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Abstract: A recent study showed the potential of the DA Perten 7200 NIR Spectrometer in detecting
chlorpyrifos-methyl pesticide residue in rough, brown, and milled rice. However, this instrument is
still lab-based and generally suited for point-of-sale testing. To provide a field-deployable version
of this technique, an existing light emitting diode (LED)-based instrument that provides discrete
NIR wavelength illumination and reflectance spectra over the range of 850–1550 nm was tested.
Spectra were collected from rough, brown, and milled rice at different pesticide concentrations and
analyzed for quantitative and qualitative measurement using partial least squares regression (PLS)
and discriminant analysis (DA). Simulations for two LED-based instruments were also evaluated
using corresponding segments of spectra from the DA7200 to represent LED illumination. For the
simulation of the existing LED-based instrument (LEDPrototype1) fitted with 850, 910, 940, 970, 1070,
1200, 1300, 1450, and 1550 nm LED wavelengths, resulting R2 ranged from 0.52 to 0.71, and the correct
classification was 70.4% to 100%. The simulation of a second LED instrument (LEDPrototype2) fitted
with 980, 1050, 1200, 1300, 1450, 1550, 1600, and 1650 nm LED wavelengths showed R2 of 0.59 to
0.82 and correct classifications of 66% to 100%. These LED wavelengths were selected based on the
significant wavelength regions from the PLS regression coefficients of DA7200 and the commercial
availability of LED wavelengths. Results showed that it is possible to use a multi-spectral LED-based
instrument to detect varying levels of chlorpyrifos-methyl pesticide residue in rough, brown, and
milled rice.

Keywords: chlorpyrifos-methyl pesticide residue (CMPR); light emitting diode; near infrared;
organophosphates; pesticide residue; rice

1. Introduction

To ensure the proper handling and safe consumption of rice, the Food and Agriculture
Organization (FAO) and the World Health Organization (WHO) have imposed maximum
residue limits (MRLs) for toxic pesticides [1], including chlorpyrifos-methyl. If used
inappropriately and excessively, this pesticide has been reported to have toxic effects on
the human body, particularly on the brain and nervous system [2,3]. Based on independent
epidemiological, in vivo, and in vitro studies, the evidence points to adverse health effects
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from exposure to chlorpyrifos on the developing nervous system, which has been associated
with lowered IQ at school age [3].

Rice is the main staple food in the Philippines. To ensure ample supply, importation
from countries such as Thailand and Vietnam has been a common practice. In 2018, a
shipment of 330,000 bags of 50 kg milled rice from these two countries was found to be
infested by rice weevils, and samples was then treated with formalin-laced insecticide
by the National Food Authority (NFA) [4]. This highlighted the need to detect pesticide
residues as consumers have expressed concern for the potential risk to human health,
especially when pesticide residues remain undetermined during handling and before
human consumption. However, the commonly used detection technique for the presence
of pesticide residues in grains has been gas and liquid chromatography, which involves
specialized instrumentation and labor-intensive protocol for extraction, centrifugation,
cleanup, evaporation, and scan of rice samples [5]. The development of a technique or
simple low-cost instrument with a fast turnaround in the detection of pesticide residues
will highly benefit consumers, safety regulators, and the rice industry.

Near-infrared spectroscopy (NIRS) is a rapid, precise, and non-destructive technique
that has shown potential in the determination of numerous chemical and physical prop-
erties of foods and food products [6]. An earlier study conducted by Rodriguez et al. [7]
showed the potential of using NIRS for detecting pesticide residues that contain varying
concentrations of chlorpyrifos-methyl in rough, brown, and milled rice using a commer-
cial full wavelength (950–1650 nm) NIR instrument (Perten DA7200, Perten Industries,
Springfield, IL, USA). Chlorpyrifos-methyl pesticide was selected as the target pesticide
residue for investigation in this study because of the widespread use of chlorpyrifos for the
control of insect infestation in the Philippines and the underlying health concerns related
to this pesticide. While the NIR spectroscopy technique is simple, and the commercially
available NIR instruments can be readily adapted, there is a need in countries such as
the Philippines for a fast and reliable technique or instrument that is low-cost and made
of locally available parts. Portability is also preferable, as it allows for testing at various
handling and pre-consumption points.

An existing tabletop LED-based prototype instrument (LEDPrototype1) being devel-
oped at the U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS),
Center for Grain and Animal Health Research in Manhattan, Kansas, which was based
on the design of the USDA-ARS multi-spectral high-speed sorter [8], provided a potential
platform for an instrument to be used for the detection of pesticide residues. The prototype,
referred to as LEDPrototype1, was designed for bulk samples and uses an array of NIR
LEDs, an NIR detector, and a microprocessor. Although the wavelengths of the LEDs in
LEDPrototype1 were not the same combination as what was found to be important in
earlier studies by Rodriguez et al. [7] using a commercial spectrometer (DA7200) [9], the
evaluation of the prototype was considered important to determine the potential contri-
butions from other wavelengths and also to verify the light, signal, and noise filtering
capabilities of LEDPrototype1.

