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Abstract: Nowadays, the focus on few-shot object detection (FSOD) is fueled by limited remote
sensing data availability. In view of various challenges posed by remote sensing images (RSIs)
and FSOD, we propose a meta-learning-based Balanced Few-Shot Object Detector (B-FSDet), built
upon YOLOv9 (GELAN-C version). Firstly, addressing the problem of incompletely annotated
objects that potentially breaks the balance of the few-shot principle, we propose a straightforward
yet efficient data clearing strategy, which ensures balanced input of each category. Additionally,
considering the significant variance fluctuations in output feature vectors from the support set that
lead to reduced effectiveness in accurately representing object information for each class, we propose
a stationary feature extraction module and corresponding stationary and fast prediction method,
forming a stationary meta-learning mode. In the end, in consideration of the issue of minimal
inter-class differences in RSIs, we propose inter-class discrimination support loss based on the
stationary meta-learning mode to ensure the information provided for each class from the support set
is balanced and easier to distinguish. Our proposed detector’s performance is evaluated on the DIOR
and NWPU VHR-10.v2 datasets, and comparative analysis with state-of-the-art detectors reveals
promising performance.

Keywords: few-shot object detection; remote sensing images; meta-learning; incompletely
annotated objects

1. Introduction

In recent decades, advancements in remote sensing technology have led to the devel-
opment of spaceborne sensors, which now offer sub-meter spatial resolution, comparable
to airborne images from a few decades ago [1]. Operating continuously, these sensors have
generated pretty valuable data, making automatic image interpretation and object detection
increasingly essential.

With the advancement of convolutional neural networks (CNNs), significant break-
throughs have been achieved in the field of object detection, with many high-performance
detectors demonstrating outstanding performance under extensive training data [2–4].
However, in practical applications, the labeled data obtained from remote sensing sensors
are limited, and acquiring them is costly and difficult. CNN-based detectors are prone to
overfitting and exhibiting poor performance when faced with such limited data. To address
this issue, many studies have begun researching how to train detectors that can perform
well with a limited amount of data, giving rise to few-shot object detection (FSOD) [5–7].

Numerous FSOD methods adhere to a two-stage training approach, which entails
an initial base training phase using an established base dataset containing ample training
samples to acquire general prior knowledge. Subsequently, the base-trained detector
undergoes fine-tuning using a few-shot dataset comprising target categories. The categories
within the base dataset are referred to as base classes, while the target categories added
in the few-shot dataset are denoted as novel classes. Currently, there are two mainstream
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approaches to addressing FSOD: meta-learning and transfer learning. They both follow
a two-stage training paradigm, the effectiveness of which has been demonstrated across
various scenarios [8,9]. Specifically, meta-learning-based methods stand out for their ability
to rapidly adapt to extremely limited sample scenarios and exhibit strong generalization
capabilities [10–12], which makes them an excellent choice for situations where training
data are scarce. Nonetheless, several challenges exist when dealing with remote sensing
images (RSIs) in FSOD.

Firstly, during the phase of fine-tuning on the novel class, the fine-tuning dataset
needs to be constructed according to the N-way-K-shot principle [13]. For instance, when
N = 10 and K = 3, the fine-tuning dataset should consist of 10 categories, with each category
containing three labels. However, the correspondence between the three labels and the
images is not strictly one-to-one. In existing remote sensing datasets, it is challenging to
ensure one label corresponds to one image, as a single image usually contains multiple
objects. To adhere to the N-way-K-shot principle, only a portion of these labels from these
images can be utilized as training inputs. Consequently, incomplete labeling frequently
occurs in the fine-tuning dataset. As shown in Figure 1, when fine-tuning for the “airplane”
class, as a novel class, only certain objects in the image are annotated. The given labels
provide positive guidance to the detector, whereas missing labels may lead the detector
to regard the objects as background, causing significant confusion, referred to as the
incompletely annotated objects (IAO) issue. Current FSOD methods addressing the IAO
issue [14,15] employ pseudo-labels or novel classifiers to mitigate the problem. However,
these approaches rely on the model’s current understanding of novel class knowledge,
which is evidently much lower than that of base classes in few-shot conditions. Since the
root cause of the IAO issue lies in data processing problems, we believe that addressing it
from the perspective of data is straightforward and effective.

GTImage Fine-Tuning Dataset

Ground Truth Labels

Labels Given in the Fine-Tuning Dataset

Labels NOT Given in the Fine-Tuning Dataset

Figure 1. Schematic diagram illustrating the issue of IAO problem in the fine-tuning dataset. Dur-
ing training, only a subset of labels is utilized for supervision, while the remaining labels, due to the
constraints of the N-way-K-shot principle, cannot be provided, resulting in confusion for the detector.

Additionally, a significant concern within meta-learning frameworks is the method
of integrating support set features with query set features. Presently, two predominant
aggregation approaches are recognized: class-specific aggregation (CSA) [12] and class-
agnostic aggregation (CAA) [16]. CSA [12] merges features of the same class from both
the support set and the query set, enhancing the detector’s ability to memorize specific
objects. Conversely, CAA [16] allows for the fusion of object features from different classes
between the support set and the query set, thereby aiding the detector in distinguishing
between classes. Moreover, there exists a technique for encoding support set features into
vector form and assisting the query set through channel-wise multiplication, which offers
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operational simplicity, lightweight parameters, and universality. Li et al. [11] employed
this method in RSIs, where support set images and their corresponding label mask images
were jointly fed into convolutional layers, ultimately encoding feature vectors to assist the
query set features. However, Han et al. [16] suggested that such vectors may be influenced
by data scarcity and variations in examples, failing to adequately represent the entire
class distribution. This limitation can be partly attributed to [11] introducing background
information during encoding. Guan et al. [17] proposed encoding only the objects, which
to some extent reduces the variance. However, objects in RSIs exhibit significant intra-class
differences, and encoding only the objects may still result in large variance in the output
vectors, as shown in Figure 2. Hence, we hold the view that during training, enabling
the support set’s features to be derived not solely from a specific set of data but rather
by synthesizing the auxiliary features of the support set would help stabilize the output
vectors of the support set and enhance their auxiliary effects.

Support Set

(Ship)

Vector 1 Vector 2 Vector 3 Vector n

Batch 1 Batch 2 Batch 3 Batch n

…

Great Variance

Figure 2. Schematic diagram of support set feature extraction structure in FSODM [11] and LMF-
SODet [17]. Suppose one of the classes in the support set is “ship”.

In the end, objects within RSIs obtained from remote sensing sensors often exhibit
minor inter-class differences (MIDs), manifested in various aspects such as color and
shape, as shown in Figure 3. Relying solely on support set features to assist the detection
does not effectively enhance the classifier’s classification ability. The prevailing method
for addressing the MID issue is contrastive learning. However, these approaches [18,19]
significantly increase model complexity and are challenging to directly apply to meta-
learning-based few-shot object detectors. We fully exploit the distinct characteristics of
various objects in the support set. By enhancing the detector’s ability to distinguish
between different components of the support set’s output vectors through cross-entropy,
its knowledge of distinguishing different classes can be reinforced.

Figure 3. Visualization of some categories of objects from the DIOR dataset.

To address the aforementioned challenges and considering the limited computational
resources in practical applications that require models to be as lightweight as possible,
we propose a novel Balanced Few-Shot Object Detector based on the single-stage detector
YOLOv9 (GELAN-C version) [20]. Given its consideration of balance and stability in
handling samples for FSOD across all its designed components, it is fittingly dubbed B-
FSDet. To begin with, in an effort to achieve a genuine balanced input sample during
fine-tuning, we propose a straightforward yet highly effective data clearing strategy (DCS).
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The DCS operates on fine-tuning dataset images, removing redundant objects based on
the complete set of labels and a subset of labels used for few-shot learning. Notably, this
process is lightweight as it does not rely on complex deep-learning-based image inpainting
techniques. Instead, it simply employs white Gaussian noise (WGN) to replace the objects.
Importantly, our detector’s loss computation only involves valuable positive samples,
thus minimizing the impact of substituted WGN on the detector performance. What is
more, to ensure that the output vectors from the support set comprehensively represent
the features of each class, we introduce the stationary feature extraction module (SFEM),
based on [11,20]. We also apply dynamic exponential moving average (DEMA) to the
output vectors to mitigate the impact stemming from unstable model parameters during
training and the addition of novel classes during fine-tuning. In the meantime, we propose
a stationary and fast prediction method (SFPM) coupled with SFEM that does not rely
on support set images specifically matched with the object with high detecting speed.
Instead, it randomly selects from the support set class library, demonstrating significant
robustness and efficiency. Finally, we propose the inter-class discrimination support loss
(ICDSL). Building upon the existing detection head, we augment the detection head with
the decoding function for support set vectors. ICDSL is calculated between the decoded
results and the ground truth class provided by the support set to strengthen the detection
head’s ability to discriminate different classes.

