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Abstract: In our paper, we propose a generalized version of the Alternating Projections Digital Hard
Successive Interference Cancellation (AP-HSIC) algorithm that is capable of decoding any order of
constellation M in an M-Quadrature Amplitude Modulation (QAM) system. Our approach applies to
Rayleigh deep-fading Multiple-Input Multiple-Output (MIMO) channels with high-level Additive
White Gaussian Noise (AWGN). It can handle various destructive phenomena without restricting the
number of antenna arrays in the transmitter/receiver. Importantly, it does not rely on closed-loop
MIMO feedback or the need for Channel-State Information Transmission (CSIT). We have demon-
strated the effectiveness of our approach and provided a Bit Error Rate (BER) analysis for 16-, 32-,
and 64-QAM modulation systems. Real-time simulations showcase the differences and advantages of
our proposed algorithm compared to the Multi-Group Space-Time Coding (MGSTC) decoding algo-
rithm and the Lagrange Multipliers Hard Successive Interference Cancellation (LM-HSIC) algorithm,
which we have also developed here. Additionally, our paper includes a mathematical analysis of the
LM-HSIC algorithm. The AP-HSIC algorithm is not only effective and fast in decoding, including
interference cancellation computational feedback, but it can also be integrated with any Linear Pro-
cessing Complex Orthogonal Design (LPCOD) technique, including Complex Orthogonal Design
(COD) schemes such as high-order Orthogonal Space–Time Block Code (OSTBC) with high-order
QAM symbols.

Keywords: M-QAM; MIMO; Rayleigh deep-fading; interference cancellation; parallel decoding;
computational feedback

1. Introduction

The field of advanced wireless MIMO communication technology is rapidly develop-
ing and has attracted significant research interest. Current MIMO technology has greatly
improved in terms of reliability, effectively decoding ultra-high transmission bit rates with
minimal performance loss and decoding heavy information based on high-order QAM
constellations with high BER performance [1–3]. These systems’ performance and features
are achieved thanks to mechanisms that enable the creation of spatial-multiplexing and
uncorrelated MIMO channels with high diversity order, high spatial selectivity, and diver-
sity gain. Other significant advantages of modern wireless MIMO systems include their
effectiveness in dealing with various interferences on the wireless MIMO channel, such as
Rayleigh deep-fading [4–6], multi-path effects [3,7], and scattering phenomena [8,9], the
fast scale of MIMO fading [10], and dealing with multiple interference phenomena and
jamming attacks [11] with several methods of interference cancellation [2,10,12,13]. These
capabilities were possible thanks to the intelligent utilization of the spatial domain [14]. The
requirements for the application of advanced engineering in wireless MIMO networks, such
as Dynamic and Shared Spectrum Access (DSSA) technology [15], adaptive equalizers, and
modern estimation techniques, provide stability in the decoding process and an accurate
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estimation of high-order constellations under bad propagation conditions, and make up the
basic construction of traditional networks [1] (e.g., 5th Generation New Radio (5G-NR) Het-
erogeneous Network (HetNet) [15,16], 6th-mobile-generation [17], and Wi-Fi-6 802.11.ax).
These requirements, in addition to achieving Ultra-Reliable Low-Latency (URLL) in the
decoding process, including the capability of digital Successive Interference Cancellation
(SIC) and the optimization of the spectrum access, are also needed, especially in Unmanned
Aerial Vehicle (UAV) communications [10], point-to-point Stand-Alone (SA) wireless MIMO
network systems [10], communication between autonomous vehicles [18], tactical MIMO
communication systems in the military field, communication medical equipment, and
many more.

Strengthening the cognitive intelligence of the wireless MIMO communication system’s
backbone is a critical contribution to developing modern wireless MIMO systems [19–21].
One of the key features of intelligent mechanisms is the use of parallel spatial decoding
algorithms that are based on real-time hard decisions [22,23]. Spatial decoding algorithms that
include features, such as high reliability, robustness, and flexibility, are creating conditions that
allow a paradigm in which we are freed from constraints as much as possible (e.g., without
the need for physical feedback between the receiver and the transmitter, enabling us to share
the CSIT [7,10,24]).

Our research is focused on developing a spatial decoding algorithm and studying
destructive phenomena in the wireless channel. The wireless channel plays a crucial
role in the transmission process, and it is important for researchers to develop effective
methods for quickly and accurately processing MIMO wireless channel matrices, which
represent the “propagation characteristics”. These methods and studies are essential for
the development of advanced communication systems. A good communication channel
enables optimal throughput, spectral efficiency, and network capacity and minimizes
power consumption. In advanced MIMO wireless communication systems, adjusting
the channel parameters to support next-generation technologies can result in favorable
propagation characteristics, especially in higher frequency bands [25]. Current approaches
such as massive MIMO, Coordinated Multipoint Operation (CoMP), Millimeter Wave,
and Industrial Internet of Things (IIoT) rely on higher frequency bands and contribute
to advancements beyond 5G-NR or 6th-mobile-generation requirements, also known as
next-generation technologies [26].

Our research aligns with the trends and goals of deploying these advanced technolo-
gies, particularly in urban environments, indoor applications, large and dense cities, and
areas with many end users. This aims to significantly improve real-time connectivity and
drastically increase information rates. The communication bottleneck depends on the
wireless medium [27]. All these areas that we mentioned are characterized by Rayleigh
deep-fading phenomena, which damage the channel significantly [28]. Therefore, it is
crucial to integrate spatial SIC decoding algorithms at the front end of the receiver compo-
nent of advanced base stations, Access Points (APs), relays, and advanced modems. For
example, in deploying small-cell HetNet in 5G-NR networks, these components play a
critical role in increasing the number of users and the channel’s capacity in a given area.
However, the presence of Rayleigh deep-fading phenomena between the relay and the end
users may cause the scheduler to lower the order of the transmitted constellations. Thus,
integrating spatial SIC decoding algorithms such as AP-HSIC or LM-HSIC in the Radio
Intelligence Controlling (RIC) of the small-cell HetNet is significant. These algorithms can
counteract destructive phenomena and determine high-order constellation orders.

Few spatial SIC decoding algorithms constitute exemplary contributions, such as the
possibility of an extension approach in the modulation order and the generality of time–
frequency–space scenario solutions via the decoding core mechanisms. These approaches
apply to all modern communication systems’ high-quality operation. The meaning of
these concepts pertains to creating a situation where the algorithmic complexity overheads
and the computational complexity overheads of the decoding algorithms are preserved
low, even though the order of the QAM constellation increases significantly. The existence
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of the convergence capability of the decoding algorithm and maintaining the general-
ization principle must be taken into account, even though the order of the constellation
increases significantly [1,22,29]. For example, a decoding algorithm developed for 16-
QAM must be able to decode constellations of significantly higher orders of QAM while
maintaining properties of generalization, fast convergence, and reasonable computational
complexity [1,5,22,29]. In addition, the utilization of any number of multiple antenna ar-
rays in the transmitter as well as in the receiver side without any computational limitation,
such as power domain multiplexing management, for example, is essential for advanced
MIMO schemes such as massive-MIMO systems [30].

Another example of the essential contribution of a few advanced spatial SIC decod-
ing algorithms is to allow, in the development process of the algorithms, the approach
of the accurate decoding of any value of constellation order or any arbitrary mapping
constellations of bits to the M-QAM symbol, especially in a high order of QAM [5], as
we mentioned, but under challenging interference scenarios. In addition, the intelligent
development of advanced spatial SIC decoding algorithms allows integration with any
version of COD scheme approaches such as OSTBC [7] or Orthogonal Space-Frequency
Block Codes (OSFBC) [7]. As we mentioned, we focus on the ability to overcome different
types of interference and deal with a diversity of interference phenomena, such as wireless
destruction channels, small/large scale fading, deep-fading, and interference jamming [31–36],
with Channel-State Information Receivers (CSIRs) only.

Clearly, to cope with these challenges, several types of advanced algorithms have
been developed and are increasingly embedded in many wireless MIMO communication
systems, including spatial selectivity capability and breakthrough techniques (e.g., high-
resolution beam-forming techniques [37,38], hybrid beam-forming [39,40], classical digital
SIC [10], and non-conventional beam-forming based on Machine Learning (ML) digital
SIC [41,42], Non-Orthogonal Multiple Access (NOMA) algorithms [43,44], and several
algorithms for massive MIMO systems [30,45,46]).

