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Abstract: Speaker diarization consists of answering the question of “who spoke when” in audio
recordings. In meeting scenarios, the task of labeling audio with the corresponding speaker identities
can be further assisted by the exploitation of spatial features. This work proposes a framework
designed to assess the effectiveness of combining speaker embeddings with Time Difference of Arrival
(TDOA) values from available microphone sensor arrays in meetings. We extract speaker embeddings
using two popular and robust pre-trained models, ECAPA-TDNN and X-vectors, and calculate the
TDOA values via the Generalized Cross-Correlation (GCC) method with Phase Transform (PHAT)
weighting. Although ECAPA-TDNN outperforms the Xvectors model, we utilize both speaker
embedding models to explore the potential of employing a computationally lighter model when
spatial information is exploited. Various techniques for combining the spatial–temporal information
are examined in order to determine the best clustering method. The proposed framework is evaluated
on two multichannel datasets: the AVLab Speaker Localization dataset and a multichannel dataset
(SpeaD-M3C) enriched in the context of the present work with supplementary information from
smartphone recordings. Our results strongly indicate that the integration of spatial information can
significantly improve the performance of state-of-the-art deep learning diarization models, presenting
a 2–3% reduction in DER compared to the baseline approach on the evaluated datasets.

Keywords: speaker diarization; sound localization; AI-enabled systems; multimodal decision making;
deep learning; smartphones

1. Introduction

Speaker diarization is an essential task in many applications, addressing the modern
needs of human–computer interaction and semantic segmentation in the directions of
content management and knowledge extraction. While it has seen great improvements as
a field in the past decade, it is still a difficult task, and its state-of-the-art performance is
far from perfect. Several limitations, including the time resolution of speaker diarization
systems, the presence of overlapping speaker segments, and noise in audio recordings, can
undermine the performance of modern diarization systems. Additionally, the complexity
of real-world audio, with background conversations, varying accents, and emotional inflec-
tions, compounds these challenges and introduces further restrictive factors for achieving
robust accuracy.

Traditional systems rely on individually optimizing multiple independent submod-
ules. Such systems typically first involve stages of audio preprocessing, speech activity
detection, and segmentation. Subsequently, most diarization approaches derive from the
well-established idea of extracting an audio features vector from each segment of a speech
signal and using it as an identity vector to be fed into a clustering module. Early systems
used metric-based algorithms such as the Bayesian information criterion (BIC) [1,2] for the
similarity measurement between speech segments. Later, the Gaussian Mixture Model-
based Universal Background Model (GMM-UBM) [3] became the standard for speaker
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verification tasks and Joint Factor Analysis (JFA) [4,5] was then proposed as an effective
improvement using low-dimensional speaker representations named i-vectors. With the
emergence of deep learning, several neural speaker representation approaches were pro-
posed [6–8], mainly based on the bottleneck layer output of a deep neural network (DNN)
trained for speaker recognition and verification tasks. Compared to traditional factor anal-
ysis methods, DNN-based speaker embeddings offer a greater accuracy and computational
efficiency during inference. Recent advances in deep learning have greatly impacted the
speaker diarization field with approaches based on graph neural networks (GNN) [9,10]
and transformer architectures [11,12]. In modern automatic speech recognition (ASR),
speaker diarization is a crucial processing step [13] of the system, highlighting the need to
further improve the performance of speaker labeling tasks.