In summary, the main contributions of this paper can be summarized as follows:

• We propose a novel Balanced Few-Shot Object Detector (B-FSDet), based on the
YOLOv9 (GELAN-C version) [20] and meta-learning. Considering the limited compu-
tational resources, B-FSDet achieves remarkably high detection accuracy with a low
parameter count, and effectively addresses numerous challenges prevalent in RSIs.

• To ensure genuine balance in input samples during fine-tuning, we introduce DCS,
which removes redundant objects from fine-tuning dataset images. The lightweight
process employs WGN to replace the redundant objects, resulting in precise alignment
of objects with labels and adherence to the N-way-K-shot principle.

• To make the output vectors comprehensively represent the features of each class in
the support set, we introduce SFEM and SFPM. The two parts construct a stationary
meta-learning mode, improving the robustness of the detector.

• Addressing the issue of minor inter-class differences, we propose ICDSL to strengthen
the detection head’s ability to discriminate between classes.

2. Related Work
2.1. Object Detection in Remote Sensing Images

General object detectors can be divided into two main types: two-stage detectors and
one-stage detectors. Two-stage detectors, like Faster R-CNN [4], start by using a region
proposal network to suggest potential foreground regions. Then, they extract fixed-size
features for each proposal through ROI pooling and use a module for transformation,
along with a classifier and a regressor predicting final bounding boxes. On the other hand,
one-stage detectors, such as the YOLO series [3,20–22], simultaneously predict bounding
boxes and class scores based on predefined anchor boxes, resulting in very fast inference
speeds and high accuracy.

Numerous detectors have achieved commendable performance in addressing object
detection tasks in natural scene images. However, RSIs differ from natural scene images
in that they are captured from a bird’s-eye-view perspective, introducing challenges such
as complex backgrounds, diverse scales of foreground objects, and significant variability
in object orientations. Massive studies have been launched to tackle these problems. To
tackle the challenge of rotation invariance in feature learning, Mei et al. [23] introduced a
groundbreaking approach known as cyclic polar coordinate convolutional layer. Recogniz-
ing the complex nature of aerial images, which often feature large sensory areas and diverse
scales of objects, Deng et al. [24] proposed a multiscale object proposal network comprising
three branches dedicated to predicting multiscale proposals. Given the inadequacy of hori-
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zontal bounding boxes in accurately representing aerial object shapes, numerous studies
like [25,26] have shifted their focus to detecting novel objects using rotated bounding boxes.
In a related vein, Lian et al. [27] developed an innovative contextual background attack
framework aimed at deceiving aerial detectors. Hui et al. [28] considered the tiny size of
objects in RSIs and proposed SEB-YOLO network to fully catch the targets. Additionally,
extensive research such as [27,29] has been devoted to the advancement of object detection
in RSIs.

While the aforementioned detectors have shown promising results in object detection
in RSIs, their performance heavily relies on the availability of extensive annotated data.
In practical scenarios, especially in the remote sensing domain, collecting large amounts of
labeled data is labor-intensive. As a result, these detectors experience a significant decrease
in performance when dealing with limited-sample scenarios.

2.2. Few-Shot Object Detection in Remote Sensing Images

Due to the difficulty in acquiring large amounts of annotated data, FSOD has emerged
as a popular research area. One of the current mainstream FSOD methods is meta-learning.
Meta-learning typically involves training a meta-learner on a large dataset containing
various tasks or domains, where each task consists of a few-shot learning scenario. Dur-
ing meta-training, the meta-learner learns to generalize across tasks and acquires knowl-
edge about how to effectively adapt to new tasks given limited training data. Classic
meta-learning-based methods include Meta-RCNN [12] and FSODM [11], both of which
utilize reweighting vectors to assist query set feature aggregation. Additionally, VFA [16]
was the pioneer in integrating variational feature learning into FSOD to enhance feature
robustness. Building upon this, Lu et al. [30] introduced the information-coupled prototype
elaboration method to generate more distinct and representative prototypes for individual
query images. Their approach has demonstrated improved performance in FSOD tasks.
Nonetheless, the output features of the support set generated by these methods often
exhibit high variance, making the assistance to the query set unstable. Hence, more efforts
should be launched to make the assistance from the support set effective and comprehen-
sive. Additionally, Li et al. [31] proposed a class margin equilibrium method to increase
inter-class differences between base and novel classes while ensuring balanced performance
during fine-tuning for both. Sun et al. [19] utilized contrastive learning and introduced
contrastive proposals encoding [19], which further enhances the detector’s ability to distin-
guish between various classes. These methods calculate loss based on misclassifications in
the model’s final output, guiding the model to learn classification knowledge. However,
the support set output in meta-learning-based methods contains information about all
classes, and enhancing inter-class differences from this can be a promising approach to
strengthening inter-class differentiation within the meta-learning framework.

Regarding recent state-of-the-art FSOD methods in RSIs, Cheng et al. [32] introduced
Prototype-CNN, which includes a prototype learning network, a prototype-guided RPN,
and a detection head tailored for detecting novel objects. Zhang et al. [33] took into
account the spatial similarity between the support set and the query set, designing the
self-adaptive global similarity module and the two-way foreground stimulator module to
enhance the perceptual ability towards novel classes. PAMS-Det [34] utilized the involu-
tion operator and shape bias to enhance the classification branch, alongside a multiscale
path-aggregation module for refining the regression branch. Moreover, Zhang et al. [35]
expanded Generalized FSOD to remote sensing and introduced a comprehensive transfer
learning framework.

However, these methods fail to consider a significant issue in FSOD: incompletely
annotated objects (IAO) in training images. This poses considerable confusion for the
detector and greatly hampers the performance of few-shot object detectors.
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2.3. IAO Problem

Zhang et al. [36] mentioned the issue of incompletely annotated novel objects, referred
to as the IANO problem. To the best of our knowledge, following the N-way-K-shot
training principle as outlined in [37] and taking into account all scenarios of label absence
during all the training process, we recognize the IAO problem, which includes but not
limited to IANO, encompassing:

• IAO-back: During base training, unannotated instances of novel class objects are
treated as background.

• IAO-novel: During fine-tuning, unannotated instances of novel class objects may arise.
• IAO-base: During fine-tuning, unannotated instances of base class objects may occur.

Li et al. [38] were the pioneers in identifying the IAO issue in their research, high-
lighting the potential presence of unlabeled novel objects within the base set images. They
devised a network that generates pseudo-labels corresponding to these images, which
are then utilized to detect potential novel objects and adjust the loss calculation for the
RoI head accordingly. In a similar vein, Qiao et al. [39] emphasized the existence of the
IAO challenge, particularly when multiple novel objects are present in a single image.
To address this concern, they proposed a label calibration method. This method recali-
brates the predicted objects of background objects based on their predicted confidence
scores, assigning lower weights to unannotated novel objects during the loss calculation to
mitigate their detrimental impact. Based on two-stage object detectors, Zhang et al. [36]
utilized advanced self-training techniques not just for the bounding box classification head,
but also for the RPN, further addressing the IAO problem. Subsequently, Liu et al. [14]
extensively investigated techniques for performing semi-supervised object detection di-
rectly on uncurated and unlabeled data. In the meantime, Liu et al. [15] introduced a novel
label-consistent classifier that effectively utilizes unannotated new class objects within the
base class, addressing the IAO-back and IAO-novel problems.

In general, the aforementioned methods aim to address the IAO-back and IAO-novel
issues. Whether from the perspective of label correction or training mode, their primary
focus is on reducing the confusion caused by unannotated instances. However, it is crucial
to acknowledge that during training, labels and actual objects are not perfectly aligned.
We consider the IAO-novel and IAO-base issues, but instead of adding pseudo-labels
to alleviate their confusing effects, we employ DCS to remove unlabeled objects from
the images. Both approaches aim to mitigate the impact of labeling errors. However,
the addition of pseudo-labels leads to inconsistency in the number and categories of labels
in each training batch, resulting in sample imbalance and affecting the detector’s decision
making for certain classes. Additionally, the increase in the number of labels implies greater
computational resource consumption per training iteration, contradicting the lightweight
requirements of real sensors. Moreover, it is unreliable for the detector to independently
judge whether an object is unannotated, as the model’s understanding may not be sufficient
in such cases. Instead of relying on the model’s randomness to determine unannotated
objects, it is more practical to provide it with balanced and definite inputs. This approach
is cost-effective and feasible, because the matter lies in the fine-tuning stage, during which
only a small amount of data is required.

