Impacts of Wearable Resistance Placement on Running Efficiency Assessed by Wearable Sensors: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Measuring Running Efficiency
2.4. Measuring Physiological Responses
2.5. Statistical Analysis
3. Results
3.1. Running Efficiency
3.2. Physiological Responses
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macadam, P.; Cronin, J.B.; Uthoff, A.M.; Feser, E.H. Effects of Different Wearable Resistance Placements on Sprint-Running Performance: A Review and Practical Applications. Strength Cond. J. 2019, 41, 79–96. [Google Scholar] [CrossRef]
- Feser, E.H.; Macadam, P.; Cronin, J.B. The Effects of Lower Limb Wearable Resistance on Sprint Running Performance: A Systematic Review. Eur. J. Sport. Sci. 2020, 20, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Bustos, A.; Metral, G.; Cronin, J.; Uthoff, A.; Dolcetti, J. Effects of Warming Up With Lower-Body Wearable Resistance on Physical Performance Measures in Soccer Players Over an 8-Week Training Cycle. J. Strength Cond. Res. 2020, 34, 1220–1226. [Google Scholar] [CrossRef]
- Macadam, P.; Cronin, J.B.; Feser, E.H. Acute and Longitudinal Effects of Weighted Vest Training on Sprint-Running Performance: A Systematic Review. Sports Biomech. 2022, 21, 239–254. [Google Scholar] [CrossRef]
- Macadam, P.; Cronin, J.B.; Simperingham, K.D. The Effects of Wearable Resistance Training on Metabolic, Kinematic and Kinetic Variables During Walking, Running, Sprint Running and Jumping: A Systematic Review. Sports Med. 2017, 47, 887–906. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.; Uthoff, A.; McKenzie, C.; Cronin, J. The Acute Effect of Wearable Resistance Placement on Change of Direction Performance in Elite Netball Players. Eur. J. Sport Sci. 2024, 24, 302–311. [Google Scholar] [CrossRef]
- Feser, E.H.; Bayne, H.; Loubser, I.; Bezodis, N.E.; Cronin, J.B. Wearable Resistance Sprint Running Is Superior to Training with No Load for Retaining Performance in Pre-Season Training for Rugby Athletes. Eur. J. Sport Sci. 2021, 21, 967–975. [Google Scholar] [CrossRef]
- Simperingham, K.D.; Cronin, J.B.; Ross, A.; Brown, S.R.; Macadam, P.; Pearson, S. Acute Changes in Accelera-tion Phase Sprint Biomechanics with Lower Body Wearable Resistance. Sports Biomech. 2022, 21, 1176–1188. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.; Giroux, C.; Lacome, M.; Leduc, C.; Hader, K.; Buchheit, M. Effects of Wearable Resistance Load Placement on Neuromuscular Activity and Stride Kinematics: A Preliminary Study. S. Afr. J. Sports Med. 2022, 34. [Google Scholar] [CrossRef]
- Couture, G.A.; Simperingham, K.D.; Cronin, J.B.; Lorimer, A.V.; Kilding, A.E.; Macadam, P. Effects of Upper and Lower Body Wearable Resistance on Spatio-Temporal and Kinetic Parameters during Running. Sports Biomech. 2020, 19, 633–651. [Google Scholar] [CrossRef]
- Clark, K.P.; Stearne, D.J.; Walts, C.T.; Miller, A.D. The Longitudinal Effects of Resisted Sprint Training Using Weighted Sleds vs. Weighted Vests. J. Strength Cond. Res. 2010, 24, 3287–3295. [Google Scholar] [CrossRef] [PubMed]