In [14], the authors take advantage of the similarity of the tasks of speech separation
and speech diarization to implement a speech-separation-guided diarization (SSGD) ap-
proach, achieving a DER of 12.81–14.28% in a dataset with two speakers. A lower DER
matches bigger training data. In [15], a speech-separation-guided system along with a dual-
path RNN model is proposed, achieving a DER of 11.1% in phone call speaker diarization.
Memory-aware speaker embedding mechanisms are introduced in [16], leading to a DER of
11.12–14.04% for the best-performing configuration. A sequence-to-sequence architecture
that incorporates memory-aware multi-speaker embedding is used in [17], resulting in a
DER of 15.9% on the CHiME-7 evaluation dataset. A Dynamic Bayesian Network (DNB) is
proposed in [18] for audiovisual diarization, achieving a DER of 15.32% on the AVDIAR
dataset. An End-to-End Neural Speaker Diarization (EENSD) method with an attention
mechanism is evaluated in [19], achieving a DER of 10.99% on the Callhome dataset. In [20],
an EENSD architecture leads to a DER of 12.28%, which is a great improvement compared
to the baseline clustering method that gives a DER of 28.77%.

Multimodal systems for speaker diarization that incorporate information from mul-
tiple sources have been proposed. Audiovisual systems are the most common type of
multimodal diarization, combining audio and video data [21,22]. By exploiting visual cues
such as facial expressions and lip movements, these systems can achieve an improved
accuracy, especially in challenging environments with background noise or overlapping
speech. In [23], a multimodal audiovisual framework to provide Web-TV automations for
live broadcasting integrating speaker diarization is proposed. The development of multi-
modal systems is still an active area of research. Challenges include the synchronization of
audio and video streams, the extraction of meaningful visual features, and the effective
fusion of these distinct modalities.

Another important subfield of multimodal diarization includes spatiotemporal sys-
tems. Speaker diarization systems that exploit the spatial characteristics of speech and
sound have been proposed in previous related studies. An earlier approach focused on
the time delay between the pairs of microphones to construct a similarity matrix of the
sound segments [24]. Other works [25] benefit from acoustic beamforming techniques to
construct single-channel reference audio that enhances spectral information extraction. Ad-
ditionally, MFCC and TDOA values can be combined to form a spatiotemporal information
domain [26]. Another spatial approach for speaker diarization utilizes Direction of Arrival
(DOA) information [27]. In a related study [28], Multiple Distant Microphones (MDMs)
were employed to extract DOA values and combine them with acoustic feature information.
A recent study [29] utilizes spatial information to implement a real-time speaker diarization
system. Another work proposes a neural network architecture with multichannel input [30].
Our previous work [31] focused on information fusion between speaker embeddings from
DNN and TDOA values from microphone pairs.

The motivation for the current work lies in designing a generic framework that incor-
porates different types of heterogeneous devices in arbitrary setups. The information from
audio signals from multiple types of sensors can be used in an information fusion scheme
to address the complex task of speaker diarization. AI-enabled smart systems for speaker
diarization have useful applications for several solutions and workflows for content pro-
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duction, communication, and decision making. While many of the technologies involved
are mature enough to be used in production, the research hypothesis is that there is still im-
portant added value that can be gained by a combination of different modalities. Moreover,
the use of different setups is promoted without the need for additional user effort for the
calibration and synchronization of the sensors or investment in dedicated equipment.

The proposed system in this particular work combines information from the two do-
mains to enrich speaker representations that are used as inputs in unsupervised clustering
algorithms. This study aims to extend and improve this method, examining different infor-
mation combinations and clustering approaches. More specifically, various experiments
are conducted to explore richer and more robust speaker representations that efficiently
incorporate a balanced mixture of information from both microphone arrays and acoustic
speech features.

The remainder of the paper is structured as follows: in Section 2, the datasets that were
used are described, as well as the different modules involved and their fusion, in Section 3,
the experimental results are presented and discussed, and in Section 4, the research is
concluded and the future work plans are stated.