In recent years, these advanced techniques have combined several linear and non-
linear detection algorithms that try to achieve optimal performance in aspects of low
computational complexity, fast rate of convergence, the minimization of the BER, and
maximizing the channel’s capacity. Examples of using traditional linear and non-linear
detector algorithms include Linear Minimum Mean-Square-Error Interference Cancellation
(LMMSE-IC) [7] detector, Zero Forcing Interference Cancellation (ZF-IC) [7], Minimum
Mean-Square-Error Interference Rejection Combined (MMSE-IRC) [2,47–49], Message Pass-
ing Detection (MPD) [1] method, Low Complexity Message Passing Detection (LCMPD)
algorithms [29], Log-Likelihood Ratio (LLR) algorithms [5,50], Monte Carlo sampling
techniques (e.g., Markov Chain Monte Carlo (MCMC) algorithms [51]), and the MGSTC
algorithm [7,52].

The common denominator of all these spatial SIC decoding algorithms is to focus on
the ability to decode very quickly and with a high reliability and ultra-fast information rate
based on the high order of QAM constellations while maintaining the complexity and low
computational cost, all under the assumptions of MIMO Rayleigh fading channels. On one
hand, all these algorithms achieve near-optimal performance and a high order of diversity
gain with high BER performance. On the other hand, these techniques assume several
fundamental assumptions, the non-existence of which in the real-physical environment of
the MIMO wireless may cause significant performance degradation and even collapse (i.e.,
non-convergence or high BER levels) of the algorithms. Examples of basic assumptions
in constructing the MPD and LCMPD are that the wireless matrix of the MIMO channels
is under the hardening channel model and that its component values do not change
throughout the channel estimation and the decoding process [1,29]. In algorithms of a
serial nature [1,7,29,42,52–54], these basic assumptions are critical since for any significant
disturbance or distortion that was not taken into account in the assumed model, the serial
process will lead to the amplification of computational errors and even to the collapse of the
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technique. Moreover, in the fast-scale medium, the assumption of the hardening channel
model is not realistic [10,45].

Advanced spatial SIC decoding algorithms must address the identity and nature of
interference in space in wireless communication reality [3]. Rayleigh deep-fading is a
prime example of a challenging interference phenomenon [4,55]. Rayleigh deep-fading is
one of the most complex and destructive phenomena in the MIMO wireless communica-
tion topics [4,55]. This phenomenon occurs when objects with a reflective and dispersive
nature, such as scatters, are located in close proximity to the antenna arrays on the transmit-
ter/receiver side, causing self-interference between the antenna array. Rayleigh deep-fading
also causes a high spatial correlation between the antennas in the array. The high-correlation
effect destroys the orthogonality between the columns of the wireless MIMO channel matrix
and hits on the spatial-multiplexing capabilities between the transmitting–receiving sig-
nals [4,7,55]. The likelihood of experiencing deep-fade in wireless channels is significantly
higher in the lower region of the Probability Density Function (PDF) of the Rayleigh distri-
bution, on average. In many cases, the Rayleigh deep-fading phenomenon significantly
decreases the BER performance and increases the number of decoding iterations of the
algorithms. All the algorithms we have reviewed so far in this article do not handle the
Rayleigh deep-fading scenarios.

Another critical aspect that advanced decoding algorithms such as LCMPD, MPD, and
LLR must focus on and treat is the exact identification of the statistical distribution of the in-
terference and the noise parts. These algorithms generally establish a basic assumption that
the noise components received in the receiver and the matrix of transmitted symbols have
a Gaussian distribution [1,29]. This reference makes it possible to calculate the interference
component’s duration and variability and estimate the conditional probability function
of editing a transmitted symbol matrix given the channel matrix and the received signal
matrix in the decoding process. Therefore, if there is an interference with a non-Gaussian
distribution or a channel medium that causes the distribution of the transmitted signal to
change [15,45], it will create many errors in the calculation processes of these algorithms.

This paper proposes a generalized version of the new spatial SIC decoding algorithms—the
AP-HSIC [56]—that only requires the CSIR assumption and generates computational feedback
at the receiver. This computational feedback can overcome the effects of random scatters in a
multi-path fading channel and several interference effects, such as Rayleigh deep-fading under
quasi-static flat Rayleigh fading MIMO channels combined with high-leveled AWGN. In this
paper, we present the algorithm’s BER performance of three systems based on three spatial SIC
decoding algorithms and compare them. The first system, the MGSTC spatial SIC decoding
algorithm, is based on the MIMO array’s serial-decoding mode. The second system is based
on the AP-HSIC algorithm applied to M-QAM, which combines parallel processing decoding
methods in the MIMO array. The last system is the proposed LM-HSIC algorithm, based on
Lagrange multipliers optimization and parallel decoding. This comparison was conducted in
an environment of different Rayleigh deep-fading, high-level AWGN, and scatter scenarios.
The comparison is reflected in the performance levels of BER vs. the average Signal-to-Noise
Ratio (SNR). The analysis considers different high constellation orders (16, 32, and 64–QAM)
in the three wireless system networks (MGSTC, AP-HSIC, LM-HSIC). We also present the
theoretical graphs of the BER vs. SNR of the three constellation orders with AWGN only and
the BER vs. SNR graphs of the three constellation orders with fading without an error correction
mechanism at the receiver. We compared all these graphs with the BER vs. SNR graphs of the
three constellation orders with the AP-HSIC performance under fading scenarios.

The proposed AP-HSIC and LM-HSIC algorithms for M-QAM offer an advanced
solution for effectively canceling digital interference. This innovative approach provides
unprecedented flexibility for SA networks without the need to control the channel or share a
channel that statistically measures the spatial domain. In addition, the proposed algorithms
enable the real-time decoding of symbol matrices in a parallel MIMO mode, ensuring seam-
less interference cancellation without compromising the decoding rate. These capabilities
are a game-changer for ultra-high bit-rate and high-capacity channel requirements. With
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the proposed algorithms, we can differentiate between the original channel–response ma-
trix and interfering factors, ∆H, allowing for the accurate calculation and timely updating
of the general MIMO channel–response matrix online. The computation of ∆H allows
a total offset of the interference/deep-fading effects. As a result, the system can decode
the original symbols without additional transmission power consumption or the need for
re-transmission. Furthermore, the statistical dependencies between general interference
(or jamming signal) and the user signals, as well as the AWGN and the user signals, fur-
ther enhance the system’s effectiveness (see Lemma F.1 in [56]). This represents a pivotal
advancement in addressing interference and Rayleigh deep-fading effects.

The remaining sections of the paper are as follows: Section 2 presents the proposed
communication MIMO model under Rayleigh deep-fading scenarios. Section 3 introduces
the changes in the new version of the AP-HSIC algorithm. Section 4 provides a description
of the LM-HSIC algorithm, and Section 5 details the real-time simulations and numerical
results based on SIMULINK and MATLAB platforms, offering a comparison of the per-
formances of three methods: the MGSTC, the AP-HSIC, and the LM-HSIC. In Section 6,
we draw conclusions and present a vision for further research on efficient solutions to
communication system bottleneck problems under interference scenarios.

2. Proposed Communication MIMO Model under Rayleigh Deep-Fading MIMO
Channels with a High Order of QAM-Constellation Decoding Capability

This section describes a proposed communication MIMO model for two methods
under various Rayleigh deep-fading scenarios. Deep-fading correlation significantly im-
pacts the performance of multiple-antenna systems, especially in the adaptive digital signal
process and the decoding process [4,55]. The double-correlated Rayleigh deep-fading chan-
nels are present on both sides of the system, on the transmitter and receiver sides, as was
studied in [4]. Estimating Rayleigh deep-fading and improving the system’s performance
is one of the most significant challenges in wireless communication systems [4,10,55].