2.4. Revisiting YOLOv9 (GELAN-C)

YOLOv9 [20], being one of the most cutting-edge detectors, stands out with its ultra-
fast inference speed and accurate detection performance. Wang et al. [20] designed GELAN,
utilizing only traditional convolutions, which achieves higher parameter efficiency com-
pared to state-of-the-art deep convolutional designs, while demonstrating significant ad-
vantages in being lightweight, fast, and accurate. We fully considered the advantages of
YOLOv9 [20] and ultimately concluded that the GELAN-C version is the most suitable to
be adapted as a few-shot object detector for remote sensing images. The overall structure
of YOLOv9 (GELAN-C) is shown in Figure 4.
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DDetect DDetect DDetect

Input

Figure 4. Schematic diagram of overall structure of YOLOv9 (GELAN-C) [20] .

The main features and components of GELAN [20] include the CSP-ELAN block,
which integrates the CSPNet (Cross Stage Partial Network) structure into the ELAN (Effi-
cient Layer Aggregation Network) foundation, as shown in Figure 5. This structure can
utilize various computational blocks, such as Bottleneck or ResBlock, to enhance compu-
tational efficiency. GELAN optimizes its network structure through carefully designed
gradient path planning, allowing for more effective propagation and aggregation of feature
information from different levels. Its lightweight design focuses on minimizing compu-
tational load and parameter count while maintaining detection performance, making it
suitable for resource-constrained devices. Despite its emphasis on lightweight design,
GELAN [20] achieves high-precision object detection, comparable to more complex net-
work architectures. Therefore, we are committed to making it effectively finish FSOD tasks
while maintaining its advantage of fast inference.

transition

partition partition

…split…

any

block

transition

concatenation

transition

Figure 5. Schematic diagram of GELAN (RepNCSPELAN).
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3. Methods
3.1. Problem Setting

FSOD aims to train a detection model on a dataset with base classes. This allows it
to detect objects in images with new classes, even with few annotated samples. A meta-
learning-based detector is trained to glean meta-knowledge from a vast amount of detection
tasks sampled from base classes, enabling it to generalize effectively to novel classes. Each
sampled task is termed an episode, where an episode E consists of a collection of support
images S and a set of query images Q. During each episode, the support images serve as
training samples, instructing the model on how to tackle the given task, while the query
images act as test samples, assessing the model’s performance on the task.

For a remote sensing dataset encountering the FSOD problem, we approach it as
follows. Following a methodology akin to the fine-tuning approach [36], our meta-learning
mode entails two primary stages: base class training and novel class (meta) fine-tuning.
Initially, as delineated in [40], we partition the dataset into base class data Dbase and novel
class data Dnovel . Here, Dbase comprises image data Im and the corresponding label Am,
denoted as

Dbase = {Ii
m, Ai

m}, m = 1, 2, 3, . . . , NB, (1)

where m represents the class sequence, i symbolizes the image sequence, and NB denotes
the number of base classes. Dnovel is similarly structured, expressed by

Dnovel = {I j
m′ , Aj

m′}, m′ = NB + 1, NB + 2, . . . , N, (2)

where m′, Im′ , Am′ have the same meanings as represented in Dbase and j symbolizes the
image sequence, while N denotes the total number of classes. And, there must be

{Ai
m} ∩ {Aj

m′} = ∅, (3)

meaning that there is no overlap between the labels of the novel classes and the base classes.
During base class training, we form both the query set Qbase and the support set Sbase

from Dbase, which can be expressed by

Qbase ⊂ {Ii
m, Ai

m},

Sbase ⊂ {Ii
m, Mi

m},
(4)

where Mm denotes the label mask images corresponding to the images. Both the query set
and the support set utilize all the base class data. Subsequently, in novel class fine-tuning,
adhering to the N-way-K-shot principle, we select K objects and labels for each class for
Qnovel and Snovel , which can be expressed as

Qnovel ⊂ {{Ii
m, Ai

m} ∪ {I j
m′ , Aj

m′}},

Snovel ⊂ {{Ii
m, Mi

m} ∪ {I j
m′ , Mj

m′}}.
(5)

Assuming Fi represents the untrained model, it adheres to the following paradigm
throughout the entire training:

Fi
Sbase−−−→
Qbase

Fbase
Snovel−−−→
Qnovel

F f inal , (6)

where Fbase denotes the model after base training and F f inal inherits the parameters of
Fbase, obtained through fine-tuning with Qnovel and Snovel .

3.2. Framework Overview

The overall structure of B-FSDet is shown in Figure 6. Built upon the YOLOv9 [20]
framework, our endeavor focuses on the transformation of efficient single-stage detectors
into robust few-shot detectors, while addressing diverse challenges inherent in the practical
utilization of RSIs. B-FSDet comprises SFEM, SFPM, DCS, feature extraction layers based
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on YOLOv9 [20], and a detection head. The training process follows the meta-learning
paradigm outlined in [11,12], involving base class training followed by fine-tuning on
new classes. During base class training, query set images are processed through the
YOLOv9-based feature extraction layer, while support set images undergo shared feature
extraction layers before vector encoding. All specific network architecture parameters
based on YOLOv9 are available in [20] and Section 2.4, and specific implementation of
other modules is detailed in later sections. The encoded vectors then undergo the DEMA
operation with previously encoded vectors, followed by channel-wise multiplication with
features of the query sets to obtain fused features, which are then inputted into the detection
head for loss calculation. In the fine-tuning phase, the query set images undergo DCS to
remove unannotated objects before being processed and the operations on the support set
remain consistent with the base class training phase. During prediction, SFPM utilizes the
stationary support set vectors obtained during training for inference, enabling a further
reduction in model parameters.

Input

Image

…

Airplane

Vehicle

Harbor

Support Set

Query Set

Data Clearing Strategy (DCS)

Airplane Vehicle Harbor

Support Mask

Matched

1 1 1w h c 

3 3 3w h c 

2 2 2w h c 

…

…

…
, ,cls box dflL L L

ICDSL
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Stationary Feature Extraction Module (SFEM)
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Channel-Wise Multiplication

D
E
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A
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…

…

…

Shared

…

Scaled

Figure 6. Schematic diagram of the proposed B-FSDet’s overall structure.

3.3. Few-Shot Data Clearing Strategy (DCS)

As previously discussed, the issues of IAO-novel and IAO-base have a significant
impact on the detector’s performance. Previous research has aimed to mitigate confusion
for the detector by assigning pseudo-labels to unannotated objects or reduce the impact of
the noisy labels [38,39]. In a similar manner, a consistent label classifier is proposed to make
the labels more consistent during base training and fine-tuning [15], as shown in Figure 7.
However, the inclusion of pseudo-labels is contingent upon the current performance of the
network and the distribution of objects within the current batch. Consequently, pseudo-
labels are often random and not entirely accurate across all classes. This imbalance in
samples can lead to a decrease in detection accuracy for certain classes. Similar methods
also rely on the current performance of the model’s classifier to make judgments, so they
cannot achieve complete accuracy. The root cause of the IAO problem lies in data imbalance,
stemming from both the data collection and data processing. Instead of focusing solely on
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enhancing the model’s ability to detect unannotated objects, it is more effective to address
data imbalance directly through data clearing.

Hence, we propose a simple and effective data clearing strategy (DCS) aimed at
FSOD. This method focuses on removing redundant objects from training images rather
than adding missing parts to training labels. This process is only conducted during the
fine-tuning stage when the data volume is extremely low. It is both feasible and yields
significant improvements in performance, aligning with the training principles of FSOD.

Methods

Principle

Labels in

Fine-Tuning

Ratio of 

Labels/Objects

FSCN

Classification refinement.Measure

Generate pseudo-labels.

4 airplanes, 

3 storagetanks

Objects in 

the Image

Labels Used

in Fine-Tuning
4 airplanes

4:7

Problem(s) IAO-back/IAO-novel

FSOD-IAS

IAO-novel

Label calibration.

4 airplanes, 

3 storagetanks

1 airplanes

1:7

Calibrate the negative impact.

B-FSDet (ours)

IAO-novel/IAO-base

Remove unannotated objects.

Data clearing.

1 airplanes

1 airplanes

1:1

Training Image Ground Truth Labels

Labels  (Novel Class) Pseudo-Labels

Labels  (Base Class)
White Gaussian 

Noise (WGN)

SAE-FSDet

Label-consistent classifier.

4 airplanes, 

3 storagetanks

1 airplanes

1:7

Consistent classifier.

Processed Objects

Classified Objects

IAO-back/IAO-novel

Figure 7. Comparison schematic between our proposed method DCS and others. Here, FSCN is
derived from [38], FSOD-IAS from [39], and SAE-FSDet from [15]. Our method contributes to making
the number of objects in an image match the number of labels. Note that the illustration is solely for
demonstration purposes, and the specific method may not necessarily target RSIs.