The main objectives of this study were to (1) simulate the performance of a proposed
multi-spectral NIR LED-based instrument that uses the wavelengths that were identified to
be important for the detection of varying concentrations of chlorpyrifos-methyl pesticide
residues (CMPR) in various rice types (rough, brown, and milled rice) and (2) evaluate
the existing LEDPrototype1 to obtain relevant design considerations such as light, signal,
and noise filtering capabilities. Findings from this study will be used for future work on
the design and development of a multi-spectral NIR LED-based instrument that can be
fabricated using low-cost and available parts in the Philippines. Considering the versatility
of NIR spectroscopy at measuring and detecting different chemical compositions, it is
also possible that the instrument being developed can be used for other applications such
as the measurement of moisture, protein, oil, and starch contents for different grain and
food products.
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2. Materials and Methods
2.1. Rice Grain Samples

The samples of rough, brown, and milled rice used in this study were the same
samples used in an earlier study by Rodriguez et al. [7]. Briefly, five pesticide-free rough
rice varieties (CL151, Diamond, Hybrid 1, Gemini, and Hybrid 2) were provided to USDA-
ARS, Manhattan, KS, USA by the Delta Water Management Research Unit of USDA-ARS,
Harrisburg, Arkansas. All rough rice samples were cleaned using the Carter Day dockage
tester (Carter Day International, Minneapolis, MN, USA) and conditioned to 14% using
an environmental chamber (Percival Intellus Control System, Percival Scientific, Fontana,
WI, USA). The chamber was set at 23 ◦C and 73% relative humidity. The rice samples were
spread thinly on trays and were conditioned inside the chamber for three days.

Brown rice samples were prepared by hulling using a JLGL-45 rubber roller (Wuhan
Acme Agro-Tech Co. Ltd., Wuhan, China). A portion of the brown rice was further polished
using a Twinbird MR-E500 mill (Twinbird Corp., Tsubame City, Japan) to obtain milled
samples. The samples were divided into 110 g subsamples using a Boerner divider (Sedburo
Equipment, Des Plaines, IL, USA) and were placed and sealed in 946 mL clear, wide-mouth
plastic jars.

For the application of treatment in rice samples, each of the 90 subsamples (5 varieties
at 6 pesticide concentrations replicated 3 times) for each rice type was spread onto a layer of
kraft paper and sprayed evenly with 0.2 mL of water for the control samples (no pesticide
applied) and 0.2 mL of pesticide concentrations for the rest of the samples that were treated
with varying levels of pesticide solution containing chlorpyrifos-methyl. The pesticide
solution was prepared by diluting StorcideTM II (21.60% chlorpyrifos-methyl) with water
to attain target pesticide concentrations, i.e., (a) 1.5, 3, 6, 9, and 12 ppm for rough rice;
(b) 0.75, 1.5, 3, 4.5, and 6 ppm for brown rice; and (c) 0.1, 0.2, 0.4, 0.6, and 0.8 ppm for milled
rice samples. The concentrations were based on the maximum residue limit of CMPR in
rough, brown, and milled rice [1] and the application rate of chlorpyrifos-methyl [10]. The
treated rough and milled rice samples were immediately placed back in the plastic jars and
sealed before spectral data collection. The treated brown rice samples were vacuum-sealed
using a FoodSaver Vac 360 (Sunbeam Products, Inc., Boca Raton, FL, USA) to minimize
possible lipid degradation during storage prior to spectral data collection.

2.2. Instrumentation

Two NIR instruments were evaluated for their potential to detect varying concentra-
tions of CMPR in rice (rough, brown, and milled). These instruments were a commercially
available Perten DA7200 (Perten Industries, Springfield, IL, USA) and the ARS-USDA-
designed LEDPrototype1. Both are designed for bulk analysis.

Based on a previous study conducted by Rodriguez et al. [7], the 950-to-1650 nm
wavelength range of the DA 7200 allowed for the detection of CMPR in rough, brown, and
milled rice. DA7200 has a wavelength accuracy of <0.3 nm and stability of <0.2 nm/year;
it uses a 256-element indium gallium arsenide (InGaAs) diode detector array, which is
thermoelectrically cooled. The instrument collects spectral data on samples placed in
an open-faced sampling dish in ambient room light at ~100 spectra/s at 3.125 nm/diode
resolution with an accuracy of ±0.02 aw. It operates using Windows XP platform with 1 Ghz,
256 MB RAM, and 20 GB HDD. The system automatically corrects possible background
noise by collecting spectra without samples first, followed by spectra with samples [9]. The
LEDPrototype1 instrument (Figure 1) was based on a design used for a multi-spectral high-
speed, single seed sorter [8]. The LEDPrototype1 instrument circuit board is composed of
LED light sources, an InGaAs detector, a signal amplifier, and a microprocessor. The LEDs
in this instrument were selected to cover a broad spectrum range from LED wavelengths
that were commercially available. LED wavelengths were 850, 910, 940, 970, 1070, 1200,
1300, 1450, and 1550 nm. LEDs were arranged in a circular pattern around the lens
and directed to a central point on the grain surface 12 cm directly above the lens. The
LEDs emitted a narrow light beam that was approximately dispersed over ±10◦ from the