2. Materials and Methods
2.1. Datasets

To thoroughly evaluate the performance of our system in various microphone pair
configurations, we strategically exploited two datasets that were rigorously created for mul-
tichannel speech-related tasks. Our initial experimentation was centered around the AVLAB
speaker localization dataset [32]. The AVLAB dataset simulates a dynamic talk-show panel
environment, with three to four speakers engaged in conversation. Its dual-microphone
array, arranged in a classical A-B arrangement, facilitates the accurate calculation of a
single TDOA (Time Difference of Arrival) value for each time segment within a recording.
Experiments utilizing this particular dataset can provide a robust basis for understanding
the behavior of the system under well-controlled conditions. Pursuing testing our system
with more complex scenarios, we incorporated the SpeaD-M3C dataset. Designed to fa-
cilitate our previous research, SpeaD-M3C retains the fundamental speaker and sensor
layout of the AVLAB dataset. However, it is decisively distinguished using three aligned
microphones. This expanded layout allowed us to explore the performance of our system
with a larger number of microphone pairs, providing deeper insights into its diarization
capabilities. To further extend our evaluation and introduce an element of real-world
variability, we extended our tests to include audio conversations recorded from three
smartphones. These devices were randomly placed in front of the speakers, simulating
the less predictable acoustic environments often found in practical applications. This
unique testing approach allowed us to measure the robustness and efficiency of our system
when faced with the possibility of non-synchronized microphone sensors with varying
specifications and a less-than-ideal microphone placement. This multifaceted approach
allowed us to identify strengths, highlight potential areas for improvement, and ultimately
deliver a speaker diarization system optimized for deployment in various real-world en-
vironments. The Spead-M3C speaker and microphone sensor setup is demonstrated in
Figure 1. Both datasets can be accessed at https://m3c.web.auth.gr/research/datasets/
(accesed on 27 June 2024).

https://m3c.web.auth.gr/research/datasets/
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Figure 1. A visual representation of the Spead-M3C dataset formulation layout, featuring four
speakers and three aligned microphones with the addition of three randomly positioned smartphones.

2.2. Speaker Embeddings for Diarization

Two successful neural network architectures that stand out as highly effective methods
for extracting speaker representations were used in the present work: X-vectors [33] and
ECAPA-TDNN [34].

The X-vectors model architecture consists of various crucial parts. Initially, the network
receives audio inputs such as Mel-Frequency Cepstral Coefficients (MFCCs) or Filterbank
energies. These input frames are processed by a number of TDNN layers at different levels.
The TDNN layers are deliberately constructed to extract short temporal patterns from the
acoustic features, and they are, therefore, well-suited to speech analysis. One key aspect
of the X-vector architecture is the statistics pooling layer. This particular type of neural
network layer has the ability to handle utterances that differ in length among segments.
More specifically, the average statistics pooling layer combines all the representations
generated by the TDNN layers over an entire utterance into a single fixed-length vector
through calculating first-order (mean) and second-order (centered variance) statistics.
Finally, segment-level layers analyze the pooled information further. These fully connected
layers target high-level, long-term properties of speaker’s speech occurring across each
full utterance. The inputs to the network are 24-dimensional log Mel Filterbank energies
and the generated output is a 512-dimensional speaker embedding vector. The model’s
architecture, as originally described in [33], is shown in Table 1. As presented, the model
contains 4.2 million parameters.

ECAPA-TDNN evolves the X-vectors’ framework with essential modifications. The
time delay convolutional layers are replaced by complex one-dimensional Res2Net units
embedded with skip connections. This enables the network to distinguish progressively
nuanced patterns. In addition, Squeeze-and-Excitation (SE) blocks are integrated into these
modules, intelligently upscaling the feature responses across channels to highlight those
most critical for speaker diarization. Finally, ECAPA-TDNN augments the statistics aggre-
gation module with the integration of attention mechanisms, allowing the network to zero
in on highly relevant input regions for even more robust speaker representation. The model
uses 80-dimensional log Mel Filterbank energies as inputs and generates 192-dimensional
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representations. The architecture is presented in Figure 2. In the presented study, we
employ the variation using 1024 filters C in the convolutional layers. Both TDNN layers
have a dilation spacing of 1 and kernel sizes of 5 and 1, respectively. All SE—Res2Blocks
use a kernel size of 3 with increasing dilations starting from 2 at the first block. This specific
model variation has 14.7 million parameters.