Specifically, DCS comprises four steps. Firstly, identify the missing labels for each
image during fine-tuning. For example, if an image contains objects {Oi} with correspond-
ing labels {Li}(i = 0, 1, 2, . . . , P; P denotes the number of objects included), but in the
fine-tuning dataset, only the label Lk is provided, then the missing labels {Lj(j ̸= k)}
corresponding to objects {Oj} are determined. There should be

{Lj} ⊂ {Li},

{Oj} ⊂ {Oi}.
(7)

Secondly, locate the objects corresponding to the missing labels. In digital images, each
pixel is inherently discrete. Oj(x, y) represents a two-dimensional function, denoting the
object portion of the entire image. Thirdly, replace these objects with white Gaussian noise
(WGN). Finally, restore the annotated object to its background. It is important to consider
that targets in RSIs may overlap, and losing annotated objects along with some background
information is not desirable. Therefore, annotated instances and their surrounding 10 pixels
are preserved and restored.

The universality of WGN in randomness enables its substitution for unannotated
objects, making it adaptable to any target. Coupled with the loss function ignoring negative
samples, it effectively mitigates the noise impact while addressing the issues of IAO-novel
and IAO-base. Let WGN ∼ N (µ, σ2), the pixel values of each point of the target with
missing labels are replaced through random sampling from WGN. WGN is a random
variable with a probability density function given by
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f (x) =
1√
2πσ

e−
x−µ

2σ2 . (8)

In DCS, we let µ = 0.5, σ = 5.

3.4. Stationary Feature Extraction Module (SFEM)

A notable drawback of the meta-learning-based method is the difficulty in designing
detectors. FSODM [11] has demonstrated certain rationality in supporting set output
features to assist query set feature learning in vector form. This approach is efficient and
parameter-free, yet the variance in the output vectors is relatively large, making it hard
to represent the whole class. Based on [11,20], we redesign the feature extraction module
and propose a loss-based dynamic exponential moving average (DEMA) method, where
the output vectors are influenced not only by the current batch input support set images
but also by the output vectors from previous batches. Therefore, during the later stages
of training, the vectors originating from all objects within the support set can adequately
represent the majority of class features. In this process, the task is accomplished solely with
common convolutional layers, in accordance with the lightweight design of the model. The
extraction part is detailed in Table 1.

Table 1. The whole framework of SFEM. Notice that the size of the input image is 640 × 640 × 3.

Index Layer Output Size Route

0 Conv 320 × 320 × 64 Next
1 Conv 160 × 160 × 128 Next
2 RepNCSPELAN 160 × 160 × 256 7
3 ADown 80 × 80 × 256 Next
4 RepNCSPELAN 80 × 80 × 512 7
5 ADown 40 × 40 × 512 Next
6 RepNCSPELAN 40 × 40 × 512 7
7 Mask Integration wi × hi × ci

1 Next
8 Vector Encoder 1 × 1 × ci Head/Channel-Wise Multiplication

1 Here, wi , hi , ci represent three scales of the output size with c1 = 256, c2 = 512, c3 = 512; wi and hi depend on
the size of the object.

As shown in Figure 8, the specific procedure of DEMA involves recording the encoding
vectors V1, V2, V3 during the last batch training. Subsequently, in the next batch, the output
vectors are updated by

V′
1 = decay × V1 + (1 − decay)× V′

1,

V′
2 = decay × V2 + (1 − decay)× V′

2,

V′
3 = decay × V3 + (1 − decay)× V′

3,

(9)

where V′
1, V′

2, V′
3, respectively, represent the current vector’s output, and decay is the dy-

namic factor scaled by the loss L in the last batch, as expressed by

decay(L) = L× α. (10)

In SFEM, α = 0.01. During the experiments, the typical range of the total loss L is
between 10 and 40, resulting in the update weight decay accounting for approximately 10%
to 40%. Further details of L are introduced in the next part. The behavior of the decay
weight is dynamically adjusted based on the loss of the current iteration. If the loss for
the current iteration is significant, indicating that the quality of the current batch is not
satisfactory, the decay weight will increase. This results in placing more emphasis on the
weight of previous DEMA results to stabilize the learning process. Conversely, if the loss is
lower, implying a higher quality batch, the decay weight will decrease, allowing the model
to adapt more quickly to new information.
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Figure 8. Schematic diagram of DEMA operation process. The final output vector is associated with
all support set objects, resulting in more stable auxiliary effects on the query set. Only one scale of
processing is illustrated for ease of visualization.

As training progresses, particularly in the later stages, V′ comes to represent relatively
stable class centroids. This stability is crucial for ensuring that the model’s predictions
become more consistent and reliable over time, reflecting the accumulated knowledge
from previous iterations. By dynamically adjusting the decay weight, the model effectively
balances between integrating new data and retaining the robustness of learned features,
ultimately leading to improved performance and generalization.

3.5. Loss Computation

During training, SFEM reduces the variance in the output vectors, making the feature
vectors provided by the support set more stable and reliable. However, in RSIs, inter-class
differences are often minimal. To increase the differentiation of each class component
in the support set output vectors while maintaining stability, we propose the inter-class
discrimination support loss (ICDSL). In addition to channel fusion with the query set,
the vectors encoded by the support set directly enter the detection head. We integrate
a vector decoder into the detection head and apply the cross-entropy loss (CEL) to the
decoded results to enhance the detector’s ability to distinguish between classes.

The whole loss is calculated by

L = gbLbox + gcLcls + g fLd f l + λLICDS, (11)

where Lbox,Lcls,Ld f l are based on [20], and LICDS is based on the CEL. gb, gc, g f are fixed
hyperparameters with gb = 1, gc = 0.5, g f = 1.5, while λ represents the gain of LICDS,
which is discussed in detail in subsequent experiments. Suppose the aggregation features
AFqs before the detection head are expressed by

AFqs = Rwqs×hqs×cqs , (12)

where wqs, hqs, cqs, respectively, represent the width, height, and channels of the images (for
the sake of simplicity, only one scale is presented), and qs represents the sources of fused
features, where q denotes those from the query set and s denotes those from the support set.

As shown in Figure 9, when calculating Lor, the detection layer first filters out the
fused features that match between the support set and the query set, and then, decouples
them, calculating the corresponding Lor,1 and Lor,2. It is evident that non-matching fused
features AF12 and AF21 are introduced during the computation of Lor. We smooth the
calculated loss by averaging the loss involved; hence, the final Lor is expressed by

Lor =
1

batch
(Lor,1 + Lor,2 + . . . + Lor,batch). (13)

We consider the non-matching fused features as noise handled by data augmentation,
enhancing the model’s robustness against interference.
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Figure 9. The whole loss computation diagram. The object of calculation for Lor is the fusion results
of the query set and the support set that match with each other. The object of calculation for LICDS is
the encoding result of the support set. Suppose batch = 2 in the figure.

As for LICDS, firstly, let the output vectors be V1, V2, V3, representing the three scales
of features. D denotes the decoder operator and we have the decoding output

X1 = D(V1) = {Oi,j},

X2 = D(V2) = {O′
i,j},

X3 = D(V3) = {O′′
i,j},

(14)

where Oi,j, O′
i,j, O′′

i,j(i = 1, 2, 3, j = 1, 2, 3, . . . , nc) represents the class score after the linear
transformation D of the three scales. Then, we introduce CEL to enhance inter-class
disparities within RSIs. This enables the model to effectively discern subtle differences
between different classes, thereby improving the classification performance. As illustrated
in Figure 10, by penalizing incorrect classifications and rewarding correct ones based on the
logarithmic difference between predicted and ground truth class probabilities, the model is
incentivized to learn more discriminative features representative of each class. LICDS is
calculated by

Xj = so f tmax(Xj), (15)

LICDS = − 1
N

3

∑
j=1

N

∑
i=1

GTi × log(Xj), (16)

where GT represents the ground truth classes.
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2,1 2,2 2,

,1 ,2 ,

...
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Figure 10. Diagram of the principle of LICDS calculation. Only one scale of processing is illustrated
for ease of visualization.
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3.6. Stationary and Fast Prediction Method (SFPM)

In both the CAA [16] and CSA [12] feature aggregation methods, previous meta-
learning-based few-shot detectors entail the fusion of image output features with all classes
in the support set during prediction. Subsequently, the result corresponding to the matched
support set class is obtained from the fused features, as shown in Figure 11.

Ship

Storage tank

Tennis court

Vehicle

…

Random

Support Vectors
(After DEMA and fixed)

Query Image
Feature

Ship

Storage tank

Tennis court

Vehicle

…

Support Vectors
Query Image

Feature

Ship?

Storage 
tank?

Vehicle?

Tennis 
court?

…

Results

Non-Maximum 
Suppression

Previous meta-learning-based methods B-FSDet (ours)

Batch:1

Batch:nc

Batch:1

Batch:1

Figure 11. Schematic diagram comparing SFPM with the prediction methods of previous meta-
learning-based few-shot object detectors [11,12].