In this section, we describe and analyze two methods of wireless communication
MIMO systems. The MIMO model assumes Rayleigh deep-fading MIMO channels, and
in Section 5, we compare the BER performance aspects of these two architecture methods.
The first method uses a transmitter based on the MGSTC scheme [7,52]. It incorporates the
diversity-transmitting technique known as OSTBC. The receiver employs the MGSTC-SIC
decoding algorithm, as detailed in [7,52]. The MGSTC scheme is capable of interference
cancellation and decoding, allowing it to extract a single symbol information block from
a group of transmitted blocks and merge them using an error-reducing mechanism. This
technique operates by iteratively decoding the data at the receiver. It involves the parallel
transmission of a sequence of blocks in space and, at the receiver, a serial decoding process
(i.e., multi-stage decoding), which separates the different transmitted blocks. The MGSTC
decoding algorithm decodes and separates the individual data streams from a specific user
from the other streams. Multiple-stage decoding creates a communication mode that can
mitigate the impact of noise, such as the sum of AWGN with the other broadcast blocks.
This is achieved by leveraging the accuracy of a single decoding stream in relation to the
previous decoding iteration.

The primary advantage of the MGSTC decoding algorithm is that at the end of each
iteration when we move to the next group order, it provides a diversity gain for every matrix
of OSTBC transmission modulation symbols, Sci (MGSTC includes I component-blocks Sci ,
for group ci, i = 1, ..., I). The diversity gain is increased by ni × (n1 + ... + ni + Nr − Nt)
when i is the iteration number and ni is the number of transmission antennas in the i’th
group, while Nr, and Nt are the number of total receiver antennas and the number of total
transmission antennas, respectively.

The challenge with MGSTC and multi-stage decoding lies in the fact that the benefits
in certain communication scenarios, such as when spatial interference occurs, can become
drawbacks. The drawbacks are evident in the SIC process of the MGSTC, as it operates in a
serial decoding mode for data blocks. Any errors accumulated in a given SIC process are
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repeated to the next iteration and amplified. Another notable weakness of the MGSTC is
the wireless links between the antenna pairs in the descending order of the transmitter’s
antenna array (e.g., antennas 5 and 6 in our simulation) to all antenna arrays of the receiver.
These paths suffer more attenuation regarding the SNR or Signal-Interference Ratio (SIR)
and rely on diversity gain. Consequently, when facing interfering signals, deep-fading
effects, or high levels of AWGN, an imbalance in the trade-off between higher diversity
gain and a lower SNR occurs, leading to increased values of the BER. The second method
we propose is divided into two sub-approaches. The first sub-approach uses the MGSTC-
OSTBC at the transmitter and the AP-HSIC decoding algorithm at the receiver instead of
the MGSTC decoding algorithm in the first method. In the second sub-approach, we use
the MGSTC-OSTBC at the transmitter and the LM-HSIC at the receiver. This hybrid scheme
provides immunity against various interference scenarios, as shown in the simulation
results below and in [56]. Additionally, it achieves a more efficient and accurate process
of parallel spatial decoding of the series of simultaneously transmitted symbol blocks
compared to the first scheme we described. We separately analyze and simulate the
two methods under challenging interference Rayleigh deep-fading scenarios in the same
spatial domain.

It is important to emphasize that in both methods, we simultaneously transmit all the
transmission sub-blocks, S =

[
ST

c1
, ST

c2
, ..., ST

cI

]T , in parallel. However, in the first MGSTC
method, the MGSTC decoding algorithm decodes the sub-blocks serially, while in the
second method that we propose, the receiver, based on the AP-HSIC and on the LM-HSIC
algorithms, decodes all the sub-blocks at the same time, based on parallel iterations of
offsetting the noise/interfering part in the channel, as we will present later.

We start the first and essential analysis with the Rayleigh deep-fading case. In that
case, the communication standard model, Y =

√
PHS + Z changes (see [4]):

Y =
√

PHTRS +

√
P

SNR
Z, (1)

where
HTR = R

1
2 HT

1
2 (2)

where, essentially, the Kronecker correlation structure of the MIMO–transmission–receiver
matrix is HTR with dimension [Nr × Nt] [4,55]. The elements of H are the conventional
MIMO channel matrix, where R and T are the receiving and transmitting Rayleigh deep-
fading self-correlation matrices. Let ∆T = I − T

1
2

∆R = I − R
1
2

(3)

where ∆T and ∆R are the changes in the Rayleigh deep-fading self-correlation matrices
on the transmitter and receiver sides, respectively, concerning the matrix H. Next, Y is
the received signal matrix, with dimensions [Nr × k], where k is the number of sample
symbols per frame and S is the matrix of OSTBC transmission modulation symbols of the
desired transmission, with dimensions [Nt × k]. Finally, the SNR is the signal-to-noise ratio,
P is the total transmission power, and Z is the independent complex Gaussian random
variable noise.

We can rewrite (2) by placing (3) into (2) to obtain the following:

HTR = (I − ∆R)H(I − ∆T)
= H − ∆RH − H∆T + ∆RH∆T

= H + ∆H,

(4)

where
∆H = −∆RH − H∆T + ∆RH∆T. (5)
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The new form of the MIMO model is, therefore,

Y =
√

P(H + ∆H)S +

√
P

SNR
Z. (6)

In the following, we would write

Y = (H + ∆H)S + Z, (7)

where the normalizing factors
√

P,
√

P
SNR were suppressed into the related variable for

convenience. Taking the expectation on both sides of (7), we obtain the following:

E[Y] = E[H + ∆H]E[S], (8)

since, by assumption, E[Z] = 0 and since S and H + ∆H are assumed to be statistically
independent. In the sequel, we will therefore write the following:

Y = (H + ∆H)S, (9)

for convenience.
To demonstrate the weakness in the MGSTC serial decoding algorithm in the presence

of the Rayleigh deep-fading phenomenon, the equation that presents the first iteration [7],
where Ỹc1 is the received signal matrix for decoding the first symbol block Sc1 , is as follows:

Ỹc1 = Θc−c1Y = Θc−c1

[
√

PHS +
√

P∆HS +

√
P

SNR
Z

]

=
√

PΘc−c1 Hc1 Sc1 +
√

PΘc−c1 ∆HS +

√
P

SNR
Z̃c−c1 ,

(10)

where H =
[

Hc1 Hc2 · · · HcI

]
and Θc−c1 is the null-space matrix relative to the

decoding process of Sc1 , that is Θc−c1

[
Hc2 · · · HcI

]
= 0, and Z̃c−c1 is the independent

complex Gaussian random variable noise multiplied with the null-space matrix Θc−c1 . The
next step of MGSTC is to assume that

Ỹc1 =
√

PH(e f f )
c1 Sc1 +

√
P

SNR
Z̃c−c1

where H(e f f )
c1 := Θc−c1 Hc1 , and then use it in order to compute the Maximum Likelihood

(ML) approximation S̃c1 for Sc1 as

S̃c1 =
1√
P

E
[(

H(e f f )
c1

)+
Ỹc1

]
.

Obviously, the computation of S̃c1 from the very first step contains errors since it does
not take into account the part

√
PΘc−c1 ∆HS. Note that the probability that Θc−c1 ∆H = 0

is negligible. The interference part
√

PΘc−c1 ∆HS that is received as an additive impact to
the MGSTC decoding algorithm produces the most destructive effects, as it destroys the
orthogonality of Θc−c1 relative to the other part of the MIMO channel–response matrix, a
destruction that the MGSTC algorithm cannot deal with (see [11]). Moreover, the classical
solution of increasing the transmission power P [3,45] also increases the interference part
and thus makes it a bad solution.

In this paper, we present a new method called the AP-HSIC, the generalized AP-HSIC,
to deal with problems associated with interference estimation and digital interference
cancellation in the presence of Rayleigh deep-fading effects. Our algorithm utilizes self-
computational feedback at the receiver to decode any value of M in an M-QAM under
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challenging conditions of Rayleigh deep-fading channels. Additionally, we provide BER
analysis and results for 16-, 32-, and 64-QAM for better understanding.

To calculate ∆H and S from Equation (6), we can initially use the standard model
to estimate an approximate value for S based on the known channel–response matrix H.
We then iterate Equation (6) to find the best approximations for ∆H and S, as described
in Section 3. Below, we provide computational feedback detailing how to nullify ∆H
by computing ∆H and utilizing it to accurately decode S and to update the new MIMO
channel–response matrix to be H + ∆H without having to update the transmitter.

