, R.; Bakker, A.; Rosenzweig-Lipson, S.; Rosenblum, M.; Barton, R.L.; Albert, M.S.; Cohen, S.; Zeger, S.; Gallagher, M. The HOPE4MCI Study: A Randomized Double-blind Assessment of AGB101 for the Treatment of MCI Due to AD. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2024, 10, e12446. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, J.; Choi, H.; Loeser, M.; Ryu, H.; Seo, K. Digital Marker for Early Detection of Mild Cognitive Impairment through Hand and Eye Movement Analysis in Virtual Reality Using Machine Learning: First Validation Study. J. Med. Internet Res. 2023, 25, e48093. [Google Scholar] [CrossRef]
- Javitt, D.C.; Martinez, A.; Sehatpour, P.; Beloborodova, A.; Habeck, C.; Gazes, Y.; Bermudez, D.; Razlighi, Q.R.; Devanand, D.P.; Stern, Y. Disruption of early visual processing in amyloid-positive healthy individuals and mild cognitive impairment. Alzheimer’s Res. Ther. 2023, 15, 42. [Google Scholar] [CrossRef]
- Elefante, C.; Brancati, G.E.; Baldacci, F.; Lattanzi, L.; Ceravolo, R.; Perugi, G. Mild Behavioral Impairment (MBI) and Late-Life Psychiatric Disorders: Differential Clinical Features and Outcomes. Int. Psychogeriatr. 2023, 35, 27–28. [Google Scholar] [CrossRef]
- Ryu, H.; Seo, K. The Illusion of Having a Large Virtual Body Biases Action-Specific Perception in Patients with Mild Cognitive Impairment. Sci. Rep. 2021, 11, 24058. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Park, H.; Kim, H.; Kim, J.; Seo, K. Technostress Causes Cognitive Overload in High-Stress People: Eye Tracking Analysis in a Virtual Kiosk Test. Inf. Process. Manag. 2022, 59, 103093. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.; Kim, J.; Oh, D.H.; Ryu, H.; Choi, H. Virtual Daily Living Test to Screen for Mild Cognitive Impairment Using Kinematic Movement Analysis. PLoS ONE 2017, 12, e0181883. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Kim, S.Y.; Park, J.; Choi, H.; Ryu, H.; Seo, K. Integrating biomarkers from virtual reality and magnetic resonance imaging for early detection of mild cognitive impairment using a multimodal learning approach: Validation study. J. Med. Internet Res. 2024, 26, e54538. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A.F.; Sayyid, Z.N.; Roberts, D.C.; Hua, J.; Paez, A.; Cao, D.; Lauer, A.M.; Ward, B.K. Acoustic Noise Levels in HigYh-field Magnetic Resonance Imaging Scanners. OTO Open 2023, 7, e79. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, H.S.; Mutairi, F.M.; Al Motairi, M.D.; Salem Almutairi, N.; Al-Rashidi, M.H. MRI Safety: RF Burns-Causes and Prevention. J. Surv. Fish. Sci. 2023, 10, 82–85. [Google Scholar]
- Vaughn, H.; Declan, A.B.L. MRI-Induced Deep Tissue Burn Presenting to the Emergency Department. Am. J. Emerg. Med. 2022, 58, 352.e3–352.e4. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kamagata, K.; Andica, C.; Uchida, W.; Takabayashi, K.; Yoshida, S.; Nakaya, M.; Tanaka, Y.; Kamiyo, S.; Sato, K.; et al. Reproducibility of Automated Calculation Technique for Diffusion Tensor Image Analysis along the Perivascular Space. Jpn. J. Radiol. 2023, 41, 947–954. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, B.; Kim, D.; Choi, H.; Park, J.; Ryu, H.; Seo, K. Early Screening of Mild Cognitive Impairment Using Multimodal VR-EP-EEG-MRI (VEEM) Biomarkers via Machine Learning. In Proceedings of the 2024 International Conference on Electronics, Information, and Communication (ICEIC) 2024, Taipei, Taiwan, 28–31 January 2024. [Google Scholar] [CrossRef]
- Yu, W.-Y.; Low, I.; Chen, C.; Fuh, J.-L.; Chen, L.-F. Brain Dynamics Altered by Photic Stimulation in Patients with Alzheimer’s Disease and Mild Cognitive Impairment. Entropy 2021, 23, 427. [Google Scholar] [CrossRef]