Regardless of whether the auxiliary features from the support set are constant or
generated in real time during prediction, this approach still slows down the model’s
prediction speed. Additionally, due to significant inter-class differences, the vectors may not
necessarily match the objects in query set images perfectly. We propose a fast and accurate
prediction method SFPM, as shown in Figure 11. During prediction, it is unnecessary to fuse
every vector from the support set with the query set; instead, only one is randomly selected.
This implies that B-FSDet can effectively distinguish between different classes, thanks
to the support of ICDSL and the introduction of non-matching scenarios during feature
fusion at training time. In subsequent experiments, we demonstrate that SFPM achieves
significantly faster inference speeds compared to previous methods, without compromising
much detection accuracy.

4. Experiments and Results

To comprehensively demonstrate the efficacy of our proposed detector and methodol-
ogy, we conducted experiments on the NWPU.v2 [41] and DIOR [42] datasets. The experi-
mental outcomes substantiate the effectiveness of our approach.

4.1. Dataset
4.1.1. NWPU VHR-10.v2 Dataset

Containing a total of 10,000 VHR satellite images, the NWPU.v2 dataset [41] encom-
passes various urban and rural scenes, capturing a wide array of environmental contexts
and object types. Each image is meticulously labeled, with bounding boxes delineating the
precise locations of objects belonging to ten distinct categories, including airplanes, ships,
storage tanks, baseball diamonds, tennis courts, basketball courts, ground track fields,
harbors, bridges, and vehicles. The images in the NWPU.v2 dataset exhibit resolutions
ranging from 0.1 to 2 m per pixel, ensuring a high level of detail, suitable for object detection
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tasks. This variation in resolution reflects the diversity of sensors and imaging platforms
employed in remote sensing applications.

4.1.2. DIOR Dataset

The DIOR dataset [42] represents a significant breakthrough in Earth observation
and sensors. It addresses limitations found in previous datasets, distinguished by its
extensive scale, diversity, and complexity. Comprised of more than 20,000 high-resolution
images and a total of more than 192,000 object instances spanning 20 categories, DIOR
maintains consistency with images all sized at 800 × 800 pixels. Characterized by its intricate
background and imbalanced sample distribution, the DIOR dataset garners considerable
attention in the field of remote sensing, particularly in the realm of FSOD.

4.2. Experimental Setting

Following the experimental setup outlined in [11] and the conventions adopted by
numerous SOTA few-shot detectors, we partitioned the categories of the NWPU.v2 and
DIOR datasets. The categorization results are delineated in Tables 2 and 3.

Table 2. Two different novel/base split settings on the NWPU.v2 dataset according to [11].

Split Novel Base

1 Airplane Baseball diamond Tennis court Rest
2 Basketball Ground track field Vehicle Rest

Table 3. Four different novel/base split settings on the DIOR dataset according to [11].

Split Novel Base

1 Baseball field Basketball court Bridge Chimney Ship Rest
2 Airplane Airport Expressway toll station Harbor Ground track field Rest
3 Dam Golf course Storage tank Tennis court Vehicle Rest
4 Express service area Overpass Stadium Train station Windmill Rest

The detailed experimental configuration is outlined as follows: The initial learning
rate is configured to 0.01, with SGD optimizer and Adam optimizer set to 0.01 and 0.001,
respectively. The final learning rate remains constant at 0.01 throughout training. Mo-
mentum is stipulated as 0.937, representing either the momentum parameter for SGD
or the β1 parameter for Adam. Weight decay is established at 0.0005. Warmup epochs,
totaling 3.0 epochs, are designated for initial training, with the provision for fractional spec-
ification. Initial momentum during warmup is fixed at 0.8, while the initial bias learning
rate during warmup is defined as 0.1. Training iterations are executed with a batch size
of 6, utilizing an NVIDIA GeForce GTX 2080Ti GPU. During inference, the confidence
threshold and intersection-over-union threshold in non-maximum suppression are set to
0.01 and 0.7, respectively.

Fine-tuning datasets of three independent experiments, encompassing both base
and novel classes, are randomly generated. The results presented are averaged from
these experiments. This consistent protocol is applied to all other methodologies in our
experimental evaluations. Wolf et al. [43] proposed that enlarging the sampling scope of
base class data to the entire training dataset in the fine-tuning process would contribute
to accuracy enhancement. To ensure fairness in comparison, we continue to apply the
sampling principle of TFA [37] when obtaining the fine-tuning dataset.

4.3. Comparing Methods and Evaluation Metrics

In order to demonstrate the effectiveness of our proposed B-FSDet, we conduct a com-
parative evaluation of its performance against various SOTA methods. The assessed FSOD
methods include FsDetView [10], P-CNN [32], TFA [37], SAGS&TFS [33], G-FSDet [35],
and SAE-FSDet [15]. The accuracy data for TFA [37], FsDetView [10], and G-FSDet [35] are
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obtained from [35]; the accuracy data for P-CNN [32] on the NWPU.v2 dataset is from [35],
and for the DIOR dataset is from [32]. The accuracy data for both SAGS&TFS [33] and
SAE-FSDet [15] methods are obtained directly from the source articles. For the inference
speed data, except for SAE-FSDet provided by [15], all other data are obtained using the
same device (an NVIDIA GeForce GTX 2080Ti GPU).

In the assessment of few-shot object detectors, some studies [35] consider both the
accuracy of novel classes and base classes, while some [15,33] solely focus on novel class
accuracy. We adopt the former way of evaluation, considering the detector’s perfor-
mance through both the base and novel classes, and dividing classes into base and novel
categories based on Tables 2 and 3. AP50 (referred to as AP hereafter) serves as the
prevalent accuracy evaluation metric in the field of object detection. In FSOD, base class
performance is typically measured using bAP, while nAP is used to assess the perfor-
mance of novel classes. Suppose class i(i = 1, 2, . . . , NB) belongs to base classes, and class
j(j = NB + 1, NB + 2, . . . , N) belongs to novel classes (N denotes the number of the training
classes), bAP and nAP can be expressed by

bAP =
1

NB

NB

∑
i=1

APi, (17)

nAP =
1

N − NB

N

∑
j=NB+1

APj. (18)

In the subsequent analysis, we also utilize mAP, expressed by

mAP =
1
N

N

∑
k=1

APk. (19)

4.4. Results on NWPU VHR-10.v2 Dataset

The performance of our proposed B-FSDet on the NWPU.v2 dataset compared with
SOTA detectors is shown in Table 4. In the table, items highlighted in red and bold represent
the best performance, while those highlighted in blue and bold indicate the second-best
performance. Subsequent tables are annotated following this principle.

Table 4. The comparison results of our proposed B-FSDet with SOTA few-shot object detectors on the
NWPU.v2 dataset. We set K = 3, 5, 10, 20 in our experiments. All data represent the averaged results
of three random experiments.

Methods Year 3-Shot 5-Shot 10-Shot 20-Shot
bAP nAP bAP nAP bAP nAP bAP nAP

Split 1

TFA [37] ICML2020 89.35 8.80 89.60 9.49 89.95 9.26 89.62 10.83
P-CNN [32] TGRS2021 82.84 41.80 82.89 49.17 83.05 63.29 83.59 66.83
FsDetView [10] TPAMI2022 87.68 24.56 87.77 29.55 87.75 31.77 87.83 32.73
SAGS&TFS [33] 1 AEORS2022 — 51.00 — 66.00 — 72.00 — —
G-FSDet [35] ISPRS2023 89.11 49.05 88.37 56.10 88.40 71.82 89.73 75.41
SAE-FSDet [15] 2 TGRS2024 — 57.96 — 59.40 — 71.02 — 85.08
B-FSDet (ours) — 88.54 75.27 90.98 87.83 92.23 90.90 93.85 90.12

Split 2

TFA [37] ICML2020 90.14 11.14 91.19 12.46 90.79 11.35 90.37 11.56
P-CNN [32] TGRS2021 81.03 39.32 81.18 46.10 80.93 55.90 81.21 58.37
FsDetView [10] TPAMI2022 88.11 39.01 89.34 40.31 89.34 45.09 89.31 46.28
G-FSDet [35] ISPRS2023 89.99 50.09 90.52 58.75 89.23 67.00 90.61 75.86
B-FSDet (ours) — 89.00 61.46 89.96 68.86 91.76 81.64 92.58 87.64

1 The method SAGS&TFS [33] only considers nAP evaluation and provides data only for split 1 of the NWPU.v2
dataset. 2 The method SAE-FSDet [15] shares the same characteristics as mentioned above.