Sensors 2024, 24, 4055 4 of 13

center (Figure 2). Data acquisition and LED sequential pulsing were achieved using a
microcontroller (ATmega328P Atmel Corp., San Jose, CA, USA). An InGaAs photodiode
(SD060-11-41-211, Luna Optoelectronics, Camarillo, CA, USA) with high sensitivity, low
noise, and 1 mm diameter active area for spectral detection (800–1700 nm) was used to
detect reflected light and was amplified by a trans-impedance amplifier (OPA2380, Texas
Instruments, Dallas, TX, USA). The sensor board was placed inside a black enclosure to
eliminate ambient light; communication to the laptop for data collection was via USB. A
graphical user interface program (GUI) was created such that the instrument can connect to
a laptop COM port at a 115,200 baud rate and control some of the acquisition parameters.
The Atmel AVR Studio 5.1 (Atmel Corp., San Jose, CA, USA) was used to program the
microcontroller to send and receive digital and analog I/O and download data to the
laptop. Spectral collection on 100 g samples was carried out by rotating a shallow circular
dish containing the sample, 76 mm diameterby 38 mm deep, placed on a small rotary
table turning at 6 rpm. The sensor circuit board faced downward toward the sample
being scanned.
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2.3. Spectral Data Acquisition

The two instruments were used to obtain spectra for each of the 90 rice samples. For
DA7200 and LEDPrototype1, three replicates were carried out for each sample with three
repacks per replicate. The bulk rice sample to be scanned was placed in the sample dish
and set in the viewing area of each of the instruments. To address potential issues of
cross-contamination of pesticide residues, the sample dishes used for both instruments
were washed with soap and water and then immediately dried using compressed air after
each spectral collection.
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2.4. Data Analysis

Quantitative and qualitative spectral data analyses were performed using partial least
squares (PLS) regression and discriminant analysis (DA), respectively, using the Unscram-
blerX version 10.5.1 (CAMO Software Version 10.5.1, Oslo, Norway). For both analyses, the
270 spectral data for each rice type were divided into a calibration (n = 216) and indepen-
dent validation (n = 54) sample sets based on the leave-one-variety-out sampling method.
This method involved using the spectral data for different pesticide residue concentrations
from four of the five varieties as calibration samples, while the spectra from the remaining
rice variety were used as the independent validation samples.

Aside from the analysis with the independent validation sample set, an analysis that
made use of all varieties with cross-validation was also performed. Several pretreatments,
including mean-centering, standard normal variate, multiplicative scatter correction, and
derivative techniques, were evaluated. The performance of the calibration models when us-
ing the different pretreatments was similar, which was also observed by Rodriguez et al. [7].
Thus, only the simplest models that made use of mean-centering were presented.

For quantitative analysis, the pesticide concentrations for the sample treatments were
used as reference data, i.e., 1.5, 3, 6, 9, and 12 ppm for rough rice; 0.75, 1.5, 3, 4.5, and 6 ppm
for brown rice; and 0.1, 0.2, 0.4, 0.6, and 0.8 ppm for milled rice samples. For qualitative
analysis, the six levels of pesticide concentration were pooled into two groups: a low
pesticide level (LPL) and contaminated or high pesticide level (HPL). For rough rice, the
LPL group included 3 ppm and below, while the HPL was 6 ppm and higher. For brown
rice, the LPL group included 1.5 ppm and below, and HPL was defined as 3 ppm and
higher. In milled rice, LPL was 0.2 and below, and HPL was 0.4 ppm and higher. A value
of “1” was assigned to LPL and “2” to HPL samples for discriminant analysis.

3. Results and Discussion

The wavelengths that contributed most toward the quantitative and qualitative mea-
surements of pesticide residues containing varying concentrations of chlorpyrifos-methyl
in rough, brown, and milled rice based on earlier evaluations using DA7200 were provided
by Rodriguez et al. [7], as summarized in Table 1. These were identified based on the peaks
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and valleys of the plotted regression coefficients for the full wavelength (950 to 1650 nm),
which represent the wavelengths that contributed most to the prediction capability of
the model.

Table 1. Summary of significant wavelengths based on calibration models developed for rough,
brown, and milled rice using Perten DA7200 and the list of discrete wavelengths fitted in the USDA-
ARS vis/NIR LED-based Prototype 1 and recommendations for NIR LED-based Prototype 2.

LED Wave-
length, nm

[a] Marubeni
LED

DA7200 Significant Prediction
Wavelengths

USDA-ARS NIR
LED-Based Prototype

1 (LEDPrototype1)

Proposed
USDA-ARS NIR

LED-Based Prototype 2
(LEDPrototype2)Rough Rice Brown Rice Milled Rice

850
√

910
√

940
√

970
√

980 L980-06
√√

1050 X
√√

1070
√

1200 L1200-06 X X X
√ √√

1300 L1300-06 X
√ √√

1360 X X X *
1390 X *
1410 X X *
1425 X *
1450 L1450-06 X

√ √√

1470 X *
1480 X *
1510 X *
1540 X X *
1550 L1550-06

√ √√

1580 X *
1600 L1600-06

√√

1650 L1650-06
√√

X = important wavelengths based on calibrations;
√

= LED wavelengths used in existing vis/NIR LED-based
instrument;

√√
= recommended wavelengths for proposed LED-based Protoype2 based on performance com-

parisons between Perten DA7200 and LED-based Prototype 1 and LED availability; [a] Marubeni America Corp.,
Santa Clara, CA, USA; * = not commercially available.