3. The Generalized AP-HSIC Algorithm for QAM Modulations

In a previous study [56], and relating to (9), an algorithm was proposed for the
computational self-feedback at the receiver that identifies both unknown ∆H and an
unknown symbol matrix S ∈ PSKn×k that solve the following problem:

arg min
∆H,S
∥Y− (H + ∆H)S∥2

F

such that: ∥S∥F ≤ rmax
√

nk,
(11)

where rmax =
√

2 is the maximum absolute value of the points in the PSK modulation.
Since this problem is non-convex, and since PSKn×k is a discrete finite set with at least two
elements, the problem can be proven to be NP-complete. To circumvent the complexity
of the problem, Ref. [56] adopted the following strategy. Assuming currently that ∆H is
known, the minimal Frobenius-norm solution of (9) for S is given by

(H + ∆H)+Y = S, (12)

which is linear in terms of the variables (H + ∆H)+ and S. Now, the solution space of the
linear Equation (12) when ∆H is also unknown is given by{

S = (W1Y∗ + W2)(Im + YY∗)−1Y

(H + ∆H)+ = (W1Y∗ + W2)(Im + YY∗)−1,
(13)

where W1 ∈ Cn×k and W2 ∈ Cn×m are free parameters.
Finally, the following closed and convex sets in Cn×m ×Cn×k were defined as follows:

C0 =
{ (

(H + ∆H)+, S
)
| ∆H arbitrary and S ∈ B

(
0,
√

2nk
) }

, (14)

and
C1 =

{(
(H + ∆H)+, S

)
| ∆H and S are given by (13)

}
. (15)

The algorithm finds S and ∆H, which solves Equation (12) by finding a point(
(H + ∆H)+, S

)
located in the intersection C0

⋂ C1. The algorithm finds a point of intersec-
tion by starting from an arbitrary point (however, in [56], the more plausible starting point
∆H0 = 0, S0 = H+Y was chosen) and by projecting the points of an improvement onto
the boundary of the convex sets (orthogonally) one at a time. Alternating between them
leads to convergence (the algorithm was shown to converge to the point of intersection in a
linear time, see [56]). Finally, the algorithm projects the entries of S onto the closest points
inside the modulation. The algorithm performed best because the matrices S with entries
from the PSK modulations appear to be on the boundary of the ball B

(
0,
√

2nk
)

so that
any boundary point of C0

⋂ C1 was sufficient to deduce S closest to the modulation and
∆H satisfying (9) (note that this equation guarantees S with minimal Frobenius-norm for
any given ∆H). This does not hold anymore when the entries of S are taken from QAM
modulations since the modulation points have more than one radius of magnitude.
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We, therefore, propose an alternative for the closed-convex set C0, so the algorithm
will also work with QAM modulations. The convex sets and the projections are similar
to what was defined for PSK modulations. Given a QAM modulation, let rmax be the
maximum radius of magnitude of the modulation constellation. We define the ball of
matrices B

(
0, rmax

√
nk

)
as the set of all matrices S with the Frobenius-norm less than or

equal to rmax
√

nk. Since for each S ∈ QAMn×k, ∥S∥F =
√

∑n
i=1 ∑k

j=1
∣∣Si,j

∣∣2 ≤ rmax
√

nk,

then S ∈ B
(

0, rmax
√

nk
)

. Therefore, B
(

0, rmax
√

nk
)

is a closed-convex set that contains all

possible symbol matrices S ∈ QAMn×k. We therefore define the new closed-convex set
C0 as follows:

C0 =
{ (

(H + ∆H)+, S
)
| ∆H arbitrary and S ∈ B

(
0, rmax

√
nk

) }
(16)

In addition, let PC0 : (A, B)→ (A, βB) be the (orthogonal) projection function on the
closed-convex set C0, where

β =

{
1 if ∥B∥F ≤ rmax

√
nk

rmax
√

nk
∥B∥F

otherwise

Finally, we define PQAM as a function that projects the entries of S onto the closest
points of the modulation to calculate the final feasible S. For the definition of the orthogonal
projection PC1 : (A, B)→

(
Â, B̂

)
∈ C1, we compute (see [56] for the proof of correctness)

[
W2 W1

]
=

[
A(Im + YY∗) BY∗(Im + YY∗)

]
·
[

Im YY∗

Y∗ Y∗YY∗

]+
. (17)

and set {
Â = (W1Y∗ + W2)(Im + YY∗)−1

B̂ = (W1Y∗ + W2)(Im + YY∗)−1Y,
(18)

where W1, W2 are given by (17).

Remark 1. In [56], the assumption that m ≤ n and H + ∆H is full rank was made, implying that
(H + ∆H)(H + ∆H)+ = Im. The reasoning is as follows: Y = (H + ∆H)S with the genuine S
and using the Moore–Penrose pseudo-inverse properties implies the following:

(H + ∆H)(H + ∆H)+Y

= (H + ∆H)(H + ∆H)+(H + ∆H)S

= (H + ∆H)S = Y.

Let S̃ =
(

H + ∆̃H
)+

Y computed by Algorithm 1, where we may assume that ∆̃H = ∆H, since
any destruction explaining the received signal would cancel its influence. Then,

(H + ∆H)S̃ = (H + ∆H)(H + ∆H)+Y = Y,

since by assumption (H + ∆H)(H + ∆H)+ = Im. Therefore, by solving (H + ∆H)+Y = S
instead of Y = (H + ∆H)S, we do not lose connection with the genuine solution, and the algorithm
might produce a relevant approximation.

The AP-HSIC algorithm is given in Algorithm 1, where the procedures for PC0 and
PC1 are given in Algorithm 2 and Algorithm 3, respectively. A flowchart of the algorithm
explaining the flow of computations is given in Figure 1.
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Algorithm 1 AP-HSIC: Receiver Self-Feedback Algorithm For QAM

Require: An algorithm for computing Moore–Penrose pseudo-inverses and algorithms for comput-
ing PC0 , PC1 and PQAM.
Input: H, Y, rmax, ϵ > 0.
Output: ∆H and S such that (H + ∆H)+Y = S, where S ∈ QAMn×k.

1. ∆H0 ← 0
2. S0 ← H+Y
3.

(
(H + ∆H1)

+, S1

)
← PC1

(
(H + ∆H0)

+, S0

)
4.

(
(H + ∆H1)

+, S1

)
← PC0

(
(H + ∆H1)

+, S1

)
5. ∆H1 ←

(
(H + ∆H1)

+
)+
− H

6. t← 1
7. while

√
∥∆Ht − ∆Ht−1∥2

F + ∥St − St−1∥2
F > ϵ do

8.
(
(H + ∆Ht+1)

+, St+1

)
← PC1

(
(H + ∆Ht)

+, St

)
9.

(
(H + ∆Ht+1)

+, St+1

)
← PC0

(
(H + ∆Ht+1)

+, St+1

)
10. ∆Ht+1 ←

(
(H + ∆Ht+1)

+
)+
− H

11. t← t + 1
12. end while
13. ∆H ← ∆Ht
14. S← PQAM(St)
15. return t, ∆H, S

Algorithm 2 The Orthogonal Projection PC0

Require: Matrix and Arithmetic Operations.
Input: (A, B) such that A is n×m and B is n× k and rmax, n, k.
Output:

(
Â, B̂

)
∈ C0 the orthogonal projection of (A, B) onto the boundary of C0.

1. if ∥B∥F > rmax
√

nk then

2. β← rmax
√

nk
∥B∥F

3. else
4. β← 1
5. end if
6.

(
Â, B̂

)
← (A, βB)

7. return
(

Â, B̂
)

Algorithm 3 The Orthogonal Projection PC1

Require: An algorithm for computing Moore–Penrose pseudo-inverses.
Input: (A, B) such that A is n×m and B is n× k and Y.
Output:

(
Â, B̂

)
∈ C1 the orthogonal projection of (A, B) onto the boundary of C1.