- Macadam, P.; Simperingham, K.D.; Cronin, J.B.; Couture, G.; Evison, C. Acute Kinematic and Kinetic Adap-tations to Wearable Resistance during Vertical Jumping. J. Strength Cond. Res. 2017, 17, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.; Hansen, K.T. Resisted Sprint Training for the Acceleration Phase of Sprinting. Strength Cond. J. 2006, 28, 42–51. [Google Scholar] [CrossRef]
- Bertochi, G.F.A.; Tasinafo Júnior, M.F.; Santos, I.A.; Sasaki, J.E.; Mota, G.R.; Jordão, G.G.; Puggina, E.F. The Use of Wearable Resistance and Weighted Vest for Sprint Performance and Kinematics: A Systematic Review and Meta-Analysis. Sci. Rep. 2024, 14, 5453. [Google Scholar] [CrossRef] [PubMed]
- Florenes, T.W.; Bere, T.; Nordsletten, L.; Heir, S.; Bahr, R. Injuries among Male and Female World Cup Alpine Skiers. Br. J. Sports Med. 2009, 43, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, J.J.; Menz, H.B. Accelerometry: A Technique for Quantifying Movement Patterns during Walking. Gait Posture 2008, 28, 1–15. [Google Scholar] [CrossRef]
- Promsri, A.; Haid, T.; Federolf, P. Complexity, Composition, and Control of Bipedal Balancing Movements as the Postural Control System Adapts to Unstable Support Surfaces or Altered Feet Positions. Neuroscience 2020, 430, 113–124. [Google Scholar] [CrossRef]
- Promsri, A.; Mohr, M.; Federolf, P. Principal Postural Acceleration and Myoelectric Activity: Interrelation-ship and Relevance for Characterizing Neuromuscular Function in Postural Control. Hum. Mov. Sci. 2021, 77, 102792. [Google Scholar] [CrossRef] [PubMed]
- Mitschke, C.; Kiesewetter, P.; Milani, T. The Effect of the Accelerometer Operating Range on Biomechanical Parameters: Stride Length, Velocity, and Peak Tibial Acceleration during Running. Sensors 2018, 18, 130. [Google Scholar] [CrossRef]
- Mason, R.; Pearson, L.T.; Barry, G.; Young, F.; Lennon, O.; Godfrey, A.; Stuart, S. Wearables for Running Gait Analysis: A Systematic Review. Sports Medicine. Sports Med. 2023, 241-268, 53. [Google Scholar]
- Rana, M.; Mittal, V. Wearable Sensors for Real-Time Kinematics Analysis in Sports: A Review. IEEE Sens. J. 2020, 21, 1187–1207. [Google Scholar] [CrossRef]
- Gregory, C.; Koldenhoven, R.M.; Higgins, M.; Hertel, J. External Ankle Supports Alter Running Biomechanics: A Field-Based Study Using Wearable Sensors. Physiol. Meas. 2019, 40, 044003. [Google Scholar] [CrossRef] [PubMed]
- Colapietro, M.; Fraser, J.J.; Resch, J.E.; Hertel, J. Running Mechanics during 1600 Meter Track Runs in Young Adults with and without Chronic Ankle Instability. Phys. Ther. Sport 2020, 42, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, D.; Odof, S.; Abbès, B.; Fourchet, F.; Christiaen, B.; Taïar, R. Shock Response Spectrum Analysis of Fatigued Runners. Sensors 2022, 22, 2350. [Google Scholar] [CrossRef] [PubMed]
- Hollis, C.R.; Koldenhoven, R.M.; Resch, J.E.; Hertel, J. Running Biomechanics as Measured by Wearable Sen-sors: Effects of Speed and Surface. Sports Biomech. 2021, 20, 521–531. [Google Scholar] [CrossRef] [PubMed]
- DeJong, A.F.; Hertel, J. Outdoor Running Activities Captured Using Wearable Sensors in Adult Competitive Runners. Int. J. Athl. Ther. Train. 2020, 25, 76–85. [Google Scholar] [CrossRef]