From Table 4, it is apparent that TFA [37], as a classic detector employing a fine-
tuning strategy, effectively preserves base class knowledge. It demonstrates commendable
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performance in base class accuracy across various scenarios, consistently achieving a
bAP exceeding 89%. SAE-FSDet [15], which addresses the IAO-novel problem, primarily
focuses on the detector’s capacity to learn new classes in the NWPU.v2 dataset. It exhibits
substantial advantages in nAP across all scenarios, surpassing previous detectors by a
significant margin. G-FSDet [35], addressing both the forgetting of base class knowledge
and the acquisition of new class knowledge, demonstrates notable advantages in overall
performance. Our proposed B-FSDet, designed to address both the IAO-novel and IAO-
base problems, outperforms the mentioned few-shot object detectors in most scenarios.
Notably, in the split 1 setting, B-FSDet achieves an nAP of 75.27%, significantly surpassing
existing SOTA detectors. Moreover, in the 10-shot and 20-shot scenarios, both bAP and nAP
exceed 90%. Whether considering current SOTA methods or B-FSDet, the nAP performance
in split 1 consistently exceeds that in split 2. This disparity arises from the varying scales
and learning difficulties of novel class objects under different split settings. In split 1,
novel classes like “airplane” exhibit smaller inter-class differences, making the learning
process easier. Conversely, split 2 includes categories like “ground track field” with larger
scales and more complex knowledge, increasing the difficulty of learning under few-shot
conditions. Overall, B-FSDet demonstrates SOTA performance on the NWPU.v2 dataset.

The visualization results of B-FSDet compared with SAE-FSDet [15] and G-FSDet [35]
under the 10-shot setting on the NWPU.v2 dataset can be seen in Figure 12. The label-
consistent classifier of SAE-FSDet [15] significantly reduces the confusion between novel
classes and base classes; however, it suffers from a high rate of missed detections. G-
FSDet [35] on the other hand, does not consider the IAO issue, making it prone to false
detections. In contrast, B-FSDet exhibits superior performance, demonstrating strong
perception and recognition capabilities for both novel and base classes.

GT

G-FSDet

SAE-FSDet

B-FSDet
(ours)

Figure 12. Visualization results compared with some SOTA methods on the NWPU.v2 dataset under
the 10-shot setting. Note that here, for the sake of word abbreviation, “baseball” actually refers to
“baseball diamond”. The novel classes include airplane, tennis court, and baseball diamond.
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Table 5 presents the accuracy of B-FSDet for each category on the NWPU.v2 dataset.
It can be observed that B-FSDet achieves high detection accuracy for most categories,
with only a few categories, such as bridges and vehicles, showing slightly lower accuracy.
This variation is attributed to the diverse scales of different objects, which necessitate vary-
ing amounts of sample data to effectively extract class features. Consequently, the accuracy
for some categories may be lower.

Table 5. The accuracy results for each class on the NWPU.v2 dataset. All the results are obtained
through three random experiments. The highest and lowest values are highlighted in bold.

Class/Shot 3-Shot 5-Shot 10-Shot 20-Shot

Base

Airplane 99.50 99.50 99.50 99.50
Baseball diamond 96.93 97.43 96.20 96.80
Bridge 63.63 63.80 72.40 81.23
Harbor 86.73 85.97 90.90 87.87
Ship 90.27 93.33 96.17 95.17
Storage tank 93.23 94.70 95.97 93.60
Tennis court 92.73 94.97 91.20 93.90

Novel
Basketball 63.57 71.73 79.80 88.63
Ground track field 81.77 92.00 96.17 98.73
Vehicle 39.03 42.83 68.97 75.57

4.5. Results on DIOR Dataset

A performance comparison between B-FSDet and other advanced few-shot object
detectors on the DIOR dataset is presented in Table 6. Similar to its performance on the
NWPU.v2 dataset, TFA [37] demonstrates significant superiority in terms of bAP, exhibiting
commendable performance across various splits and shot settings. SAGS&TFS [33] and
SAE-FSDet [15] focus on improving nAP performance, resulting in some enhancements in
nAP compared to previous methods across various scenarios. While SAE-FSDet takes into
account the IAO-novel issue, the efficacy of its proposed consistency classifier is contingent
upon the training conditions of the detector itself. As a result, its ability to alleviate
the IAO problem is somewhat random. Consequently, its accuracy does not rank as the
highest among numerous SOTA methods. G-FSDet [35] continues to emphasize both bAP
and nAP performance, showcasing good overall performance across different scenarios.
Similarly, our proposed B-FSDet considers both bAP and nAP performance, achieving
SOTA performance in most settings. In the split 1 setting, B-FSDet outperforms other
methods in all scenarios, with both nAP and bAP surpassing the second-ranked method
by 4% to 8%. In the split 3 setting, B-FSDet demonstrates significant superiority in bAP,
surpassing the second-ranked method by approximately 11%, while exhibiting comparable
performance to TFA [37] in terms of base class performance. In the remaining split settings,
except for 3-shot in the split 4, B-FSDet demonstrates similarly commendable performance.
In the context of the split 4 3-shot scenario, it is evident that the nAP of B-FSDet is marginally
lower than that of SAE-FSDet [15] and G-FSDet [35]. This discrepancy arises from the fact
that, under the split 4 setting, the novel class objects, including express service area and
stadium, tend to have larger scales and encompass more intricate information. Based on
Faster R-CNN [4], SAE-FSDet [15] and G-FSDet [35] manage to mitigate this issue to some
extent owing to the reinforcement provided by pre-selected proposal boxes. However,
B-FSDet maintains a substantial advantage in preserving knowledge of base classes, with its
bAP exceeding that of other methods by over 5%.
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Table 6. The comparison results of our proposed B-FSDet with SOTA few-shot object detectors on the
DIOR dataset. We set K = 3, 5, 10, 20 in our experiments. All data represent the averaged results of
three random experiments.

Methods Year 3-Shot 5-Shot 10-Shot 20-Shot
bAP nAP bAP nAP bAP nAP bAP nAP

Split 1

TFA [37] ICML2020 70.32 11.35 70.51 11.57 70.52 15.37 71.07 17.96
P-CNN [32] TGRS2021 47.00 18.00 48.40 22.80 50.90 27.60 52.20 29.60
FsDetView [10] TPAMI2022 59.54 13.19 58.58 14.29 59.64 18.02 62.69 18.01
SAGS&TFS [33] 1 AEORS2022 — 29.30 — 31.60 — 31.60 — 40.20
G-FSDet [35] ISPRS2023 68.94 27.57 69.52 30.52 69.03 37.64 69.80 39.83
SAE-FSDet [15] 2 TGRS2024 — 28.80 — 32.40 — 37.09 — 42.46
B-FSDet (ours) — 75.95 32.02 76.33 40.49 75.65 44.00 75.53 45.90

Split 2

TFA [37] ICML2020 70.75 5.77 70.79 8.19 69.63 8.71 70.02 12.18
P-CNN [32] TGRS2021 48.90 14.50 49.10 14.90 52.50 18.90 51.60 22.80
FsDetView [10] TPAMI2022 58.88 10.83 60.31 9.63 61.16 13.57 61.16 14.76
SAGS&TFS [33] AEORS2022 — 12.60 — 15.50 — 15.50 — 23.80
G-FSDet [35] ISPRS2023 69.20 14.13 69.25 15.84 68.71 20.70 68.18 22.69
SAE-FSDet [15] TGRS2024 — 13.99 — 15.65 — 17.41 — 21.34
B-FSDet (ours) — 72.19 21.54 73.06 29.76 73.42 40.67 73.14 51.51

Split 3

TFA [37] ICML2020 71.95 8.36 71.64 10.13 72.56 10.75 73.13 17.99
P-CNN [32] TGRS2021 49.50 16.50 49.90 18.80 52.10 23.30 53.10 28.80
FsDetView [10] TPAMI2022 61.00 7.49 61.33 12.61 61.94 11.49 65.17 17.02
SAGS&TFS [33] AEORS2022 — 20.90 — 24.80 — 24.80 — 36.10
G-FSDet [35] ISPRS2023 71.10 16.03 70.18 23.25 71.08 26.24 71.26 32.05
SAE-FSDet [15] TGRS2024 — 16.74 — 19.07 — 28.44 — 29.88
B-FSDet (ours) — 74.03 31.96 73.37 37.88 74.00 45.21 74.18 52.55

Split 4

TFA [37] ICML2020 68.57 10.42 68.85 14.29 68.58 14.35 68.86 12.01
P-CNN [32] TGRS2021 49.80 15.20 49.90 17.50 51.70 18.90 52.30 25.70
FsDetView [10] TPAMI2022 58.90 14.28 58.97 15.95 60.37 15.37 60.89 16.96
SAGS&TFS [33] AEORS2022 — 17.50 — 19.70 — 19.70 — 27.70
G-FSDet [35] ISPRS2023 69.01 16.74 67.96 21.03 68.55 25.84 67.73 31.78
SAE-FSDet [15] TGRS2024 — 17.27 — 20.48 — 22.69 — 26.75
B-FSDet (ours) — 74.18 17.01 73.47 26.14 73.72 36.08 72.90 44.62

1 The method SAGS&TFS [33] only considers nAP evaluation and only provides nAP of the DIOR dataset. 2 The
method SAE-FSDet [15] shares the same characteristics as mentioned above.