Based on the functional groups present in chlorpyrifos-methyl, potential changes
in the composition of the grains, and their respective adsorption wavelengths [8,11], the
significant wavelengths identified for rough rice were 980 nm (starch), 1050, 1390, and
1410 nm (oil), 1200 nm (C-H bonds), 1360 nm (methyl), 1425 nm (protein), 1480 nm (N-
H bonds), and 1540 nm (amine). Important wavelengths for brown rice were 1200 and
1300 nm (C-H bonds), 1360 nm (methyl), 1450 nm (C=O bonds), 1470 nm (N-H bonds),
and 1580 nm (amide), while those for milled rice included 1200 nm (C-H bonds), 1360 nm
(methyl), 1410 nm (O-H bonds), 1510 nm (oil), and 1540 nm (amine). Of these wavelengths,
three were already being utilized in LEDPrototype1, i.e., 1200, 1300, and 1450 nm. Other
LEDs available in LEDPrototype1 included 850, 910, 940, 1070, and 1550 nm.

The wavelengths that were important regardless of the type of rice were considered
for inclusion in the selection of wavelengths for LEDPrototype2. The 1200 and 1360 nm
wavelengths were found to be important across all rice types. The 1200 nm LED was readily
available and was included in the wavelength to be used. The 1360 nm LED, however,
was not commercially available. In this situation, the available LED wavelengths that
were closest to the desired wavelengths were selected, which in this specific case was
1300 nm. Other examples are the 1540 nm wavelength, which was important for rough
and milled rice and was substituted by the commercially available 1550 nm LED, and the
1580 nm wavelength, which was important for brown rice and substituted by 1600 nm
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and can also be covered by the 1550 nm. Other important wavelengths with readily
available LEDs included 1050, 1200, 1300, 1450, and 1550 nm. Following this selection
method, the eight LEDs were selected and used for the design of a multi-spectral NIR
instrument. Considering that the instrument being designed was also aimed to be used
for other commodities and/or detection parameters aside from CMPR in rice, 980 nm was
also included. This selection was based on studies that showed that rice properties can be
detected at 740–1070 nm [12].

An instrument simulation, referred to as the DA7200 analog, used wavelengths within
80% relative radiant intensity of the central wavelength used in LEDPrototype1 but using
DA7200 spectra for developing calibration models from these discrete ranges. Ranges
from DA7200 spectra included 1055 to 1085 nm, 1185 to 1215 nm, 1275 to 1320 nm, 1420 to
1470 nm, and 1515 to 1580 nm. The prediction statistics for quantitative analysis (Table 2)
show that for independent validation, rough rice had R2s = 0.52 to 0.71 and SEPs = 2.28 to
2.95; in brown rice, R2s = 0.58 to 0.70 and SEPs = 1.17 to 1.38 were observed, while milled
rice models had R2s = 0.57 to 0.71 and SEPs = 0.16 to 0.19. These results indicated poor
to marginal quantitative prediction of CMPR at best. Qualitative predictions at different
thresholds based on rice milling treatment yielded the highest percent correct classification
(%CC) for milled rice at 90.7 to 100%CC followed by rough rice, at 77.8 to 92.6%CC, and
brown rice at 70.4 to 88.6%CC (Table 3). These provided indications that using the limited
wavelength regions in the LEDProtoype1 should provide good qualitative predictions of
CMPR in milled rice.

Table 2. PLS model prediction statistics for determination of chlorpyrifos-methyl residues based on
the DA7200 analog for available wavelengths [a] in the LEDPrototype1 instrument.

Model Data
Calibration Independent Validation

N nF R2 Cal RMSEC R2 CV SECV N R2 SEP

Rough Rice (0 to 12 ppm)

ALL varieties 270 8 0.68 2.39 0.60 2.66 - - -
CL151 216 8 0.70 2.31 0.63 2.58 54 0.56 2.91
Diamond 216 8 0.70 2.32 0.62 2.62 54 0.52 2.95
Hybrid1 216 8 0.66 2.47 0.57 2.79 54 0.71 2.28
Gemini 216 8 0.67 2.41 0.58 2.74 54 0.63 2.66
Hybrid2 216 8 0.69 2.35 0.60 2.68 54 0.62 2.65

Brown Rice (0 to 6 ppm)

ALL varieties 269 * 7 0.66 1.24 0.63 1.30 - - -
CL151 216 7 0.67 1.22 0.63 1.29 53 0.63 1.31
Diamond 215 7 0.66 1.23 0.63 1.30 54 0.63 1.29
Hybrid1 215 7 0.67 1.22 0.64 1.28 54 0.58 1.38
Gemini 215 7 0.66 1.23 0.62 1.30 54 0.67 1.22
Hybrid2 215 7 0.65 1.26 0.61 1.33 54 0.70 1.17

Milled Rice (0 to 0.8 ppm)

ALL varieties 270 8 0.73 0.15 0.69 0.16 - - -
CL151 216 8 0.76 0.14 0.71 0.15 54 0.58 0.19
Diamond 216 8 0.74 0.15 0.69 0.16 54 0.67 0.16
Hybrid1 216 8 0.74 0.15 0.69 0.16 54 0.68 0.16
Gemini 216 7 0.69 0.16 0.65 0.17 54 0.71 0.16
Hybrid2 216 6 0.68 0.16 0.64 0.17 54 0.70 0.16

[a] Wavelengths at 80% relative radiant intensity include 1055–1085 nm, 1185–1215 nm, 1275–1320 nm,
1420–1470 nm, and 1515–1580 nm. N = number of samples; nF = number of factors used in PLS calibration
model; R2 = coefficient of determination; RMSEC = root mean square error of calibration; Cal = calibration;
CV = cross-validation; SECV = Standard error cross-validation; SEP = standard error of prediction. * The data
from one sample are missing due to an error in saving the scanned sample using DA 7200. Nonetheless, it was
well represented by 269 data points.
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Table 3. Discriminant model prediction statistics for determination of chlorpyrifos-methyl residues
based on the DA7200 analog for available wavelengths [a] in the LEDPrototype1 instrument.