Table 1. The X-vectors model architecture. T corresponds to the number of input frames.

Layer Layer Contenxt Total Context Input × Output

frame1 {t – 2, t + 2} 5 120 × 512

frame2 {t – 2, t, t + 2} 9 1536 × 512

frame3 {t – 3, t, t + 3} 15 1536 × 512

frame4 {t} 15 512 × 512

frame5 {t} 15 512 × 1500

stats pooling {0, T} T 1500 × 3000

segment6 {0} T 3000 × 512

Number of paramaters: 4.2 million
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It is apparent that these architectures have different computational requirements. The
use of two models originates from our interest to investigate the potential benefits of adding
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spatial speech information to the produced representations. Comparing the performances
of these models will provide valuable insights into the trade-off between the computational
complexity and robustness of speaker embeddings when incorporating spatial information
derived from microphone arrays.

2.3. Time Delay of Arrival Information Extraction

The proposed system focuses on speaker diarization in the context of meeting sce-
narios, where speakers often maintain relatively stationary positions. A typical example
of such a real-world scenario is the recording of a meeting using smartphones placed
randomly on a table in front of the participants. In this setting, the primary objective of pro-
viding the necessary meeting information is less about accurately identifying the speakers’
locations and more about identifying who is speaking at a given time. Due to the unique
dynamics of these scenarios, TDOA values emerge as the preferred spatial characteristics of
the proposed pipeline. These TDOA values are calculated for each speech segment through
the Generalized Cross-correlation with Phase Transform (GCC-PHAT) [35] applied to all
microphone pairs. This method has several advantages. First, GCC-PHAT works reliably
even when the number of microphones is varied and their exact locations within the confer-
ence room remain unknown. Second, for each audio segment, a unique TDOA vector can
be generated that corresponds to the time delay for all microphones pairs within the sensor
array. Although this arrangement does not facilitate accurate arrival directions, it yields
valuable information about the unique, albeit unknown, location of each speaker. Finally,
the length of the TDOA vector for each speech segment directly corresponds to the number
of available microphone pairs. Therefore, in cases where large arrays of microphones are
available, the spatial information vector can greatly affect the speaker representations. As
described in [36], given two signals, xi(n) and xj(n), the GCC-PHAT is defined as:

GPHAT( f ) =
Xi( f ) Xj( f )∣∣Xi( f ) Xj( f )

∣∣ = ej(φi( f )−φj( f )) , (1)

where Xi(f ) and Xj(f ) are the Fourier transforms of the two signals and (¯) denotes the
complex conjugate. The last part of Equation (1) encapsulates the phase difference between
the two signals in the frequency domain, where φi(f ) and φj(f ) are the corresponding phase
functions of these signals. If we denote the inverse Fourier transform of Equation (1) as
Rphat(d), then the TDOA for this pair of signals is estimated as:

dPHAT(i, j) = argmaxnRPHAT(n) , (2)

2.4. Spatiotemporal Information Fusion

Our proposed system is based on the foundations of traditional speaker diarization
frameworks, as shown in Figure 3. It consists of several interconnected submodules, each
of which contributes significantly to the overall performance. Initially, the mean of the
audio channels is fed as a single-channel input to a Speech Activity Detection (SAD) model
in order to distinguish speech segments from non-speech content. For our experiments,
we used the pre-trained Silero VAD model [37] to obtain speech segments. This particular
sub-module is flexible and can be adapted with alternative SAD implementations. We
split the detected speech segments into overlapping time windows of equal lengths to
facilitate subsequent analysis. Two main processes operate simultaneously in these time
windows. First, the GCC-PHAT algorithm is used to process the multichannel audio input
and compute the TDOA values between pairs of microphones. Second, neural network
models are used to generate speaker embeddings with the single audio channel as an input.