- Kim, D.; Park, J.S.; Choi, H.; Ryu, H.; Seo, K. Deep learning model for early screening of patients with Alzheimer’s disease and mild cognitive impairment using EEG-SSVEP. In Proceedings of the HCI Korea, Jeongseon-gun, Republic of Korea, 1–3 February 2023; 2023; pp. 781–787. [Google Scholar]
- Peksa, J.; Mamchur, D. State-of-the-Art on Brain-Computer Interface Technology. Sensors 2023, 23, 6001. [Google Scholar] [CrossRef] [PubMed]
- Khatun, S.; Morshed, B.I.; Bidelman, G.M. Monitoring Disease Severity of Mild Cognitive Impairment from Single-Channel EEG Data Using Regression Analysis. Sensors 2024, 24, 1054. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-E.; Shin, C.; Yim, J.; Seo, K.; Ryu, H.; Choi, H.; Park, J.; Min, B.-K. Resting-State Electroencephalographic Characteristics Related to Mild Cognitive Impairments. Front. Psychiatry 2023, 14, 1231861. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Li, A.; Wu, R.; Chai, J.; Qiang, Y.; Zhao, J.; Yang, Q. VRNPT: A Neuropsychological Test Tool for Diagnosing Mild Cognitive Impairment Using Virtual Reality and EEG Signals. Int. J. Hum.-Comput. Interact. 2023, 1–19. [Google Scholar] [CrossRef]
- Lee, B.; Lee, T.; Jeon, H.; Lee, S.; Kim, K.; Cho, W.; Hwang, J.; Chae, Y.-W.; Jung, J.-M.; Kang, H.J.; et al. Synergy Through Integration of Wearable EEG and Virtual Reality for Mild Cognitive Impairment and Mild Dementia Screening. IEEE J. Biomed. Health Inform. 2022, 26, 2909–2919. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Yang, X.; Yang, H.; Sun, Z. Decreased Coherence in the Model of the Dorsal Visual Pathway Associated with Alzheimer’s Disease. Sci. Rep. 2023, 13, 3495. [Google Scholar] [CrossRef]
- Ilardi, C.R.; Iavarone, A.; La Marra, M.; Iachini, T.; Chieffi, S. Hand Movements in Mild Cognitive Impairment: Clinical Implications and Insights for Future Research. J. Integr. Neurosci. 2022, 21, 67. [Google Scholar] [CrossRef]
- Antar, M.; Wang, L.; Tran, A.; White, A.; Williams, P.; Sylcott, B.; Mizelle, J.C.; Kim, S. Functional Connectivity Analysis of Visually Evoked Erps for Mild Cognitive Impairment: Pilot Study. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2023, Sydney, Australia, 24–27 July 2023. [Google Scholar] [CrossRef]
- Koike, M.; Noguchi-Shinohara, M.; Morise, H.; Kudo, K.; Tsuchimine, S.; Misaka, Y.; Komatsu, J.; Abe, C.; Horimoto, M.; Kitagawa, S.; et al. Abnormal regional brain activities along the dorsal stream during visuospatial processing in alzheimer’s disease: A magnetoencephalography study. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Wu, H.; Song, Y.; Yang, X.; Chen, S.; Ge, H.; Yan, Z.; Qi, W.; Yuan, Q.; Liang, X.; Lin, X.; et al. Functional and Structural Alterations of Dorsal Attention Network in Preclinical and Early-stage Alzheimer’s Disease. CNS Neurosci. Ther. 2023, 29, 1512–1524. [Google Scholar] [CrossRef]
- Alexandrovsky, D.; Putze, S.; Schwind, V.; Mekler, E.D.; Smeddinck, J.D.; Kahl, D.; Krüger, A.; Malaka, R. Evaluating User Experiences in Mixed Reality. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021. [Google Scholar] [CrossRef]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The Diagnosis of Mild Cognitive Impairment Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Focus 2013, 11, 96–106. [Google Scholar] [CrossRef]
- Bajaj, N.; Requena Carrión, J.; Bellotti, F.; Berta, R.; De Gloria, A. Automatic and Tunable Algorithm for EEG Artifact Removal Using Wavelet Decomposition with Applications in Predictive Modeling during Auditory Tasks. Biomed. Signal Process. Control 2020, 55, 101624. [Google Scholar] [CrossRef]