Model Data
Calibration (Training Set) Independent Validation (Test Set [b])

Number of
False Positives

Number of
False Negatives Overall % CC Number of

False Positives
Number of
False Negatives Overall CC

Rough Rice (Low: ≤3.0 ppm, High: >3 ppm)

ALL varieties 9/135 12/135 92.2 (249/270) - - -
CL151 7/108 7/108 93.5 (202/216) 5/27 4/27 83.3 (45/54)
Diamond 6/108 8/108 93.5 (202/216) 7/27 5/27 77.8 (42/54)
Hybrid1 4/108 6/108 95.4 (206/216) 2/27 8/27 81.5 (44/54)
Gemini 7/108 10/108 92.1 (199/216) 4/27 1/27 90.7 (49/54)
Hybrid2 10/108 7/108 92.1 (199/216) 4/27 0/27 92.6 (50/54)

Brown Rice (Low: ≤1.5 ppm, High: >1.5 ppm)

ALL varieties 30/134 [c] 7/135 86.2 (232/269) - - -
CL151 17/108 6/108 89.4 (193/216) 4/26 2/27 88.6 (47/53)
Diamond 20/107 6/108 87.9 (189/215) 7/27 4/27 79.6 (43/54)
Hybrid1 24/107 6/108 86.0 (185/215) 9/27 1/27 81.5 (44/54)
Gemini 23/107 6/108 86.5(186/215) 3/27 13/27 70.4 (38/54)
Hybrid2 20/107 5/108 88.4 (190/215) 9/27 1/27 81.5 (44/54)

Milled Rice (Low: ≤0.2 ppm, High: >0.2 ppm)

ALL varieties 0/135 0/135 100.0 (270/270) - - -
CL151 0/108 0/108 100.0 (216/216) 0/27 0/27 100.0 (54/54)
Diamond 0/108 0/108 100.0 (216/216) 5/27 0/27 90.7 (47/54)
Hybrid1 0/108 0/108 100.0 (216/216) 0/27 0/27 100.0 (54/54)
Gemini 0/108 0/108 100.0 (216/216) 0/27 0/27 100.0 (54/54)
Hybrid2 0/108 0/108 100.0 (216/216) 0/27 0/27 100.0 (54/54)

[a] Wavelengths at 80% relative radiant intensity for Prototype 1 include 1055–1085 nm, 1185–1215 nm, 1275–1320 nm,
1420–1470 nm, and 1515–1580 nm. % CC = percent correct classification; [b] the test samples were those that were
removed from the samples used to develop the calibration model; [c] one sample from brown rice is missing using
DA 7200; thus, n = 269.

Actual instrument tests were conducted to detect CMPR using the existing design
configuration of LEDPrototype1. Table 4 summarizes the PLS model calibration and valida-
tion statistics for quantitative determination in rough, brown, and milled rice. Validation
results were poor to very poor in all cases. Across the five calibration models, independent
validation results for rough rice revealed R2s = 0.23 to 0.59, while brown and milled rice
were found to have R2s ≤ 0.03. According to discriminant analysis, the %CC for the five
leave-one-variety-out calibration models showed some potential for rough rice, yielding
71.6 to 85.8%CC. Brown rice and milled rice were poorer in terms of %CC, ranging from 58.0
to 63.6 and 55.6 to 61.1, respectively (Table 5). This may be attributed to the low amount of
pesticide applied. It could be that lower concentrations (1.5 ppm and below) of chlorpyrifos-
methyl pesticide residue are low input signals for the detector. Likewise, based on the study
conducted by Yao et al. [13], low absorption of samples corresponds to the low information
content of samples, while high absorption corresponds to low light transmittance and loud
noise, which all interfere with spectral modeling analysis. Yao et al. [13] used absorbance
value optimization partial least squares (AVO-PLS) in selecting wavelength in this case.

There was a substantial reduction in prediction performance between the LEDPrototype1-
DA7200 analog and the actual sample tests using the LEDPrototype1 instrument. For
example, milled rice that can potentially be discriminated as containing low versus high
CMPR with 90.7 to 100%CC was only at 55.6 to 61.1%CC in the actual test. This may
indicate that, while the wavelengths that are needed for effective prediction are available,
the capability was not fully utilized, which may highlight the need for improving the
instrument design with a focus on improving light signal and noise filtering.
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Table 4. PLS model prediction statistics for determination of chlorpyrifos-methyl residues using the
actual LEDPrototype1 instrument.