- Lewin, M.; Price, C.; Nester, C. Can a Shoe-Mounted IMU Identify the Effects of Orthotics in Ways Compa-rable to Gait Laboratory Measurements? J. Foot Ankle Res. 2023, 16, 54. [Google Scholar] [CrossRef] [PubMed]
- Cerezuela-Espejo, V.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; Martínez-Cava, A.; Pallarés, J.G. Running Power Meters and Theoretical Models Based on Laws of Physics: Effects of Environments and Running Conditions. Physiol. Behav. 2020, 223, 112972. [Google Scholar] [CrossRef]
- Koldenhoven, R.M.; Virostek, A.; DeJong, A.F.; Higgins, M.; Hertel, J. Increased Contact Time and Strength Deficits in Runners With Exercise-Related Lower Leg Pain. J. Athl. Train. 2020, 55, 1247–1254. [Google Scholar] [CrossRef]
- Cartón-Llorente, A.; Cardiel-Sánchez, S.; Molina-Molina, A.; Ráfales-Perucha, A.; Rubio-Peirotén, A. Bilateral Asymmetry of Spatiotemporal Running Gait Parameters in U14 Athletes at Different Speeds. Sports 2024, 12, 117. [Google Scholar] [CrossRef]
- Lewin, M.; Jones, R.; Price, C. Definition of an Insole Comfort Equation Using Biomechanics Data from a Re-al-World Data Collection Method. Footwear Sci. 2024, 1–8. [Google Scholar] [CrossRef]
- DeJong Lempke, A.F.; Hunt, D.L.; Willwerth, S.B.; d’Hemecourt, P.A.; Meehan, W.P.; Whitney, K.E. Biome-chanical Changes Identified during a Marathon Race among High-School Aged Runners. Gait Posture 2024, 108, 44–49. [Google Scholar] [CrossRef]
- Domínguez-Muñoz, C.; del Campo, J.; García, A.; Guzmán, J.; Martínez-Gallego, R.; Ramón-Llin, J. Analysis of Kinematic Variables According to Menstrual Cycle Phase and Running Intensity: Implications for Train-ing Female Athletes. Appl. Sci. 2024, 14, 5348. [Google Scholar] [CrossRef]
- Berzosa, C.; Comeras-Chueca, C.; Bascuas, P.J.; Gutiérrez, H.; Bataller-Cervero, A.V. Assessing Trail Running Biomechanics: A Comparative Analysis of the Reliability of StrydTM and GARMINRP Wearable Devices. Sensors 2024, 24, 3570. [Google Scholar] [CrossRef] [PubMed]
- RunScribe Metrics. Available online: https://runscribe.com/metrics/ (accessed on 14 October 2023).
- Koldenhoven, R.M.; Hertel, J. Validation of a Wearable Sensor for Measuring Running Biomechanics. Digit. Biomark. 2018, 2, 74–78. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Latorre-Román, P.Á.A.; Soto-Hermoso, V.M.; Párraga-Montilla, J.A.; Pantoja-Vallejo, A.; Ramírez-Campillo, R.; Roche-Seruendo, L.E. Agreement between the Spatiotemporal Gait Parameters from Two Different Wearable Devices and High-Speed Video Analysis. PLoS ONE 2019, 14, e0222872. [Google Scholar] [CrossRef] [PubMed]
- Lewin, M.; Price, C.; Nester, C. Validation of the RunScribe Inertial Measurement Unit for Walking Gait Measurement. PLoS ONE 2022, 17, e0273308. [Google Scholar] [CrossRef] [PubMed]
- Brayne, L.; Barnes, A.; Heller, B.; Wheat, J. Using a Wireless Consumer Accelerometer to Measure Tibial Acceleration during Running: Agreement with a Skin-Mounted Sensor. Sports Eng. 2018, 21, 487–491. [Google Scholar] [CrossRef]
- Cartón-Llorente, A.; Roche-Seruendo, L.E.; Jaén-Carrillo, D.; Marcen-Cinca, N.; García-Pinillos, F. Absolute Reliability and Agreement between Stryd and RunScribe Systems for the Assessment of Running Power. Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol. 2021, 235, 182–187. [Google Scholar] [CrossRef]