1.
[

W2 W1
]
←

[
A(Im + YY∗) BY∗(Im + YY∗)

]
·
[

Im YY∗

Y∗ Y∗YY∗

]+
2. Â← (W1Y∗ + W2)(Im + YY∗)−1

3. B̂← (W1Y∗ + W2)(Im + YY∗)−1Y
4. return

(
Â, B̂

)
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Start

Input: H, Y, rmax, ϵ > 0

Initialization: Set ∆H0 = 0, S0 = H+Y, t = 0

Project
(
(H + ∆Ht)

+, St

)
onto C1 and

set the result as
(
(H + ∆Ht+1)

+, St+1

)

Project
(
(H + ∆Ht+1)

+, St+1

)
onto C0 and

set the result as
(
(H + ∆Ht+1)

+, St+1

)

Extract ∆Ht+1 from (H + ∆Ht+1)
+

Compute the error ϵt+1 :=√
∥∆Ht+1 − ∆Ht∥2

F + ∥St+1 − St∥2
F

Does ϵt ≤ ϵ?

Finalisation: Set ∆H as ∆Ht+1. Project
St+1 onto QAMn×k and set the result as S.

Set t as t + 1

Output: t, ∆H, S

Stop

yes

no

Figure 1. AP-HSIC algorithm flowchart.

The AP-HSIC assumptions are summarized as follows [7,15]:

1. m ≥ n.
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2. k ≥ max(m, n) = m.
3. Ht := H + ∆Ht is full rank for any t ≥ 0.

The first point is that, assuming CSIR only, the number of receiving antennas should
be at least as large as the number of transmit antennas to achieve a high diversity order.
Secondly, the number of frames (denoted as k) should be greater than the number of
receiving antennas in order to increase the decoding rate. The paper [56] rigorously demon-
strates in Theorem F.2 on page 21 that the estimation error E

[
∥Hestimated − Hexact∥2

F

]
→ 0

as k → ∞. Furthermore, Theorem F.1 on page 21 conclusively proves that the subset of
full-rank matrices in Cm×n is dense in Cm×n. Therefore, for any given ϵ > 0, a full-rank
matrix Ht,ϵ exists, such that ∥Ht,ϵ − Ht∥2

F ≤ ϵ, which allows the assumption that Ht itself is
full rank.

Regarding the complexity of the algorithm, let

ϵ0 :=
√

E
[
∥S0 − S∗∥2

F + ∥∆H0 − ∆H∗∥2
F

]
denote the starting error, where S∗ is the exact sent signal and ∆H∗ is the exact interference
that defines a global optimal solution. Then, in [56], it was proved that the number of
AP-HSIC iterations until the current error ϵt becomes less than or equal to the given error
threshold ϵ is O

(∣∣∣ln(
ϵ
ϵ0

)∣∣∣). The complexity of each iteration is O
(

max(m, n, k)3
)
= O

(
k3)

and is dominated by the pseudo-inverses calculations. Thus, the total complexity of the AP-
HSIC algorithm is O

(
k3 ·

∣∣∣ln(
ϵ
ϵ0

)∣∣∣). In Theorem F.4, it was proven that, in the worst case,
ϵ is bounded below as ϵ ≥ n√

mSNR
. Thus, for a fixed number of transmit antennas n and for

any given SNR, one should increase the number of receive antennas m accordingly, or for
fixed n and m, one should increase the SNR accordingly to obtain the needed threshold error.
However, our experience with the AP-HSIC algorithm shows that it converges quickly to
a globally optimal solution for any practical range of n, m, SNR and ϵ > 0 regardless of
the choice of the initial point. This is due to the reduction of the problem (11) to a convex
problem under the assumption of Ht, t ≥ 0 being full rank.

4. The LM-HSIC Algorithm

In this section, we will define a new algorithm that finds S and ∆H to solve
the problem

arg min
∆H,S
∥Y− (H + ∆H)S∥2

F

such that: ∥S∥F = rav
√

nk,
(19)

where rav = E
[
∥S∥F√

nk

]
. The new algorithm uses Lagrange multipliers optimization.

A significant advantage of this algorithm is its independence on the assumption that
H + ∆H is full rank, unlike AP-HSIC, which requires this assumption. This allows for
dealing with scenarios where ∆H is a interference receiver–response matrix that attempts to
eliminate H, thus reducing the rank of H + ∆H. Therefore, the new algorithm is considered
complementary to the AP-HSIC algorithm. Moreover, since it uses fewer Moore–Penrose
pseudo-inverse computations per iteration, it performs better in terms of CPU time since it
converges only locally and not globally. Let the Lagrangian be

L(∆H, S, λ) = ∥Y− (H + ∆H)S∥2
F + λ

(
∥S∥2

F − r2
avnk

)
. (20)

Let U = (U1, U2, U3) ∈ Cm×n ×Cn×k ×R be a directional matrix with ∥U∥F = 1 and
let h > 0. Then, the directional derivative at (∆H, S, λ) in the direction U = (U1, 0, 0) with
∥U∥F = ∥U1∥F = 1 is defined by
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∇UL(∆H, S, λ) = lim
h→0+

L(∆H + hU1, S, λ)−L(∆H, S, λ)

h
. (21)

We compute

L(∆H + hU1, S, λ)−L(∆H, S, λ)

= ∥Y− (H + ∆H)S− hU1S∥2
F − ∥Y− (H + ∆H)S∥2

F

= −2hℜ⟨Y− (H + ∆H)S, U1S⟩F + h2∥U1S∥F.

From which we conclude that

∇UL(∆H, S, λ) = −2ℜ⟨Y− (H + ∆H)S, U1S⟩F
= −2ℜ(trace(U∗1 (Y− (H + ∆H)S)S∗)).

(22)

To find a necessary condition for a minimum point of L, we set ∇UL(∆H, S, λ) = 0,
for any U as above. This implies that

−2ℜ(trace(U∗1 (Y− (H + ∆H)S)S∗)) = 0. (23)

Since the last holds true for any U = (U1, 0, 0) as above, we conclude that

(Y− (H + ∆H)S)S∗ = 0. (24)

Similarly, let U = (0, U2, 0) be a directional matrix with ∥U∥F = ∥U2∥F = 1 and let
h > 0. Then, the directional derivative at (∆H, S, λ) in the direction U is defined by

∇UL(∆H, S, λ) = lim
h→0+

L(∆H, S + hU2, λ)−L(∆H, S, λ)

h
. (25)

We compute

L(∆H, S + hU2, λ)−L(∆H, S, λ) = ∥Y− (H + ∆H)(S + hU2)∥2
F

+ λ
(
∥S + hU2∥2

F − r2
avnk

)
− ∥Y− (H + ∆H)S∥2

F − λ
(
∥S∥2

F − r2
avnk

)
= ∥h(H + ∆H)U2∥2

F − 2ℜ⟨Y− (H + ∆H)S, h(H + ∆H)U2⟩F
+ ∥Y− (H + ∆H)S∥2

F + λ∥S∥2
F + 2λℜ⟨S, hU2⟩F

+ λh2∥U2∥2
F − λr2

avnk− ∥Y− (H + ∆H)S∥2
F − λ

(
∥S∥2

F − r2
avnk

)
= h2∥(H + ∆H)U2∥2

F − 2hℜ⟨Y− (H + ∆H)S, (H + ∆H)U2⟩F
+ λ

(
2hℜ⟨S, U2⟩F + h2∥U2∥2

F

)
.

From which we can conclude that

∇UL(∆H, S, λ) = −2ℜ⟨Y− (H + ∆H)S, (H + ∆H)U2⟩F + 2λℜ⟨S, U2⟩F
= −2ℜ

(
trace

(
U∗2

(
(H + ∆H)∗(Y− (H + ∆H)S)− λS

)))
.