The features extracted from both main modules must be combined in order to ex-
amine the impact of spatial features in the diarization task and explore the presence of
complementary information between those and speaker embeddings. In our previous
work, we simply concatenated both feature types to form a single speaker representation
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vector. The combined feature vector was then fed as an input to a Spectral Clustering (SC)
algorithm [38] to extract the speaker labels for each time window. In all our experiments
involving spectral clustering, we employed the auto-tuning implementation [39] to auto-
matically estimate the number of speakers in a recording, with pruning applied to refine the
affinity matrix and only keep the 10% values with the strongest similarity. Although this
approach yields better results than simply using only the DNN models, it is important to
explore the influence of each feature vector. Particularly, the high dimensionality of speaker
embeddings will naturally impose a greater impact on cluster generation. Consequently,
the influence of TDOA values with a much lower dimensionality may be reduced when
determining the overall distance relationships between speaker identities. Therefore, we
propose two other methods to investigate the construction of richer speaker representations
for more robust diarization.
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Our first approach to mitigating any potential bias in the clustering process is based
on calculating a weighted similarity matrix as an initial step toward spectral clustering.
Instead of generating a single affinity matrix for all samples and features, we compute
separate similarity matrices for speaker embeddings and TDOA values. The objective of
this specific implementation is to study the relationship between the information within
the spatial and temporal domains. The Weighted Similarity Matrix is calculated using both
speaker embeddings and TDOA values defined as follows:

• Si and Sj are the speaker embeddings for samples i and j, respectively. Each embedding
is a vector of dimension d.

• ti and tj represent the TDOA vectors for the same samples, each of dimension m.

The similarity between speaker embeddings is calculated using cosine similarity:

Cosine Similarity =
Si·Sj

∥Si∥ ∥Sj∥
, (3)

where (·) denotes the dot product and (∥ ∥) denotes the Euclidean norm.
The similarity based on TDOA is computed using the Euclidean distance, transformed

into a similarity measure:

TDOA Similarity =
1

1 + ∥ti − tj∥
, (4)

where
(
∥ti − tj∥

)
is the Euclidean distance between the TDOA vectors (ti) and (tj).

Given that there are n samples, the Weighted Similarity Matrix, (W), is an (n × n)
matrix, where each element

(
Wij
)

is computed as:

Wij = w ×
(

Si·Sj

∥Si∥ ∥Sj∥

)
+ (1 − w)×

(
1

1 + ∥ti − tj∥

)
, (5)
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where (w) is a weighting factor between 0 and 1 that balances the influence of speaker
embeddings and TDOA vectors in the similarity calculation.

In our experiments, we additionally present a variation with cosine similarity for
both parts of the equation, although the method of exploiting the Euclidean distance to
calculate the similarity demonstrates better results in most cases. The fused similarity
matrix, containing a joint representation of all feature types for each segment, becomes the
input for the subsequent steps of spectral clustering. In order to investigate the optimal
information combination between these domains, we run experiments with multiple weight
values during the similarity matrix computation process.

The last clustering approach in our experiments introduces a hierarchical element to
the speaker cluster estimation. In the first stage, spectral clustering is performed only on
the speaker embeddings for all samples. This initial step groups speech segments based
on their acoustic feature similarity. As TDOA vectors’ dimensionality heavily depends
on microphone pairs’ availability and is, therefore, much lower than embedding features,
we explore the potential of treating the initial clusters produced by spectral clustering as
numerical features to ensure an equal influence from both spatial and temporal domains
on the final clustering. The encoded cluster features are then concatenated with the TDOA
values for each speech segment. Finally, we employ the K-means clustering algorithm
using the concatenated representation as an input. We set the number of clusters for the
K-means to correspond to the number of clusters estimated by the auto-tuning spectral
clustering algorithm. In our experiments, we examine if this method can potentially correct
mislabeled time windows that occur due to speech acoustic similarity between speakers in
different positions.