Model Data
Calibration Independent Validation

N nF R2 Cal RMSEC R2 CV SECV N R2 SEP

Rough Rice (0 to 12 ppm)

ALL varieties [a] 810 4 0.43 3.20 0.42 3.23 - - -
CL151 [b] 648 4 0.39 3.30 0.38 3.33 162 0.59 2.75
Diamond [b] 648 5 0.42 3.23 0.40 3.27 162 0.51 2.98
Hybrid1 [b] 648 5 0.41 3.23 0.40 3.28 162 0.53 2.92
Gemini [b] 648 5 0.50 2.98 0.49 3.03 162 0.23 3.87
Hybrid2 [b] 648 4 0.47 3.06 0.46 3.10 162 0.24 3.71

Brown Rice (0 to 6 ppm)

ALL varieties [a] 810 1 0.01 2.10 0.01 2.11 - - -
CL151 [b] 648 5 0.10 2.00 0.07 2.04 162 0.03 2.10
Diamond [b] 648 5 0.10 2.00 0.07 2.04 162 0.01 2.13
Hybrid1 [b] 648 6 0.10 2.00 0.07 2.04 162 0.01 2.13
Gemini [b] 648 1 0.01 2.10 0.00 2.11 162 0.03 2.11
Hybrid2 [b] 648 1 0.01 2.10 0.01 2.11 162 0.00 2.11

Milled Rice (0 to 0.8 ppm)

ALL varieties [a] 810 3 0.05 0.27 0.04 0.28 - - -
CL151 [b] 648 3 0.04 0.28 0.03 0.28 162 0.01 0.28
Diamond [b] 648 3 0.06 0.27 0.04 0.28 162 0.01 0.29
Hybrid1 [b] 648 3 0.08 0.27 0.07 0.27 162 0.01 0.29
Gemini [b] 648 3 0.08 0.27 0.06 0.27 162 0.01 0.28
Hybrid2 [b] 648 1 0.00 0.28 0.00 0.28 162 0.02 0.28

[a] Cross-validation model; [b] independent validation set; N = number of samples, sample size was based on the
same 270 samples but repacks 3 times; nF = number of factors used in PLS calibration model; R2 = coefficient
of determination; RMSEC = root mean square error of calibration; Cal = calibration; CV = cross-validation;
SECV = standard error cross-validation; SEP = standard error of prediction.

Based on an evaluation of the results from PLS analysis for DA7200 and LEDPrototype1
and working within currently available LEDs, the following LEDs were selected for use
in the proposed NIR LEDPrototye2: wavelengths 980, 1050, 1200, 1300, 1450, 1550, 1600,
and 1650 nm. NIR region wavelengths of 1360, 1390, 1410, 1425, 1470, 1480, 1510, 1540,
and 1580 nm were considered important for residue detection but are not commercially
available, although there is some overlap with those used in this study in some cases.

As noted earlier, these wavelengths are not discrete, and absorption bands for water,
protein, starch, cellulose, and oil/fat can occur over a range of several nanometers [14,15].
For example, the protein absorption band at 1186 nm and starch band at 1200 nm can
potentially be detected using an LED that covers both of these wavelength ranges. Figure 3
provides an overlapped representation of the relative spectral emission for the LEDs
selected for the proposed LEDPrototype2, as provided by the manufacturer (Marubeni
America Corporation, Santa Clara, CA, USA) [15]. As an example, the 1540 nm wavelength
was among the identified important model wavelengths and pertains to amine absorp-
tion [14]; amine is a functional group present in chlorpyrifos-methyl. The 1540 nm LED
is not commercially available; thus, the 1550 nm LED (1500 to 1600 nm full range; 1515
to 1580 nm at 80% relative radiant intensity) was selected as a substitute. The 1360 nm
wavelength, which is relevant to methyl absorption, is likewise a functional group present
in chlorpyrifos-methyl but was not represented in the proposed LEDPrototype2 instrument
because the closest available LED was 1300 nm (1250 to 1350 nm at full range; 1275 to
1320 nm at 80% relative radiant intensity). As more LED wavelengths become available,
important wavelength(s) for specific applications can be added to potentially improve
performance and also widen the range of applications. For LEDPrototype2, considering
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that the emission spectra of the LEDs approximated a Gaussian curve with a full width at
half maximum of approximately 50 nm centered about the peak emission wavelength [7],
the replacement LED wavelengths selected accounted for most of the wavelengths that
were considered important for the detection of CMPR.
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Figure 3. Plots showing overlapped relative spectral emissions of LEDs for wavelengths that were
selected for the proposed NIR LED-based Prototype 2 instrument.

A simulation (DA7200 analog) was carried out to determine the performance of
the proposed LEDPrototype2. Most of the wavelengths available in the 950–1650 nm
DA7200 spectrum are covered in the selected LEDs for NIR LEDPrototype2 at 80% relative
radiant intensity, and as such, performances of the two instruments were found to be
comparable (Figure 2). The wavelengths used pertain to amines, oil, protein, water, and
starch [8,11]. Tables 6 and 7 provide the PLS analysis (quantitative) and discriminant
analysis (qualitative), respectively, for the proposed LEDPrototype2.

Table 5. Discriminant model prediction statistics for determination of chlorpyrifos-methyl residues
using the actual NIR LED-based Prototype 1 instrument.