(26)

To find a necessary condition for a minimum point of L, we set ∇UL(∆H, S, λ) = 0
for any U = (0, U2, 0) as above. This implies that

− 2ℜ
(
trace

(
U∗2

(
(H + ∆H)∗(Y− (H + ∆H)S)− λS

)))
= 0. (27)

Since the last holds true for any U as above, then

(H + ∆H)∗(Y− (H + ∆H)S)− λS = 0. (28)
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Finally, we calculate the last partial derivative for U = (0, 0, U3) with ∥U∥F = |U3| = 1:

∇UL(∆H, S, λ) = U3

(
∥S∥2

F − r2
avnk

)
= 0 ⇒ ∥S∥F = rav

√
nk (29)

From (24) and (28), we conclude

λSS∗ = 0⇒ |λ|∥S∥2
F = 0⇒ λ = 0, (30)

since ∥S∥2
F = 0 would imply that S = 0n,k, which is impossible since 0 ̸∈ QAM and since

we assumed that ∥S∥F = rav
√

nk.
Setting λ = 0 into (28), we obtain

(H + ∆H)∗(Y− (H + ∆H)S) = 0. (31)

Now, from (24), we obtain

YS∗ = (H + ∆H)SS∗, (32)

where, under the assumption that SS∗ is invertible, we obtain

YS∗(SS∗)−1 = H + ∆H. (33)

From the properties of the Moore–Penrose pseudo-inverse, if S has a full row rank,
then S+ = S∗(SS∗)−1 and SS+ = In. However, even if SS∗ is not invertible, YS+ − H
yields the best approximation for ∆H in terms of the Frobenius-norm. This means that
∆H = YS+ − H has the minimal energy (with value ∥∆H∥2

F = ∥YS+ − H∥2
F) that explains

the current corrupted signal Y. There are two explanations for the assumption that ∆H has
minimal energy. The first one is related to the fact that the noise intensity depends mainly
on the adequate bandwidth of the communication system and the noise density, which
depends on the ambient temperature and the Boltzmann constant. Many modern wireless
communication systems with wide bandwidth are susceptible to this noise, which causes a
significant decrease in the energy of the transmitted symbol to a minimum. In addition,
it can be assumed that ∆H is part of the noise expression; therefore, taking the minimum
energy of ∆H is a reasonable assumption [57]. The second explanation is related to the type
of interrupter. Different kinds of jammers or interference phenomena can be destructive
even with minimal energy; for example, an intelligent jammer or a deep-fade. The presence
of these phenomena causes a change and rotation in the entire constellation received in the
receiver and results in the process of accumulating destructive errors [11]. These reasons
formed the guideline for choosing ∆H with minimal norm. We therefore set

∆H = YS+ − H, (34)

as the preferred solution for ∆H for known S.

From (28), we obtain

(H + ∆H)∗Y = (H + ∆H)∗(H + ∆H)S. (35)

As explained above, we obtain the following preferred solution for S when ∆H is
known (even if H + ∆H is not full rank):

(H + ∆H)+Y = S, (36)

as the best solution in terms of the Frobenius-norm.
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To conclude, from (24), (28), and (29), we need to solve
∆H = YS+ − H

S = (H + ∆H)+Y

∥S∥F = rav
√

nk,

(37)

to obtain a critical point of L for which ∇L = 0.

Remark 2. Note that (37) represents highly coupled non-linear non-convex equations of ∆H, S.
Contrastingly, the function f (∆H) = ∥Y− (H + ∆H)S∥2

F is a convex function of ∆H for a given
S, and

∥Y− (H + ∆H)S∥2
F =

∥∥Y
(

I − S+S
)
+

(
YS+ − (H + ∆H)

)
S
∥∥2

F

=
∥∥Y

(
I − S+S

)∥∥2
F +

∥∥(YS+ − (H + ∆H)
)
S
∥∥2

F,

implying that the global minimum of f is accepted for ∆H satisfying(
YS+ − (H + ∆H)

)
S = 0,

which, by the assumption that S is full rank (and therefore SS+ = In), is equivalent to

∆H = YS+ − H.

Similarly, the function g(S) = ∥Y− (H + ∆H)S∥2
F is a convex function of S for a given ∆H, and

∥Y− (H + ∆H)S∥2
F =

=
∥∥∥(I − (H + ∆H)(H + ∆H)+

)
Y + (H + ∆H)

(
(H + ∆H)+Y− S

)∥∥∥2

F

=
∥∥∥(I − (H + ∆H)(H + ∆H)+

)
Y
∥∥∥2

F
+

∥∥∥(H + ∆H)
(
(H + ∆H)+Y− S

)∥∥∥2

F
,

implying that the global minimum of g is accepted for S that minimizes∥∥∥(H + ∆H)
(
(H + ∆H)+Y− S

)∥∥∥2

F
,

that is, for
S = (H + ∆H)+Y.

These are exactly the equations appearing in (37). This explains the fast convergence of the algorithm
since once ∆H or S was identified correctly, the other is concluded immediately.

Algorithm 4 presented below, which we call the Lagrange Multipliers Hard Successive
Interference Cancellation (LM-HSIC), solves the problem (19), after which it uses PQAM
to project the final S onto the closest point in the related QAMn×k modulation. In its
main loop, it computes ∆Ht+1, St+1 by calculating (37) as YS+

t − H and (H + ∆Ht)
+Y,

respectively, until the errors converge below some prescribed error threshold ϵ > 0. The
flow of computations is described in Figure 2.

The LM-HSIC assumptions are summarized as follows:

1. k ≥ max(m, n) = m.
2. St is full rank for any t ≥ 0.
3. The exact sent signal satisfy ∥S∗∥F ≈ E[∥S∥F].
4. ∆H0, S0 is sufficiently close to the global minimum ∆H∗, S∗ of L, or at least ∆H0, S0 is

sufficiently close to a local minimum of L.

The reasoning for k ≥ max(m, n) is the same as for the AP-HSIC. The reasoning for
St being full rank is to obtain an explicit solution for Equation (24) (see also Remark 2).
However, note that the exact sent signal S∗ is n× k, where k depends on the receiver sample
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rate that can be chosen as k ≥ m ≥ n, thus allowing for S∗ to be full rank [7,15]. Moreover,
the content of S∗ can be decided by protocols that guarantee it being full rank [7,15]. Thus,
in this regard, LM-HSIC is less restrictive than the AP-HSIC.

The LM-HSIC algorithm’s complexity per iteration is O(max(m, n, k)) = O(k3) due
to pseudo-inverse computations. The number of iterations needed for convergence is
uncertain, but typically, it converges in just a few iterations based on our experience.

A disadvantage of the algorithm is the assumption that the Frobenius-norm of the
transmitted S∗ is close to E[∥S∥F]. The problem with this assumption might arise in cases
where ∥S∗∥F is far from E[∥S∥F]. For example, when S∗ = s01n×k (i.e., all the symbols
are the same), where s0 is a symbol in the modulation that has the minimal radius (or
the maximal radius). Now, because of the constraint, the algorithm outputs S̃, where∥∥∥S̃

∥∥∥
F
≈ E[∥S∥F], and, therefore, the resulting S̃ will be inaccurate. This means that the

algorithm will work best when the sent information is distributed between the radii of the
QAM modulation points so that the radius of the sent signal ∥S∗∥F√

nk
is close to the expected

radius rav = E
[
∥S∥F√

nk

]
, and the farther the radius is from the expected radius, the more

errors the result will contain. Note, however, that S∗ = s01n×k and other “corner” points of
QAMn×k are very rare, if not impossible, in real-world applications, and can be avoided by
protocols [7].

Algorithm 4 LM-HSIC: Receiver Self-Feedback Algorithm For QAM

Require: An algorithm for computing Moore–Penrose Pseudo-inverses, and an algorithm for
computing PQAM.

Input: H, Y, ϵ > 0, rav = E
[
∥S∥F√

nk

]
, n, k.

Output: ∆H and S such that Y = (H + ∆H)S, where S ∈ QAMn×k.
1. ∆H0 ← 0
2. S0 ← H+Y
3. S0 ← S0

∥S0∥F
· rav
√

nk

4. ∆H1 ← YS+
0 − H

5. S1 ← (H + ∆H1)
+Y

6. S1 ← S1
∥S1∥F

· rav
√

nk
7. t← 1
8. while (∥∆Ht − ∆Ht−1∥F > ϵ) ∨ (∥St − St−1∥F > ϵ) do
9. t← t + 1

10. ∆Ht ← YS+
t−1 − H

11. St ← (H + ∆Ht)
+Y

12. St ← St
∥St∥F

· rav
√

nk
13. end while
14. ∆H ← ∆Ht
15. S← PQAM(St)
16. return t, ∆H, S
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Start

Input: H, Y, rav = E
[
∥S∥F√

nk

]
, ϵ > 0, n, k

Initialization: Set ∆H0 = 0, S0 = H+Y, t = 0

Normalize St as St = St
∥St∥F

· rav
√

nk

Compute ∆Ht+1 = YS+
t − H

Compute St+1 = (H + ∆Ht+1)
+Y and

normalize it as St+1 = St+1
∥St+1∥F

· rav
√

nk

Compute the error ϵt+1 :=
max(∥∆Ht+1 − ∆Ht∥F, ∥St+1 − St∥F)

Does ϵt+1 ≤ ϵ?