2.5. Synchronization of Smartphone Recordings

A major part of our study consists of studying the system’s performance using audio
recordings from asynchronized sensors. This particular scenario is found in abundance in
real-life situations where speaker diarization is necessary. For instance, in meeting scenarios,
every participant can set a personal smartphone recording audio in a random position and
then use the spatial information created to extract valuable meeting data and transcriptions.
To extract meaningful spatial features, it is necessary to synchronize the audio channels.
More specifically, in the non-synchronized smartphone recordings part of our dataset,
every microphone has different start and stop timestamps. Although it is possible to
directly calculate the TDOA values, we perform an optional preprocessing step to mitigate
potential undermining factors, such as noise and other audio events introduced in different
recording parts that not all channels have captured. To address this issue, we employ
a simple but effective synchronization method. First, we segment the signals in small
overlapping windows and calculate the RMS envelope for each segment. We then perform
cross-correlation on the RMS envelopes of corresponding channels to identify the initial
time shift. One audio channel is selected as a reference in order to synchronize the others
accordingly. This practical approach significantly increases the system’s efficiency and,
therefore, we include it as a preprocessing step for asynchronized multichannel datasets.

3. Results and Discussion
3.1. Optimal Time Window Selection

In a speaker diarization system, the choice of an appropriate time window for fea-
ture extraction is crucial. The length of the available time segments directly affects the
quality of the speaker embeddings and the temporal resolution of time delay calculations,
introducing a trade-off between the two domains. Longer time windows provide a richer
and denser source of data for DNN embeddings’ generation. By capturing more speech
features, including variations in time, these speaker representations become more robust
and discriminative. On the other hand, a larger window increases the possibility of in-
cluding time segments with overlapping speakers or longer durations of noise and silence.
Such inclusions may degrade the quality of the speaker embeddings and the subsequent
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diarization process. On the contrary, a smaller time window reduces the possibility of
speaker overlap or unwanted noise, but potentially results in less informative speaker
representations. In addition, TDOA estimations through GCC-PHAT benefit from analyz-
ing smaller time windows, allowing for more accurate discriminative spatial information.
Moreover, we based our choice of selected time windows on previous work [23,31,40]
focusing on speaker diarization adapted to production settings. A wider window than 1.5 s
is considered to be too wide for several applications on production automation, while a
window narrower than 0.5 s produces suboptimal results.

To determine an optimal time window length for our system, we conducted experi-
ments using three different overlapping window sizes: {1.5, 1, 0.5} seconds. We applied a
50% overlap to ensure smooth transitions and efficient signal processing calculations. Our
initial experiments showed that a 1 s window with a 0.5 s overlap consistently provided
the best performance across all metrics we evaluated. Therefore, we selected this specific
time window for use in all following experiments.

3.2. Evaluation Metric

We evaluate the accuracy of our system using the diarization error rate [41]. The DER
computes the combined rate of three distinct error categories: false alarm (FA), non-speech
segments mislabeled as speech, the missed detection of speech segments, and speaker label
confusion. The total duration of errors is divided by the total duration of the reference
signal to compute the final result. It is defined as follows:

DER =
False Alarm + Missed Detection + Speaker Con f usion

Total Duration
, (6)

3.3. Evaluation of Feature Concatenation Method

In Table 2, we present our system’s results employing the first approach described, in
which speaker embeddings and TDOA values are directly concatenated. The results are
the same as those provided in our previous study with the addition of the asynchronized
smartphone recordings part of SpeaD-M3C. We denote this particular subset as A-Spead in
the result tables.

Table 2. DER metric results of the proposed feature concatenation diarization system. Bold numbers
indicate the best performing model.