It is evident that current SOTA detectors display considerable performance discrepan-
cies across different split settings, whereas B-FSDet exhibits relatively minor variations in
performance across different scenarios. This is partly attributed to SFEM and DCS effec-
tively balancing the inherent differences in the data and enhancing the detector’s robustness.

The visualization results of B-FSDet compared with SAE-FSDet [15] and G-FSDet [35]
on the DIOR dataset under the 10-shot setting are shown in Figure 13. SAE-FSDet [15]
addresses the IAO-novel issue; however, its label-consistent classifier cannot guarantee
the correctness of all classification results. Consequently, the IAO problem is not entirely
resolved, leading to instances of missed detections and duplicate detections of novel classes.
G-FSDet [35], on the other hand, exhibits excellent overall performance but does not
account for the IAO issue. As a result, it experiences slightly more missed detections of
novel classes compared to SAE-FSDet [15], although it demonstrates better retention of base
class knowledge. In contrast, B-FSDet focuses on both the IAO issue and the preservation of
base class knowledge, providing a significant performance advantage. However, B-FSDet
still faces challenges when detecting closely adjacent objects. For instance, as shown in
the second graph in Figure 13, B-FSDet detects two basketball courts, but their positions
nearly overlap, causing the detector to identify them as a single object and even resulting
in duplicate detection.
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GT

G-FSDet

SAE-FSDet

B-FSDet
(ours)

Figure 13. Visualization results compared with SOTA methods on the DIOR dataset under the
ten-shot setting. The novel classes include baseball field, basketball court, bridge, and chimney.

Table 7 presents the accuracy of B-FSDet for each category in the DIOR dataset. It
can be seen that B-FSDet maintains consistent accuracy for base classes across different
shot settings, indicating its effectiveness in retaining base class knowledge when handling
large datasets. As the amount of samples increases, the accuracy for most novel classes
improves significantly, demonstrating B-FSDet’s strong learning capability for new classes.
For some categories, the accuracy does not improve with an increased sample amount.
We attribute this to the additional samples not providing effective feature information
and having substantial overlap with previously existing samples. Additionally, the DIOR
dataset features targets with more diverse scales and varying levels of complexity, leading
to greater differences in accuracy across categories compared to the NWPU.v2 dataset.

Table 7. The accuracy results for each class on the DIOR dataset. All the results are obtained through
three random experiments. The highest and lowest values are highlighted in bold.

Class/Shot 3-Shot 5-Shot 10-Shot 20-Shot

Base

Airplane 86.63 83.80 85.67 84.93
Airport 77.00 78.80 81.20 84.00
Expressway toll station 77.93 75.57 78.37 78.43
Harbor 58.23 52.23 57.20 56.43
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Table 7. Cont.

Class/Shot 3-Shot 5-Shot 10-Shot 20-Shot

Base

Ground track field 78.30 76.30 78.40 80.97
Expressway service area 90.97 89.30 89.33 85.57
Overpass 56.67 57.80 59.33 60.10
Stadium 70.23 72.50 75.50 72.43
Train station 65.13 60.77 59.73 64.50
Windmill 88.53 87.00 87.60 90.23
Baseball field 81.40 80.53 79.27 79.90
Basketball court 89.60 89.80 88.83 89.80
Bridge 37.97 41.27 44.23 45.37
Chimney 82.83 81.60 83.33 83.00
Ship 69.07 73.27 62.07 57.10

Novel

Dam 10.42 8.65 20.37 34.07
Golf course 24.30 36.63 54.40 63.03
Storage tank 37.00 49.77 46.67 49.63
Tennis court 72.77 76.20 77.30 81.07
Vehicle 15.33 18.17 27.30 34.93

4.6. Ablation Study

In order to comprehensively demonstrate the effectiveness of the modules or methods
we propose, we conduct ablation experiments on the split 1 setting of the NWPU.v2 dataset.
The modules or methods we introduce include SFEM, SFPM, DCS, and ICDSL. Initially,
SFEM and SFPM are employed to adapt the baseline to a stationary meta-learning-based
(S-Meta) few-shot object detector. Subsequently, DCS is integrated into the detector to
mitigate the confusion caused by the IAO problem. Finally, ICDSL is applied to further
augment the detector’s inter-class discrimination capability. The experimental results are
summarized in Table 8.

Table 8. Results of ablation experiments conducted on the NWPU.v2 dataset. All the results are
obtained through averaging three independent experimental trials.

Baseline
(YOLOv9) S-Meta 1 DCS ICDSL 3-Shot 5-Shot 10-Shot 20-Shot

bAP nAP bAP nAP bAP nAP bAP nAP

✓ 84.83 56.89 80.40 62.73 77.08 76.50 80.44 83.01
✓ ✓ 85.24 52.67 83.63 67.07 87.09 80.69 87.49 83.69
✓ ✓ ✓ 90.93 71.67 91.91 81.92 91.80 86.06 92.18 89.71
✓ ✓ ✓ ✓ 88.54 75.27 90.98 87.83 92.23 90.90 93.85 90.12

1 The adoption of S-Meta here implies that the baseline is transformed into a meta-learning-based few-shot object
detector using SFEM and SFPM.

As we can see, when faced with small-scale datasets such as NWPU.v2, the leading
conventional detector YOLOv9 [20] demonstrates good performance. We transformed and
improved it to enhance its capabilities in FSOD using S-Meta. The results reveal that all our
proposed methods or modules notably enhance the effectiveness in FSOD tasks. In both
the 3-shot and 5-shot setting, there is a moderate increase in bAP, and in the meantime,
nAP sees an increase of approximately 20%. Likewise, in the 10-shot and 20-shot scenarios,
there is a significant improvement across all metrics.

The visualized results of the ablation experiments on the NWPU.v2 dataset are pre-
sented in Figure 14. It is clear that the baseline (YOLOv9 [20]) struggles with accurately
detecting new classes, resulting in issues like missed and redundant detections. As we can
see, in Figure 14, the baseline exhibits significant instances of missed detections for both
the “airplane” and “tennis court” categories, while for the “baseball diamond” category, it
produces redundant detections for the two instances. While the S-Meta brings some im-
provement in addressing redundant detections, the problem of missed detections persists
due to the presence of IAO. Integration of DCS helps mitigate the confusion caused by
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the IAO problem, further enhancing the resolution of missed detections. However, due to
significant inter-class differences in RSIs, minor instances of missed detections still occur.
With the adjustments of ICDSL, the problem is further addressed.

GTImage Baseline +S-Meta +DCS +ICDSL

Figure 14. Visualization of ablation experiment results on the NWPU.v2 dataset. The experimental
setup in the figure is configured as 10-shot. Note that here, for the sake of word abbreviation,
“baseball” actually refers to “baseball diamond”. The novel classes include “airplane”, “tennis court”,
and “baseball diamond”.

4.7. Study of ICDLS Gain

The specific gain of ICDSL significantly affects the classification capability of the detector.
We also investigate the influence of the gain λ on the detector’s performance. Since the typical
values (not scaled) for ICDSL are in the range of 10 to 20, while the typical values for the
remaining losses (not scaled) are in the range of 10 to 40, we choose gain values of 1, 0.5,
and 0.1 to conduct the experiment. The experimental results are shown in Figure 15, which
indicate that the detector achieves the best overall performance when λ is set to 1.
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Figure 15. Ablation experiment results on the NWPU.v2 dataset regarding the gain λ of ICDSL.
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4.8. Complexity and Inference Time

Considering the requirements of real-time systems, we prioritized a lightweight design
when developing the detector. A comparison of model parameters and inference speed with
numerous state-of-the-art (SOTA) models can be seen in Figure 16. Many few-shot detection
models are based on the two-stage detector Faster R-CNN [4], while B-FSDet is based on
YOLOv9 [20]. The calculation of frames per second (fps) is based on inference time in the
testing phase (the GPU has completed its warmup phase), which includes preprocessing,
forward pass, and non-maximum suppression. Originating from the partitioning results of
the NWPU.v2 dataset [41], the size of the test images is 400 × 400 pixels. While preserving
the advantage of fast inference of one-stage detectors, B-FSODet successfully accomplishes
the FSOD task.
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Figure 16. Diagram of the comparison of model parameters and inference speed with SOTA few-shot
object detection models. The data of speed and model parameters for the SAE-FSDet [15] method
were measured on one NVIDIA GeForce RTX 4090 GPU by [15], while all other data were obtained
using one NVIDIA GeForce GTX 2080Ti GPU.

As described in Section 3, SFPM accelerates the inference speed of the detector. We
also conducted ablation experiments to illustrate its effectiveness, with the results shown
in Table 9. As for the baseline YOLOv9 (GELAN-C) [20], its inference time is as low as
9.1 ms, achieving a frame rate of 109.89 fps. The addition of meta-learning mode, while
offering some accuracy enhancement, leads to a notable decrease in inference speed. This
is attributed to the fact that during the detection layer the batch size increases by a factor
of nc (number of classes), resulting in a reduction in inference speed of approximately
nc × 0.5 times. In B-FSDet with SFPM, the inference collectively takes around 9.5 ms, achiev-
ing an fps of 105.26 on the condition that the accuracy remains high.
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Table 9. Results of ablation experiments of inference speed (SFPM) conducted on the NWPU.v2
dataset. The inference time data were obtained with the GPU preheated and no other operations such
as saving visualization results performed.