Finalisation: Set ∆H as ∆Ht+1. Project
St+1 onto QAMn×k and set the result as S.

Set t as t + 1

Output: t, ∆H, S

Stop

yes

no

Figure 2. LM-HSIC algorithm flowchart.

5. Simulations and Numerical Results

In order to demonstrate the effectiveness of the proposed AP-HSIC method and assess the
performance of LM-HSIC, we conducted simulations of a communication environment using
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both the MATLAB and SIMULINK platforms. These simulations were based on three different
methods described in Sections 2–4 with the same conditions and challenging scenarios. We
compared the performance of these simulations using graphical and numerical aspects. Each
simulation involves multiple stages that simulate various disturbance scenarios. We used the
two architectures from the previous article [56] (with an extension to 16-, 32-, and 64-QAM
modulation) and created a new architecture for LM-HSIC, as described below.

To enhance the architectures’ efficiency, the standard MGSTC transmitter encoder for
all configurations integrates three OSTBC components. Each element is equipped with two
transmission antennas, resulting in a total of six transmission antennas (Nt = 6). On the
receiving side, the signal matrix Y is captured through six receiving antennas (Nr = 6).
Furthermore, alongside the estimated MIMO channel matrix, the received signal is directed
through the MGSTC decoding algorithm in the first architecture, the AP-HSIC algorithm
in the second architecture, and the LM-HSIC algorithm in the third architecture. In the
first architecture, the decoding process at the receiver is based on three Maximal-Ratio
Combiners (MRC) components. We developed the environment of Rayleigh deep-fading
using lotteries of the low values of the Rayleigh envelope (below 0.3), and we characterized
the PDF of the SNR–Rayleigh distribution as a function of the SNR [58,59]:

f (SNR) =
1

SNR
e−

SNR
SNR (38)

In addition, we ran the simulations based on the average SNR (SNR).
In the first simulation, we used an MGSTC transmitter comprising an information

generator block, symbol modulation block, and OSTBC-encoder blocks. The MIMO channel
is quasi-static flat Rayleigh deep-fading and can change the AWGN intensity parameter.
The receiver blocks consist of an MGSTC decoding algorithm and MRC blocks. Lastly, we
included a BER calculator to measure the practical effects of the system’s performance. The
second simulation also used the MGSTC transmitter and MIMO channel matrix block with
the same components as described earlier. However, on the receiver side, instead of an
MGSTC decoding algorithm block, we replaced it with an AP-HSIC block to strengthen the
receiver’s ability to operate in parallel decoding communication mode. The third simulation
was based on the same components described in the first and second simulations, but we
changed the decoding algorithm from AP-HSIC to LM-HSIC.

We examined the systems’ architectures regarding the BER vs. average SNR by
running the interference Rayleigh deep-fading scenario with high-level AWGN under three
modulation orders as follows: 16-, 32-, and 64-QAM at the transmitter. Eventually, we
compared the performances between MGSTC and AP-HSIC and between LM-HSIC and
AP-HSIC.

The simulation performance parameters are determined by [60]. As it is widely
recognized, the systematic BER of the MGSTC decoding algorithm always corresponds
to the BER of its final iteration. The systematic BER of the MGSTC decoding algorithm
was compared to the average total BER of the AP-HSIC and the average total BER of the
LM-HSIC, as shown in the following figures.

5.1. MGSTC and AP-HSIC Simulations under Rayleigh Deep-Fading Scenario and High-
Leveled AWGN

As described earlier, this section presents simulation results of the algorithms MGSTC
and AP-HSIC in the case of deep-fading with high-leveled AWGN based on 16-QAM,
32-QAM, and 64-QAM modulations. In Figure 3, we present graphs showing the BER
performance as an average SNR function using 16-QAM constellation modulation under
the Rayleigh deep-fading scenario and high-leveled AWGN. These graphs compare the BER
performance improvements of the AP-HSIC algorithm with the MGSTC algorithm. They
demonstrate the BER performance of the three iterations of MGSTC alongside the overall
BER performance of AP-HSIC. Similarly, the graphs at Figure 4a,b illustrate the graphs
showing the BER performance of the MGSTC and the AP-HSIC decoding algorithms as an
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average SNR function under 32-QAM and 64-QAM constellation modulation, respectively,
under the Rayleigh deep-fading scenario and high-leveled AWGN. In Figures 3 and 4a,b,
we observe that only the first iteration of the MGSTC decoding algorithm (only the 2× 2
MIMO case) achieves a BER performance that enables decoding and extracting information.
In contrast, the second and third iterations do not converge and exhibit high BER levels even
at an extreme SNR. It can be seen that in Figure 3, the blue graph that represents the BER
performance of the first iteration of the MGSTC scheme achieves BER ≈ 10−3 at an average
SNR ≈ 16 dB. The purple graph represents the BER performance of the AP-HSIC based on
the full MIMO case 6× 6 and achieves BER ≈ 10−3 at an average SNR ≈ 14 dB. The yellow
graph (which represents the BER performance of the second iteration of the MGSTC system
based on the MIMO case 4× 6) and the orange graph (which represents the total BER
performance of the MGSTC system based on the full MIMO case 6× 6) do not converge
to BER levels that enable the reproduction of information. In Figure 4a, the blue graph
representing the BER performance of the first iteration of the MGSTC decoding algorithm
achieves BER ≈ 10−3 at an average SNR ≈ 20 dB and achieves BER ≈ 5 · 10−4 only at
an average SNR ≈ 25 dB. The purple graph represents the BER performance of the AP-
HSIC, achieves BER ≈ 10−3 at an average SNR ≈ 19 dB, and achieves BER ≈ 10−6 at an
average SNR ≈ 25 dB. The yellow and orange graphs, representing the BER performance
of the second and third iterations of the MGSTC, respectively, also do not converge to
BER levels that enable the reproduction of information in the 32-QAM modulation. In
Figure 4b, we can see that the blue graph represents the BER performance of the first
iteration of the MGSTC scheme an, achieves BER ≈ 10−3 at an average SNR ≈ 24 dB,
and achieves BER ≈ 10−5 only at an average SNR ≈ 30 dB in the 64-QAM modulation.
The purple graph represents the BER performance of the AP-HSIC, achieves BER ≈ 10−3

at an average SNR ≈ 20 dB, and achieves BER ≈ 10−6 at an average SNR ≈ 28 dB in
the 64-QAM modulation. The BER performance of the second and third iterations of the
MGSTC, represented by the yellow and orange graphs, also fails to converge to BER levels
that enable the reproduction of information in the 64-QAM modulation.