AVLAB SpeaD-M3C A-SpeaD

Xvectors 13.6% 11.6% 12.3%

Xvectors + GCC-PHAT 12.4% 9.2% 10.6%

ECAPA 13.2% 10.7% 11.5%

ECAPA + GCC-PHAT 12.6% 9.5% 10.8%

As demonstrated, our proposed system presents an improvement in the DER com-
pared to when only using the DNN model, indicating the importance of incorporating
spatial information into the speaker diarization process. Moreover, this reduction in DER
is more pronounced with the dataset containing a larger number of microphone pairs. It
is evident that the addition of more TDOA values enriches the construction of speaker
representations, enhancing the ability of the system to accurately distinguish speakers.
Furthermore, our proposed method offers an advantage in computational efficiency. In
Figure 4, a comparison of the average running speed between the two models is pre-
sented. The best performing variation—the X-vectors architecture with the GCC-PHAT
algorithm—turned out to be less computationally demanding than the ECAPA-TDNN
model. In addition, it is essential to take into consideration that the X-vectors model is
significantly more parameter-efficient, with only 4.2 million parameters compared to the
14.7 million parameters in the ECAPA-TDNN, as described in Section 2.
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This result is important when considering real-world scenarios. as it suggests that we can
achieve a lighter and more efficient solution for diarization without compromising accuracy.

3.4. Optimal Information Combination Exploration

As mentioned in the previous section. we build upon the aforementioned method to
investigate an optimal spatiotemporal information combination. In our weighted similarity
matrix approach, we intend to systematically examine the varying impacts of speaker
embeddings and TDOA values information on the diarization process. In order to achieve
this, we explore various weight values within the set w = {0, 0.25, 0.5, 0.75, 1}. This varying
weight set will determine the relative contribution of neural network embeddings and
TDOA features to the calculation of pairwise similarities between speech segments. In
Table 3, we present the results for the two additional methods. The spectral clustering
method employing a weighted matrix calculation is denoted as Similarity Matrix Fusion
(SMF). We assign two different prefixes, C-SMF and E-SMF, depending on the use of cosine
similarity or Euclidean similarity for the calculation of the spatial information affinity
matrix. Our last approach, utilizing a final K-means algorithm after first clustering the
speaker embeddings and computing a number of clusters estimation, is denoted as Hybrid
Diarization Clustering (HDC).

Table 3. Full presentation of DER results on all speaker diarization datasets. Bold numbers indicate
the best performing model.

Dataset System
E-SMF C-SMF

HDC
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

AVLAB
ECAPA 14.1% 13.8% 12.4% 11.8% 13.2% 15.8% 14.6% 12.6% 12% 13.2% 12.2%

Xvectors 14.1% 13.5% 12.1% 12.4% 13.6% 15.8% 14.4% 12.4% 12.2% 13.6% 12.4%

Spead-M3C
ECAPA 11.9% 11.2% 9.8% 8.9% 10.7% 12.3% 11.7% 9.6% 9.2% 10.7% 9.3%

Xvectors 11.9% 11.4% 9.4% 9.1% 11.6% 12.3% 11.2% 9.2% 9.5% 11.6% 9.6%

A-Spead
ECAPA 12.6% 11.7% 10.6% 9.8% 11.5% 13.2% 12% 10.5% 10.1% 11.5% 10.4%

Xvectors 12.6% 11.9% 10.9% 10.5% 12.3% 13.2% 12.3% 10.6% 10.9% 12.3% 10.5%
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As shown in the table, the similarity matrix fusion method demonstrates the most
significant improvement in performance compared to simply concatenating the features
in each sample. More specifically, when employing intermediate weights (w = 0.5 and
w = 0.75), this method is far superior to other variations of the system. This finding
suggests that the weighted similarity matrix clustering utilizes information from both
speaker embeddings and TDOA more effectively when it assigns a balanced importance to
each information domain. Furthermore, while in the concatenated features approach, the
use of the X-vectors’ architecture resulted in the lowest DER, with this particular clustering
algorithm, ECAPA-TDNN with GCC-PHAT outperforms other methods on all experiments.
Overall, the superior performance of SMF with intermediate weight values reveals the
potential of effectively exploiting spatial information in situations where the acoustic speech
features and, therefore, the generated speaker embeddings are not adequate to correctly
distinguish between similar speakers.