Model Data
Calibration (Training Set) Independent Validation (Test Set)

Numb of False
Positives

Number of False
Negatives Overall % CC Number of False

Positives
Number of False

Negatives Overall % CC

Rough Rice (Low: ≤3.0 ppm, High: ≥6.0 ppm)

ALL varieties [a] 126/405 52/405 78.0 (632/810 [N]) - - -
CL151 [b] 107/324 44/324 76.7 (497/648) 21/81 2/81 85.8 (21/162)
Diamond [b] 102/324 42/324 77.8 (504/648) 20/81 8/81 82.7 (28/162)
Hybrid1 [b] 99/324 41/324 78.4 (508/648) 15/81 17/81 80.3 (32/162)
Gemini [b] 87/324 37/324 80.9 (524/648) 27/81 19/81 71.6 (46/162)
Hybrid2 [b] 100/324 27/324 80.4 (521/648) 36/81 9/81 72.2 (45/162)

Brown Rice (Low: ≤1.5 ppm, High: ≥3.0 ppm)

ALL varieties [a] 153/405 163/405 61.0 (494/810 [N]) - - -
CL151 [b] 126/324 137/324 59.4 (385/648) 6/81 55/81 62.4 (101/162)
Diamond [b] 116/324 138/324 60.8 (394/648) 34/81 25/81 63.6 (103/162)
Hybrid1 [b] 111/324 138/324 61.6 (399/648) 57/81 5/81 61.7 (100/162)
Gemini [b] 118/324 133/324 61.3 (397/648) 4/81 62/81 59.3 (96/162)
Hybrid2 [b] 133/324 136/324 58.5 (379/648) 32/81 36/81 58.0 (94/162)

Milled Rice (Low: ≤0.2 ppm, High: ≥0.4 ppm)

ALL varieties [a] 120/405 143/405 67.5 (547/810 [N]) - - -
CL151 [b] 139/324 144/324 56.3 (365/648) 62/81 1/81 61.1 (99/162)
Diamond [b] 120/324 145/324 59.1 (383/648) 12/81 58/81 56.8 (92/162)
Hybrid1 [b] 112/324 140/324 61.1 (396/648) 34/81 33/81 58.6 (95/162)
Gemini [b] 101/324 119/324 66.0 (428/648) 24/81 47/81 56.2 (91/162)
Hybrid2 [b] 119/324 129/324 61.7 (400/648) 32/81 40/81 55.6 (90/162)

[a] Cross-validation model; [b] independent validation set; % CC = percent correct classification; [N], number of
samples, sample size was based on the same 270 samples used in Tables 3 and 7 but were repacked three times.
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Table 6. PLS model prediction statistics for determination of chlorpyrifos-methyl residues using the
DA7200 analog for selected wavelengths [a] of the NIR LED-based Prototype 2 instrument.

Model Data
Calibration Independent Validation

N nF R2 Cal RMSEC R2 CV SECV N R2 SEP

Rough Rice (0 to 12 ppm)

ALL RR varieties 270 10 0.74 2.2 0.63 2.6 - - -
CL151 216 9 0.72 2.2 0.64 2.5 54 0.59 2.85
Diamond 216 10 0.75 2.1 0.64 2.5 54 0.63 2.62
Hybrid1 216 10 0.73 2.2 0.63 2.6 54 0.74 2.24
Gemini 216 10 0.76 2.1 0.65 2.5 54 0.64 2.71
Hybrid2 216 10 0.76 2.1 0.66 2.5 54 0.61 2.70

Brown Rice (0 to 6 ppm)

ALL BR varieties 269 * 8 0.78 0.99 0.75 1.07 - - -
CL151 216 8 0.78 0.99 0.74 1.07 53 0.74 1.12
Diamond 215 8 0.77 1.01 0.74 1.08 54 0.77 1.03
Hybrid1 215 8 0.77 1.01 0.74 1.08 54 0.78 1.02
Gemini 215 8 0.79 0.98 0.76 1.05 54 0.75 1.07
Hybrid2 215 8 0.78 1.00 0.74 1.08 54 0.78 1.02

Milled Rice (0 to 0.8 ppm)

ALL MR varieties 270 8 0.76 0.14 0.73 0.15 - - -
CL151 216 8 0.78 0.13 0.74 0.14 54 0.67 0.17
Diamond 216 8 0.76 0.14 0.72 0.15 54 0.75 0.14
Hybrid1 216 8 0.78 0.13 0.73 0.15 54 0.74 0.14
Gemini 216 8 0.76 0.14 0.71 0.15 54 0.82 0.13
Hybrid2 216 8 0.78 0.13 0.73 0.15 54 0.71 0.16

[a] Wavelengths at 80% relative radiant intensity for Prototype 2 include 970–985 nm, 1035–1060 nm, 1185–1215 nm,
1275–1320, 1420–1470 nm, 1515–1580 nm, 1555–1630, and 1620–1680 nm; N = number of samples; F = PLS factor
number; nF = number of factors used in PLS calibration model; R2 = coefficient of determination; RMSEC = root
mean square error of calibration; Cal = calibration; CV = cross-validation; SECV = standard error cross-validation;
SEP = standard error of prediction. * Data from one sample are missing due to an error in saving the scanned
sample using DA 7200. Nonetheless, it was well represented by 269 data points.