- Marcos-Blanco, A.; García-Pinillos, F.; Molina-Molina, A.; Jaén-Carrillo, D.; Soto-Hermoso, V.M.; Ruiz-Alias, S.A. Reliability of the RunScribeTM System to Determine Kinematic Variables of the Pelvis during Locomotion at Different Speeds. Acta Bioeng. Biomech. 2022, 24, 83–90. [Google Scholar] [CrossRef]
- Kozinc, Ž.; Smajla, D.; Šarabon, N. The Reliability of Wearable Commercial Sensors for Outdoor Assessment of Running Biomechanics: The Effect of Surface and Running Speed. Sports Biomech. 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- DeJong, A.F.; Hertel, J. Validation of Foot-Strike Assessment Using Wearable Sensors During Running. J. Athl. Train. 2020, 55, 1307–1310. [Google Scholar] [CrossRef]
- Evans, D.; Hodgkinson, B.; Berry, J. Vital Signs in Hospital Patients: A Systematic Review. Int. J. Nurs. Stud. 2001, 38, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Opondo, M.A.; Sarma, S.; Levine, B.D. The Cardiovascular Physiology of Sports and Exercise. Clin. Sports Med. 2015, 34, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Arney, B.E.; Glover, R.; Fusco, A.; Cortis, C.; de Koning, J.J.; van Erp, T.; Jaime, S.; Mikat, R.P.; Porcari, J.P.; Foster, C. Comparison of RPE (Rating of Perceived Exertion) Scales for Session RPE. Int. J. Sports Physiol. Perform. 2019, 14, 994–996. [Google Scholar] [CrossRef] [PubMed]
- Eston, R. Use of Ratings of Perceived Exertion in Sports. Int. J. Sports Physiol. Perform. 2012, 7, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Hallam, L.C.; Amorim, F.T. Expanding the Gap: An Updated Look Into Sex Differences in Running Perfor-mance. Front. Physiol. 2022, 12, 2334. [Google Scholar] [CrossRef] [PubMed]
- Vickers, A.J.; Vertosick, E.A. An Empirical Study of Race Times in Recreational Endurance Runners. BMC Sports Sci. Med. Rehabil. 2016, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J. Physiological Limits to Endurance Exercise Performance: Influence of Sex. J. Physiol. 2017, 595, 2949–2954. [Google Scholar] [CrossRef]
- Hewett, T.E. Neuromuscular and Hormonal Factors Associated with Knee Injuries in Female Athletes: Strategies for Intervention. Sports Med. 2000, 29, 313–327. [Google Scholar] [CrossRef]
- Lilley, K.; Dixon, S.; Stiles, V. A Biomechanical Comparison of the Running Gait of Mature and Young Females. Gait Posture 2011, 33, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Promsri, A. Sex Difference in Running Stability Analyzed Based on a Whole-Body Movement: A Pilot Study. Sports 2022, 10, 138. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.J.; Fan, X.; Moe, S.T. Criterion-Related Validity of the Borg Ratings of Perceived Exertion Scale in Healthy Individuals: A Meta-Analysis. J. Sports Sci. 2002, 20, 873–899. [Google Scholar] [CrossRef] [PubMed]
- Dawes, H.N.; Barker, K.L.; Cockburn, J.; Roach, N.; Scott, O.; Wade, D. Borg’s Rating of Perceived Exertion Scales: Do the Verbal Anchors Mean the Same for Different Clinical Groups? Arch. Phys. Med. Rehabil. 2005, 86, 912–916. [Google Scholar] [CrossRef]