- Kasteleijn-Nolst Trenité, D.; Rubboli, G.; Hirsch, E.; Martins da Silva, A.; Seri, S.; Wilkins, A.; Parra, J.; Covanis, A.; Elia, M.; Capovilla, G.; et al. Methodology of Photic Stimulation Revisited: Updated European Algorithm for Visual Stimulation in the EEG Laboratory. Epilepsia 2011, 53, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Vinck, M.; Oostenveld, R.; van Wingerden, M.; Battaglia, F.; Pennartz, C.M.A. An Improved Index of Phase-Synchronization for Electrophysiological Data in the Presence of Volume-Conduction, Noise and Sample-Size Bias. NeuroImage 2011, 55, 1548–1565. [Google Scholar] [CrossRef] [PubMed]
- Saramäki, J.; Kivelä, M.; Onnela, J.-P.; Kaski, K.; Kertész, J. Generalizations of the Clustering Coefficient to Weighted Complex Networks. Phys. Rev. E 2007, 75, 027105. [Google Scholar] [CrossRef] [PubMed]
- Pudjihartono, N.; Fadason, T.; Kempa-Liehr, A.W.; O’Sullivan, J.M. A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction. Front. Bioinform. 2022, 2, 927312. [Google Scholar] [CrossRef] [PubMed]
- Chaddad, A.; Wu, Y.; Kateb, R.; Bouridane, A. Electroencephalography Signal Processing: A Comprehensive Review and Analysis of Methods and Techniques. Sensors 2023, 23, 6434. [Google Scholar] [CrossRef] [PubMed]
- Przybyszewski, A.W.; Śledzianowski, A.; Chudzik, A.; Szlufik, S.; Koziorowski, D. Machine learning and eye movements give insights into neurodegenerative disease mechanisms. Sensors 2023, 23, 2145. [Google Scholar] [CrossRef] [PubMed]
- ZhuParris, A.; de Goede, A.A.; Yocarini, I.E.; Kraaij, W.; Groeneveld, G.J.; Doll, R.J. Machine Learning Techniques for Developing Remotely Monitored Central Nervous System Biomarkers Using Wearable Sensors: A Narrative Literature Review. Sensors 2023, 23, 5243. [Google Scholar] [CrossRef]
- Li, Y.; Shao, Y.; Wang, J.; Liu, Y.; Yang, Y.; Wang, Z.; Xi, Q. Machine Learning Based on Functional and Structural Connectivity in Mild Cognitive Impairment. Magn. Reson. Imaging 2024, 109, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Mancioppi, G.; Rovini, E.; Fiorini, L.; Zeghari, R.; Gros, A.; Manera, V.; Robert, P.; Cavallo, F. Mild Cognitive Impairment Identification Based on Motor and Cognitive Dual-Task Pooled Indices. PLoS ONE 2023, 18, e0287380. [Google Scholar] [CrossRef]
- Cortes, N.; Ladret, H.J.; Abbas-Farishta, R.; Casanova, C. The Pulvinar as a Hub of Visual Processing and Cortical Integration. Trends Neurosci. 2024, 47, 120–134. [Google Scholar] [CrossRef]
- Mahon, B.Z.; Almeida, J. Reciprocal Interactions between Parietal and Occipito-Temporal Representations Support Everyday Object-Directed Actions. Neuropsychologia 2024, 198, 108841. [Google Scholar] [CrossRef] [PubMed]
- Cortes, N.; de Souza, B.O.; Casanova, C. Pulvinar Modulates Synchrony across Visual Cortical Areas. Vision 2020, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Mahon, B.Z. Higher Order Visual Object Representations: A Functional Analysis of Their Role in Perception and Action. In APA Handbook of Neuropsychology: Neuroscience and Neuromethods; American Psychological Association: Washington, DC, USA, 2023; Volume 2, pp. 113–138. [Google Scholar] [CrossRef]
- Yamasaki, T.; Aso, T.; Kaseda, Y.; Mimori, Y.; Doi, H.; Matsuoka, N.; Takamiya, N.; Torii, T.; Takahashi, T.; Ohshita, T.; et al. Decreased Stimulus-Driven Connectivity of the Primary Visual Cortex during Visual Motion Stimulation in Amnestic Mild Cognitive Impairment: An Fmri Study. Neurosci. Lett. 2019, 711, 134402. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Healthy Controls (n = 24) | aMCI 1 Patients (n = 24) | p-Value | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Demographics | |||||
Gender (Male/Female) | 10/14 | 12/12 | 0.56 | ||
Age | 68.42 | 9.92 | 71.6 | 7.59 | 0.22 |
Years of education | 12.13 | 4.39 | 10.67 | 5.71 | 0.33 |
Neuropsychological test result | |||||
K-MMSE 2 | 28.30 | 1.40 | 27.01 | 2.38 | <0.05 |
Classifier Models | Hyperparameters |
---|---|
Support Vector Machine | kernel = linear; C = 0.05; probability = true |