For the PLS analysis, across the five leave-one-variety-out models for rough rice, R2

for validation sets = 0.59 to 0.74 and with SEP = 2.24 to 2.85; brown rice had R2 = 0.74 to 0.78
and SEP = 1.02 to 1.12; and milled rice had R2 = 0.67 to 0.82 and SEP = 0.14 to 0.17 (Table 6).
Discriminant analysis showed that the overall %CC for validation sets predicted from
leave-one-variety-out calibration models had good potential for applications for rough rice,
at %CC of 83.3 to 96.3, and milled rice, at 96.3 to 100%CC, while brown rice had the lowest
range, at 66.0 to 77.8%CC. The lower performance for brown rice may be attributed to the
higher complexity of the constituents in this rice form, especially when compared to milled
rice, where bran has already been removed. Considering that Dors et al. [16] showed that
the highest concentrations of pesticide residues were found in the bran fraction, it becomes
even more critical that better prediction capabilities are targeted for brown rice. However,
the larger market and supply of rice for consumption in the Philippines and many other
countries remain to be milled rice. With the potential 96% to 100% correct classification
for the detection of milled rice containing low versus high levels of CMPR, the use of a
NIR multi-spectra LED instrument presents an additional viable technique that will readily
assist in ensuring food safety for the rice industry. Although this study was also based on
the absorption properties of chlorpyrifos-methyl in rough, brown, and milled rice, it is also
good to try the method adopted by Yao et al. [13] in future studies, as it uses AVO-PLS and
algorithms rather than PLS and simulations.
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Table 7. Discriminant model prediction statistics for determination of chlorpyrifos-methyl residues
based on the DA7200 analog for the selected wavelengths [a] of the NIR LED-based Prototype
2 instrument.

Model Data
Calibration (Training Set) Independent Validation (Test Set [b])

Number of False
Positives

Number of False
Negatives Overall % CC Number of False

Positives
Number of False

Negatives Overall % CC

Rough Rice (Low: ≤3.0 ppm, High: >3.0 ppm)

ALLQualRR 5/135 8/135 95.2 (257/270) - - -
CL151 3/108 6/108 95.8 (207/216) 2/27 3/27 90.7 (49/54)
Diamond 0/108 5/108 97.7 (211/216) 4/27 5/27 83.3 (45/54)
Hybrid1 1/108 4/108 97.7 (211/216) 0/27 4/27 92.6 (50/54)
Gemini 2/108 7/108 95.8 (207/216) 5/27 2/27 87.0 (47/54)
Hybrid2 6/108 4/108 95.4 (206/216) 1/27 1/27 96.3 (52/54)

Brown Rice (Low: ≤1.5 ppm, High: >1.5 ppm)

ALLQualBR 27/134 [c] 4/135 88.5 (238/269) - - -
CL151 13/108 5/108 91.7 (198/216) 13/26 5/27 66.0 (35/53)
Diamond 19/107 1/108 90.7 (195/215) 6/27 6/27 77.8 (42/54)
Hybrid1 19/107 4/108 89.3 (192/215) 9/27 3/27 77.8 (42/54)
Gemini 17/107 2/108 91.2 (196/215) 10/27 2/27 77.8 (42/54)
Hybrid2 17/107 4/108 90.2 (194/215) 8/27 4/27 77.8 (42/54)

Milled Rice (Low: ≤0.2 ppm, High: >0.2 ppm)

ALLQualMR 0/135 0/135 100.0 (270/270) - - -
CL151 0/108 0/108 100.0 (216/216) 0/27 0/27 100.0 (54/54)
Diamond 0/108 0/108 100.0 (216/216) 1/27 1/27 96.3 (52/54)
Hybrid1 0/108 0/108 100.0 (216/216) 0/27 1/27 98.2 (53/54)
Gemini 0/108 0/108 100.0 (216/216) 0/27 0/27 100.0 (54/54)
Hybrid2 0/108 0/108 100.0 (216/216) 0/27 0/27 100.0 (54/54)

[a] Wavelengths at 80% relative radiant intensity for Prototype 2 include 970–985 nm, 1035–1060 nm, 1185–1215 nm,
1275–1320 nm, 1420–1470 nm, 1515–1580 nm, 1555–1630 nm, and 1620–1680 nm; % CC = percent correct classifica-
tion; [b] the test samples were those that were removed from the samples used to develop the calibration model;
[c] one sample from brown rice is missing using DA 7200, thus n = 269.

4. Conclusions

The potential for detecting the level or concentration of CMPR in rough, brown, and
milled rice using a NIR LED-based instrument was shown. Based on the DA7200 analog,
the averaged quantitative prediction models for the proposed LEDPrototype2 to predict
CMPR in rough, brown, and milled rice had R2 = 0.64, 0.76, and 0.74, respectively. For
qualitative prediction, the models showed an average percent correct classification of 89.98,
75.44, and 98.9 for rough, brown, and milled rice, respectively. These findings provided a
concrete basis to pursue the design and development of a multi-spectral NIR Instrument
(LEDPrototype2) that incorporates the use of the selected important wavelengths into the
basic design concept of LEDPrototype1. The simulation process is limited to the wavelength
specifications, angular emissions, and spikes for chlorpyrifos-methyl. Other noises and
electrical components can also be taken into consideration for future studies. Likewise,
the performance evaluation of the designed and developed multi-spectral NIR instrument
will be pursued. These instruments will be highly beneficial to the rice industry, safety
regulators, and consumers.
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