- Martin, P.E.; Cavanagh, P.R. Segment Interactions within the Swing Leg during Unloaded and Loaded Run-ning. J. Biomech. 1990, 23, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Promsri, A.; Deedphimai, S.; Petradda, P.; Champamuang, C. Effects of Different Wearable Resistance Placements on Running Stability. Sports 2024, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Promsri, A. Modulation of Bilateral Lower-Limb Muscle Coordination When Performing Increasingly Chal-lenging Balance Exercises. Neurosci. Lett. 2022, 767, 136299. [Google Scholar] [CrossRef] [PubMed]
- Kulmala, J.-P.; Avela, J.; Pasasanen, K.; Parkkari, J. Forefoot Strikers Exhibit Lower Running-Induced Knee Loading than Rearfoot Strikers. Med. Sci. Sports Exerc. 2013, 45, 2306–2313. [Google Scholar] [CrossRef]
- Rooney, B.D.; Derrick, T.R. Joint Contact Loading in Forefoot and Rearfoot Strike Patterns during Running. J. Biomech. 2013, 46, 2201–2206. [Google Scholar] [CrossRef]
- Adamson, L.; Vandamme, L.; Prior, T.; Miller, S.C. Running-Related Injury Incidence: Does It Correlate with Kinematic Sub-Groups of Runners? A Scoping Review. Sports Med. 2024, 54, 1163–1178. [Google Scholar] [CrossRef]
- Coglianese, D. Clinical Exercise Pathophysiology for Physical Therapy; Routledge: New York, NY, USA, 2024; ISBN 9781003523048. [Google Scholar]
- Sun, X.; Lam, W.-K.; Zhang, X.; Wang, J.; Fu, W. Systematic Review of the Role of Footwear Constructions in Running Biomechanics: Implications for Running-Related Injury and Performance. J. Sports Sci. Med. 2020, 19, 20–37. [Google Scholar] [PubMed]
- Wilder, R.P.; Sethi, S. Overuse Injuries: Tendinopathies, Stress Fractures, Compartment Syndrome, and Shin Splints. Clin. Sports Med. 2004, 23, 55–81. [Google Scholar] [CrossRef] [PubMed]
- Thuany, M.; Gomes, T.N.; de Almeida, M.B. Is There Any Difference between “Amateur” and “Recreational” Runners? A Latent Class Analysis. Motriz: Revista de Educação Física 2020, 26, e10200140. [Google Scholar] [CrossRef]
- Almonroeder, T.G.; Benson, L.C. Sex Differences in Lower Extremity Kinematics and Patellofemoral Kinetics during Running. J. Sports Sci. 2017, 35, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Willson, J.D.; Loss, J.R.; Willy, R.W.; Meardon, S.A. Sex Differences in Running Mechanics and Patellofemoral Joint Kinetics Following an Exhaustive Run. J. Biomech. 2015, 48, 4155–4159. [Google Scholar] [CrossRef] [PubMed]
- Saul, J.P.; Valenza, G. Heart Rate Variability and the Dawn of Complex Physiological Signal Analysis: Methodological and Clinical Perspectives. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20200255. [Google Scholar] [CrossRef] [PubMed]
- Stiffler-Joachim, M.R.; Wille, C.; Kliethermes, S.; Heiderscheit, B. Factors Influencing Base of Gait During Running: Consideration of Sex, Speed, Kinematics, and Anthropometrics. J. Athl. Train. 2020, 55, 1300–1306. [Google Scholar] [CrossRef]
- Van Hooren, B.; Fuller, J.T.; Buckley, J.D.; Miller, J.R.; Sewell, K.; Rao, G.; Barton, C.; Bishop, C.; Willy, R.W. Is Motorized Treadmill Running Biomechanically Comparable to Overground Running? A Systematic Review and Meta-Analysis of Cross-Over Studies. Sports Med. 2020, 50, 785–813. [Google Scholar] [CrossRef]
Mean | Range | |
---|---|---|
Age (years) | 20.3 ± 1.0 | 22.0–19.0 |
Mass (kg) | 64.7 ± 6.5 | 77.0–53.0 |