Linear Discriminant Analysis | solver = singular value decomposition; shrinkage = no shrinkage; tolerance = 1 × 10−4 |
Naive Bayes | priors = none; variance smoothing = 1 × 10−9 |
Gaussian Process | radial basis function (1.0) |
K-Nearest Neighbor | k = 5; metric = Euclidean; weights = uniform |
Random Forest | number of estimators = 50; max depth = 20; min sample leaf = 4; min sample split = 5 |
Behavioral Features | Healthy Controls (n = 24) | aMCI 1 Patients (n = 24) | p-Value | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Eye movement | |||||
Scanpath length (m) | 30.59 | 37.55 | 52.60 | 57.42 | >0.05 2 |
Proportion of fixation duration (%) | 56.31 | 13.98 | 45.76 | 16.42 | <0.05 3 |
Hand movement | |||||
Hand movement distance (m) | 11.85 | 6.78 | 15.95 | 11.23 | >0.05 2 |
Hand movement speed (m/s) | 0.23 | 0.07 | 0.18 | 0.06 | <0.05 3 |
Performance | |||||
Time to completion (s) | 50.00 | 54.94 | 91.75 | 84.38 | <0.05 2 |
The number of errors | 1.75 | 1.65 | 3.50 | 2.90 | <0.05 4 |
Neurological Features 1 | Healthy Controls (n = 24) | aMCI 2 Patients (n = 24) | p-Value 3 | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Lobe Power Ratio | |||||
5PS-POR-2H | 0.74 | 0.08 | 0.79 | 0.05 | <0.01 |
12PS-POR-1H | 0.72 | 0.06 | 0.82 | 0.09 | <0.001 |
15PS-POR-1H | 0.74 | 0.07 | 0.81 | 0.07 | <0.001 |
Lobe Connectivity Ratio | |||||
3PS-POR-α | 0.95 | 0.05 | 1.02 | 0.05 | <0.0001 |
5PS-POR-γ | 0.99 | 0.02 | 1.01 | 0.04 | <0.05 |
Band Connectivity Ratio | |||||
3PS-P-ABR | 0.98 | 0.08 | 1.07 | 0.14 | <0.05 |
10PS-P-ABR | 1.04 | 0.11 | 1.13 | 0.17 | <0.05 |
15PS-P-TBR | 0.92 | 0.11 | 1.04 | 0.11 | <0.01 |
Classifiers | Accuracy (%) | Sensitivity (%) | Specificity (%) | AUC 1 (%) | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
SVM 2 | 98.38 | 2.86 | 96.54 | 6.12 | 100.00 | 0.00 | 99.73 | 0.99 |
KNN 3 | 97.78 | 3.55 | 97.40 | 6.54 | 98.11 | 4.48 | 99.51 | 1.26 |
NB 4 | 96.97 | 3.32 | 93.51 | 7.11 | 100.00 | 0.00 | 99.78 | 1.22 |
LDA 5 | 93.33 | 1.64 | 86.15 | 2.45 | 99.62 | 2.14 | 93.56 | 1.52 |
GPC 6 | 89.70 | 4.05 | 87.45 | 4.66 | 91.67 | 6.65 | 98.27 | 1.28 |
RF 7 | 76.16 | 3.29 | 87.45 | 4.66 | 66.29 | 5.74 | 90.69 | 3.09 |
Features | Accuracy (%) | Sensitivity (%) | Specificity (%) | AUC 1 (%) | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
VR | 53.74 | 6.95 | 56.28 | 42.49 | 51.52 | 49.98 | 21.92 | 2.50 |
EEG-SSVEP | 93.33 | 0.00 | 85.71 | 0.00 | 100.00 | 0.00 | 93.07 | 0.58 |
VR + EEG-SSVEP | 98.38 | 2.86 | 96.54 | 6.12 | 100.00 | 0.00 | 99.73 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Kim, Y.; Park, J.; Choi, H.; Ryu, H.; Loeser, M.; Seo, K. Exploring the Relationship between Behavioral and Neurological Impairments Due to Mild Cognitive Impairment: Correlation Study between Virtual Kiosk Test and EEG-SSVEP. Sensors 2024, 24, 3543. https://doi.org/10.3390/s24113543
Kim D, Kim Y, Park J, Choi H, Ryu H, Loeser M, Seo K. Exploring the Relationship between Behavioral and Neurological Impairments Due to Mild Cognitive Impairment: Correlation Study between Virtual Kiosk Test and EEG-SSVEP. Sensors. 2024; 24(11):3543. https://doi.org/10.3390/s24113543
Chicago/Turabian StyleKim, Dohyun, Yuwon Kim, Jinseok Park, Hojin Choi, Hokyoung Ryu, Martin Loeser, and Kyoungwon Seo. 2024. "Exploring the Relationship between Behavioral and Neurological Impairments Due to Mild Cognitive Impairment: Correlation Study between Virtual Kiosk Test and EEG-SSVEP" Sensors 24, no. 11: 3543. https://doi.org/10.3390/s24113543
APA StyleKim, D., Kim, Y., Park, J., Choi, H., Ryu, H., Loeser, M., & Seo, K. (2024). Exploring the Relationship between Behavioral and Neurological Impairments Due to Mild Cognitive Impairment: Correlation Study between Virtual Kiosk Test and EEG-SSVEP. Sensors, 24(11), 3543. https://doi.org/10.3390/s24113543