Finally, the evaluation of the hybrid diarization clustering method indicates that
this method does not consistently outperform the performance achieved through feature
concatenation. Although in most cases, HDC results in a slightly lower diarization error,
the results are less optimal compared to weighted similarity matrix spectral clustering, as
demonstrated in Table 3.

3.5. Limitations

The presented research aimed at addressing the problem of arbitrary microphone
placement for the speaker diarization problem. For this reason, in all experiments, the
microphones were placed randomly and information regarding their positions was not
taken into account in the methodology. Several assumptions were made that introduce some
limitations into our methodology. First, the microphone positions were fixed throughout
the experiment, as well as their orientation. The experiment considered a maximum of four
speakers, which is a common scenario in media production, but may not be applicable in
other cases, like a conference. The experiment was conducted in a quiet and treated room,
with minimal effect of noise, reverberation, etc. There was no overlapping of the speakers
and no presence of non-speech elements (like coughing, laughter, etc.).

4. Conclusions and Future Work

In this study, we investigated the effectiveness of several methods for dealing with spa-
tiotemporal information in the form of speaker embeddings generated from two different
DNN architectures and the time difference of arrival values in a joint speaker diarization
system. Through different system variations, we examined three primary clustering ap-
proaches: the spectral clustering of concatenated spatiotemporal features, similarity matrix
fusion based on the calculation of distinct weighted affinity matrices for each information
domain, and hybrid diarization clustering in which we implemented a sequence of cluster-
ing algorithms calculating first speaker embeddings clusters and then integrating spatial
information for a final K-means clustering.

The initial evaluations showed that concatenating speaker embeddings with TDOA
values yielded a better performance than only using speaker embeddings. The system
resulted in a lower DER, highlighting the benefit of incorporating spatial information
into speaker diarization. Further experimentation revealed that the weighted similarity
matrix method consistently outperformed all other approaches, especially when assigning
a balanced influence for embeddings and TDOA data. We speculate that the superior per-
formance of SMF was due to its ability to facilitate a more refined integration of information
from both feature domains. These evaluation results suggest that further exploration of
the weight configurations and parameter optimization of the calculated affinity matrix
can potentially lead to an even lower diarization error rate. Future studies could focus on
developing adaptive algorithms that dynamically adjust the fusion parameters based on
the variability of the input features, potentially improving the robustness and accuracy
of the diarization process. Furthermore, although our two-stage diarization clustering
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method was outperformed by SMF, in most cases, it demonstrated better results than
feature concatenation. This result indicates that it can be a fast and simple viable approach
in scenarios where an exhaustive weight value calculation is not possible. In all cases, the
proposed method resulted in very promising DER values, compared to the SOTA meth-
ods [14–20] that are evaluated in various multi-speaker datasets and are referenced in the
Introduction. This strengthens the feasibility of the proposed architecture for addressing
real-world problems. Due to the nature of the proposed methodology, which relies on the
presence of multi-channel audio information, it is not possible to evaluate our system in
a direct comparison with SOTA models. It is, however, within future plans to implement
different combinations of models with the TDOA addition to evaluate the advantages of
utilizing spatial information in speaker diarization.

In future work, it is planned to experiment with different arbitrary microphone and
smartphone arrays, including video capturing, and implement and evaluate the system as
an integrated solution for real-world applications. Evaluation with different arrangements,
non-fixed microphone positionings, and orientations is also considered. The problems of
speech overlapping and unwanted noise source inference should also be addressed. Finally,
the inclusion of VAD as a module of an end-to-end system is valuable for deployment in
real-world applications.
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