Height (cm) | 170.3 ± 5.6 | 180.0–163.0 |
Body mass index (kg/m2) | 22.3 ± 2.1 | 26.6–19.2 |
Weekly mileage (km) | 20.1 ± 11.1 | 40.0–5.0 |
Heart rate (bpm) | 72.1 ± 13.1 | 52–97 |
Respiratory rate (bpm) | 16.1 ± 1.9 | 12–19 |
Systolic blood pressure (mmHg) | 131.5 ± 10.7 | 114–141 |
Dyastolic blood pressure (mmHg) | 76.1 ± 9.0 | 65–96 |
Blood oxygen saturation (SpO2 (%)) | 97.3 ± 0.9 | 96–99 |
Borg Rating of Perceived Exertion (RPE) scale | 6.6 ± 1.5 | 6–8 |
Variable | None | Forearms | Lower Legs | Trunk | All | p-Value |
---|---|---|---|---|---|---|
Step rate (steps/min) | 173 ± 6.6 | 173 ± 6.8 | 175 ± 6.8 | 172 ± 6.7 | 172 ± 6.1 | 0.076 |
Step length (m) | 0.91 ± 0.05 | 0.91 ± 0.05 | 0.91 ± 0.05 | 0.91 ± 0.05 | 0.91 ± 0.05 | 0.102 |
Contact time (ms) | 277 ± 16.8 | 289 ± 13.8 | 274 ± 14.6 | 289 ± 14.6 | 283 ± 13.3 | 0.000 * |
Flight time (ms) | 70.6 ± 16.4 | 57.2 ± 14.2 | 69.3 ± 18.7 | 60.8 ± 15.5 | 66.3 ± 14.3 | 0.001 * |
Flight ratio | 20.6 ± 4.2 | 16.3 ± 3.9 | 20.1 ± 4.9 | 17.1 ± 4.3 | 18.9 ± 3.8 | 0.000 * |
Footstrike type | 9.0 ± 2.0 | 8.3 ± 1.9 | 11.2 ± 1.8 | 8.4 ± 1.9 | 9.7 ± 2.0 | 0.000 * |
Pronation excursion (°) | −11.9 ± 3.8 | −12.3 ± 4.7 | −12.9 ± 6.1 | −12.4 ± 4.0 | −12.3 ± 4.5 | 0.458 |
Maximum pronation velocity (°/s) | 571 ± 128 | 553 ± 138 | 523 ± 164 | 549 ± 118 | 544 ± 138 | 0.318 |
Impact Gs (G) | 8.4 ± 1.7 | 8.3 ± 1.6 | 8.8 ± 1.2 | 8.5 ± 1.7 | 8.7 ± 1.8 | 0.423 |
Braking Gs (G) | 7.4 ± 2.2 | 6.9 ± 2.0 | 8.3 ± 2.1 | 7.0 ± 1.7 | 7.3 ± 1.9 | 0.003 |
Variable | None | Forearms | Lower Legs | Trunk | All | p-Value |
---|---|---|---|---|---|---|
Heart rate (bpm) | 109 ± 18 | 110 ± 21 | 115 ± 22 | 110 ± 19 | 110 ± 19 | 0.070 |
Respiratory rate (bpm) | 24.5 ± 4.1 | 24.5 ± 3.5 | 25.8 ± 3.7 | 25.1 ± 4.0 | 26.6 ± 3.5 | 0.112 |
Systolic blood pressure (mmHg) | 141 ± 10 a | 144 ± 14 b | 163 ± 17 | 138 ± 11 c | 143 ± 17 d | <0.001 * |
Dyastolic blood pressure (mmHg) | 76 ± 10 | 74 ± 9 | 86 ± 15 | 80 ± 11 | 77 ± 113 | 0.024 |
Blood oxygen saturation (SpO2 (%)) | 96.5 ± 1.1 | 96.9 ± 1.1 | 97.1 ± 1.5 | 96.3 ± 1.0 | 96.2 ± 1.4 | 0.122 |
Borg Rating of Perceived Exertion (RPE) scale | 11.0 ± 2.8 | 11.9 ± 2.2 | 10.6 ± 3.2 | 11.5 ± 2.5 | 11.5 ± 2.0 | 0.140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Promsri, A.; Deedphimai, S.; Promthep, P.; Champamuang, C. Impacts of Wearable Resistance Placement on Running Efficiency Assessed by Wearable Sensors: A Pilot Study. Sensors 2024, 24, 4399. https://doi.org/10.3390/s24134399
Promsri A, Deedphimai S, Promthep P, Champamuang C. Impacts of Wearable Resistance Placement on Running Efficiency Assessed by Wearable Sensors: A Pilot Study. Sensors. 2024; 24(13):4399. https://doi.org/10.3390/s24134399
Chicago/Turabian StylePromsri, Arunee, Siriyakorn Deedphimai, Petradda Promthep, and Chonthicha Champamuang. 2024. "Impacts of Wearable Resistance Placement on Running Efficiency Assessed by Wearable Sensors: A Pilot Study" Sensors 24, no. 13: 4399. https://doi.org/10.3390/s24134399
APA StylePromsri, A., Deedphimai, S., Promthep, P., & Champamuang, C. (2024). Impacts of Wearable Resistance Placement on Running Efficiency Assessed by Wearable Sensors: A Pilot Study. Sensors, 24(13), 4399. https://doi.org/10.3390/s24134399