Baseline
(YOLOv9) S-Meta 1 SFPM Inference

Time
3-Shot 5-Shot 10-Shot 20-Shot

bAP nAP bAP nAP bAP nAP bAP nAP

✓ 9.1 ms 84.83 56.89 80.40 62.73 77.08 76.50 80.44 83.01
✓ ✓ 33.5 ms 88.43 76.82 91.10 86.06 93.36 91.77 93.31 92.83
✓ ✓ ✓ 9.5 ms 88.54 75.27 90.98 87.83 92.23 90.90 93.85 90.12

1 Here, S-Meta represents the exclusion of the SFPM method and it employs the prediction method from the previous
meta-learning-based detectors [11,12]. Furthermore, the DCS and ICDSL methods have also been incorporated.

To further substantiate the real-time inference capabilities of B-FSDet across different
devices, we conduct additional inference speed testing experiments on three other devices.
The results are shown in Table 10. It is evident that B-FSDet demonstrates excellent inference
speed across four different NVIDIA GPUs, with GPU memory usage around 8 MB, further
substantiating the lightweight design of B-FSDet.

Table 10. The experimental results of inference speed and resource consumption of B-FSDet across
different devices. All devices utilized in the experiments are NVIDIA-produced GPUs.

GeForce RTX 1080 Ti GeForce RTX 2080 Ti GeForce RTX 3090 GeForce RTX 4090D
Speed Consumption 1 Speed Consumption Speed Consumption Speed Consumption

31.90 fps 9.87 M 105.26 fps 8.21 M 107.53 fps 8.21 M 166.67 fps 8.21 M
1 “Consumption“ refers to GPU memory usage under the aforementioned experimental settings.

4.9. Discussion
4.9.1. Few-Shot Object Detectors Still Encounter Challenges When Faced with
Large-Scale Datasets

The experimental results clearly demonstrate that our detector achieves SOTA perfor-
mance on the NWPU.v2 dataset. Even under low-shot conditions, the detector maintains
extremely high detection accuracy, with the bAP exceeding 70% in the 3-shot split 1 scenario.
However, on the DIOR dataset, although most metrics also surpass those of the current
SOTA detectors, there is still room for improvement in detection performance. This can be
attributed to several factors. Firstly, the DIOR dataset contains a significantly larger number
of training and testing images compared to the NWPU.v2 dataset. Moreover, the DIOR
dataset exhibits greater intra-class variation and smaller inter-class variation. And, the
scale variation in objects in the DIOR dataset is also much larger. Additionally, although the
two-stage training paradigm ensures that during the fine-tuning stage the balance of input
sample labels can be maintained, during the base class training stage the number of labels
for each class cannot be relatively balanced due to inherent characteristics of the dataset.

4.9.2. The IAO Problem Exerts Negative Guidance during Fine-Tuning in FSOD

In cases where the detector undergoes excessive training epochs or achieves very low
loss, a decline in accuracy may occur. In conventional detectors, this is often attributed to
model overfitting and dynamic learning rate strategy. In FSOD, this accuracy decline is
further exacerbated by the influence of the IAO problem, leading to a more severe decline.
Hence, we conducted a detailed experiment to analyze the accuracy during the training
process on the NWPU.v2 dataset split 1 setting (10-shot scenario).

Figure 17 illustrates the training accuracy for the baseline, the one with S-Meta mode,
further enhanced with the DCS, and the one supported by ICDSL. We set epoch = 150 and
patience = 60, which means that training automatically stops when the accuracy does not
improve compared to the previous 60 epochs. If the accuracy keeps improving, training
continues for a maximum of 150 epochs. Under this configuration, the baseline achieves its
highest accuracy around the 20th epoch. With the epoch increasing, the accuracy does not
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consistently increase but surprisingly decreases. The principal cause of this phenomenon is
the IAO issue, compounded by the influence of overfitting. During training, the detector
receives supervision for labeled objects, enabling it to learn useful knowledge about the
targets. However, due to the negative influence of the unlabeled objects, the detector may
also learn to classify them as background. Consequently, the reduction in loss guides
the detector to focus solely on detecting the labeled objects during training, leading to
the abandonment of knowledge about unlabeled objects. Therefore, for detectors not
considering the IAO problem, it is advisable to conduct testing every 50 epochs during
training to determine whether the detector has entered a state influenced by the negative
guidance of the IAO problem.

Baseline +S-Meta

+DCS +ICDSL

Figure 17. Diagram of the changes in training accuracy in the detailed experiment under the 10-shot
setting on the NWPU.v2 dataset.

In the S-Meta paradigm, there is a certain improvement in detector accuracy, accom-
panied by an increase in convergence rounds. Incorporating S-Meta also reduces the
fluctuation in accuracy, further demonstrating its stability enhancement. However, due
to the influence of the IAO problem and overfitting, the detection accuracy still exhibits a
trend of initially increasing, and then, decreasing. With the addition of the DCS, the IAO
problem is alleviated and the accuracy shows a relatively stable increasing trend. Ultimately,
ICDSL amplifies inter-class distinctions. However, since its input solely relies on support
set vectors untouched by the IAO issue, the enhancement in mitigating the IAO problem is
not substantial but there is still an enhancement in accuracy.

4.9.3. Why We Choose WGN in DCS

In the previous section, we discuss using WGN to replace unannotated objects to
alleviate the IAO problem. To justify the employment of WGN, we conduct comparative
experiments using other two different methods: pure black patch (BP) replacement and
supplementary black patch generation via generative models (GMs) [44]. The visualization
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of the processed input by WGN, black patch replacement, and generative models is shown
in Figure 18. Quantitative detection accuracy results are presented in Table 11.

Image
Labels in 

Fine-Tuning
DCS

(WGN)
DCS

(Black Patch)
DCS

(Generative Model)

Figure 18. Illustrative diagram of visual results for specific DCS schemes.

Table 11. Results of different DCS implementations on the NWPU.v2 dataset. All data represent the
averaged results of three random experiments.

DCS 3-Shot 5-Shot 10-Shot 20-Shot
bAP nAP bAP nAP bAP nAP bAP nAP

BP 90.51 75.14 90.53 86.14 90.76 86.69 92.99 89.46
GM 89.22 75.07 89.90 89.57 91.61 89.47 93.34 92.67

WGN 88.54 75.27 90.98 87.83 92.23 90.90 93.85 90.12

It is evident that GM and WGN offer more advantages in accuracy compared to the
BP method. This is because replacing unannotated objects with pure black blocks does not
benefit the detector’s robustness and generalization performance. In contrast, the random
nature of WGN significantly enhances the detector’s robustness and GM generates visually
reasonable backgrounds using strong prior knowledge, further improving the model’s
robustness. The results of GM and WGN are comparable, but employing GM means greater
computational complexity. Therefore, WGN is chosen as the final implementation for DCS.

5. Conclusions

This paper presents B-FSDet, a few-shot object detector based on YOLOv9 and meta-
learning, designed to tackle various challenges encountered in RSIs. Firstly, we introduce
the DCS, which effectively filters out incompletely annotated objects from images, ensuring
a balanced distribution of true labels and objects and thereby reducing confusion for the
detector. Secondly, we propose SFEM and SPFM, constructing a stationary meta-learning
mode achieving high detection accuracy while maintaining extremely fast inference speeds.
Finally, ICDSL is introduced to increase inter-class differences among target classes, en-
hancing the detector’s ability to distinguish between classes effectively. The results indicate
that B-FSDet achieves a detection accuracy approximately 8% higher than current methods
in most scenarios. Specifically, in the NWPU.v2 dataset, under the 3-shot setting, B-FSDet
achieves an nAP exceeding 75%, while under the 20-shot setting, both bAP and nAP are
close to or exceed 90%. On the DIOR dataset, B-FSDet achieves a bAP exceeding 70%
under all settings, while under all split settings with the 20-shot setup, nAP exceeds 40%.
Additionally, the experimental data in Figure 16 demonstrate that our proposed B-FSDet
achieves an inference speed approximately 2–3 times faster than current SOTA methods.

While B-FSDet has achieved considerable progress, addressing the substantial intra-
class variations present in RSIs poses ongoing challenges. Particularly, acquiring compre-
hensive knowledge of new classes with extremely limited samples remains a significant
hurdle. Future efforts will focus on “expanding balanced samples” to enable the detector to
acquire more nuanced knowledge of new classes and explore a balanced classifier to match
with it. Additionally, a learnable self-attention layer may replace the DEMA strategy to
realize better performance.
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