In our series of experiments, we have gained important insights and drawn con-
clusions. When comparing the BER performance of the AP-HSIC algorithm with the
second and third iterations of the MGSTC decoding algorithm under scenarios of Rayleigh
deep-fading in three types of modulation order, it is evident that the AP-HSIC algorithm
outperforms the others. It exhibits superior BER performance and an efficient parallel
decoding process. This is due to the fact that the second and third iterations of the MGSTC
decoding algorithm fail to achieve the required BER performance for decoding the transmit-
ted information (see Figure 5). The proposed AP-HSIC offers better diversity gain compared
to the first iteration of the MGSTC algorithm, despite the fact that the transmission power
of the first two antennas in the first iteration of the MGSTC is six times higher than in
the full MIMO mode of the AP-HSIC scheme (6× 6 in our proposal compared to 2× 2 in
the first iteration of the MGSTC scheme). In Figure 3, it can be observed that AP-HSIC
achieves a diversity gain ≈ 2 dB higher compared to the first iteration of the MGSTC.
In Figure 4a, the AP-HSIC presents a diversity gain ≈ 2 dB higher compared to the first
iteration of the MGSTC. In Figure 4b, the AP-HSIC presents a diversity gain ≈ 5 dB higher
compared to the first iteration of the MGSTC. In the proposed scheme, the BER performance
is significantly improved compared to the first iteration of the MGSTC scheme. There is
also an enhancement in spatial utilization, and, equally important, the energy efficiency of
the AP-HSIC is significantly higher than that of MGSTC. Additionally, the ability of the
AP-HSIC to mitigate interference when combined with parallel decoding (i.e., it allows
parallel decoding and utilizes the operation of all six transmission/receiving antennas
in parallel) is superior to the serial decoding and error accumulation of the MGSTC. The
AP-HSIC scheme consistently shows lower BER levels at lower average SNR areas for all
constellation orders than the MGSTC scheme.
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Probability of Error Performance (16QAM)

Figure 3. Plot graphs of BER performance vs. the average SNR that compares three iterations of the
MGSTC algorithm and systematic iteration of the AP-HSIC algorithm under 16-QAM modulation in
the presence of Rayleigh deep-fading and high-level AWGN.

Propability of Error Performance (32QAM)

AP-HSIC

MGSTC Stild1

MGSTC Stild2

MGSTC Stild3

(a)

Propability of Error Performance (64QAM)

AP-HSIC

MGSTC Stild1

MGSTC Stild2

MGSTC Stild3

(b)

Figure 4. BER performance vs. the average SNR of three iterations of the MGSTC algorithm and
systematic iterations of the AP-HSIC algorithm. (a) Plot graphs of BER performance vs. the average
SNR that compares three iterations of the MGSTC algorithm and systematic iterations of the AP-HSIC
algorithm under 32-QAM modulation in the presence of Rayleigh deep-fading and high-level AWGN.
(b) Plot graphs of BER performance vs. the average SNR that compares three iterations of the MGSTC
algorithm and systematic iterations of the AP-HSIC algorithm under 64-QAM modulation in the
presence of Rayleigh deep-fading and high-level AWGN.

Furthermore, it is worth noting that MGSTC has a significant limitation: errors ac-
cumulate with each iteration. This means that the accuracy of each iteration sets a lower
bound for the accuracy of subsequent iterations. On the other hand, AP-HSIC, which relies
on a parallel decoding process, consistently maintains robust BER performance across all
decoding processes.

In Figure 5, we have conducted a detailed comparison of the systematic BER per-
formance of MGSTC and AP-HSIC algorithms across different average SNR levels. We
tested all three constellation orders under the Rayleigh deep-fading scenario and high-level
AWGN. The systematic BER performance of the MGSTC algorithm does not converge to a
suitable level for minimal normal decoding across all three scenarios. Conversely, the BER
performance of the AP-HSIC system consistently converges to a level suitable for decoding
in all three scenarios.

Figure 6 presents the number of iterations in the main loop of the AP-HSIC algorithm
for each SNR value in 16-QAM modulation under the Rayleigh deep-fading scenario and
high-leveled AWGN. Clearly, higher SNR values result in faster convergence. However,
a more important and clearer conclusion is the fact that the value of SNR ≈ 0 dB, the
number of iterations is only five iterations, and, in SNR ≈ 3 dB and higher, the number of
iterations drops to only two iterations and stabilizes permanently. There are two significant
explanations for this insight. The first explanation is that, even if the theoretical design of
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the AP-HSIC algorithm error, ϵ, in SNR ≈ 3 dB, is ϵ ≈ 0.0775 (e.g, ϵ ≥ n√
mSNR

), practically,

the actual algorithm error value drops drastically to a value of ϵ ≈ 10−9. This is because
activating a full MIMO array causes a high diversity gain. The second explanation is that,
since the AP-HSIC samples several samples before the appearance of the disturber and
keeps these samples in memory, a good starting point is created, which is expressed as
∆H0 = 0 and S0 = H+Y. This starting point makes the algorithm converge very quickly to
an optimal point (see also Remark 2).

In summary, Rayleigh deep-fading scenarios are extreme interference situations that
cause the breakdown of the spatial SIC decoding algorithm, such as MGSTC. Increasing the
transmission power does not seem to be effective in these interference scenarios; it actually
amplifies the interference factors and significantly hampers the decoding processes, as
indicated in (10). Our results demonstrate a substantial improvement in the performance of
the AP-HSIC algorithm and its effective handling of interference scenarios such as Rayleigh
deep-fading.

Probability of Error Performance

AP-HSIC (64QAM)

MGSTC General (64QAM)

AP-HSIC (32QAM)

MGSTC General (32QAM)

AP-HSIC (16QAM)

MGSTC General (16QAM)

Figure 5. Plot graphs of BER performance vs. the average SNR for three systematic iterations using
the MGSTC algorithm and AP-HSIC algorithm. Each iteration is represented by 16-QAM, 32-QAM,
and 64-QAM modulations, respectively. The performance was compared under the presence of
Rayleigh deep-fading and high-level AWGN.

Number of Iterations (NoI) AP-HSIC 16QAM

Figure 6. Average number of iterations for each average SNR value of AP-HSIC under 16-QAM
modulation in the presence of Rayleigh deep-fading and high-level AWGN.

5.2. LM-HSIC and AP-HSIC Simulations under Rayleigh Deep-Fading and High-Leveled AWGN

In this section, we present simulation results for the algorithms LM-HSIC and AP-
HSIC in the case of Rayleigh deep-fading and high-leveled AWGN based on 16-QAM,
32-QAM, and 64-QAM modulations. Figure 7 illustrates the detailed comparison of the
BER performance of the algorithms AP-HSIC and LM-HSIC in the case of Rayleigh deep-
fading and high-leveled AWGN scenarios based on 16-QAM, 32-QAM, and 64-QAM
modulations. In this Figure, the continuous purple, black, and green graphs represent
the BER performance of the AP-HSIC algorithm in 16-, 32-, and 64-QAM constellation
order, respectively, while the dotted purple, black, and green graphs represent the BER
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performance of the LM-HSIC in 16-, 32-, and 64-QAM constellation order, respectively. It
can be seen from Figure 7 that both the AP-HSIC and LM-HSIC attain comparable low
BER values for each modulation. This means that both the AP-HSIC algorithm and the
LM-HSIC algorithm converge in all three scenarios to a BER performance level that enables
proper and accurate decoding. However, it is important to note that the AP-HSIC algorithm
outperforms the LM-HSIC algorithm in terms of BER performance and achieves higher
diversity gains across all three constellation orders. Furthermore, the graph of LM-HSIC
shifts to the right relative to the graph of AP-HSIC, and this shift diminishes as the SNR
increases. That is, both the AP-HSIC algorithm and the LM-HSIC algorithm converge in all
three constellations to a BER performance level that enables a proper and accurate decoding
process. However, it can be noticed that the BER performance of the AP-HSIC algorithm is
better than the BER performance of LM-HSIC, and it achieves a higher diversity gain in all
three constellation orders.

Figure 8 illustrates the number of iterations of both algorithms for each SNR value
under 16-QAM modulation. We observe that the number of iterations of LM-HSIC remains
constant throughout the graph, even when the SNR value is low. In contrast, AP-HSIC’s
number of iterations increases as the SNR decreases. Hence, we conclude that the LM-
HSIC algorithm runs faster than the AP-HSIC algorithm. However, this phenomenon is
related to the LM-HSIC algorithm’s local convergence against the AP-HSIC algorithm’s
global convergence.

In summary, in simulations with each of the modulations, the LM-HSIC algorithm has
a better diversity gain than AP-HSIC, but the AP-HSIC’s performance is better. In addition,
the LM-HSIC algorithm runs faster than AP-HSIC.

Probability of Error Performance

AP-HSIC 64QAM

AP-HSIC 32QAM

AP-HSIC 16QAM

LM-HSIC 16QAM

LM-HSIC 32QAM

LM-HSIC 64QAM

Figure 7. Plot graphs of BER performance vs. the average SNR for three systematic iterations using
the LM-HSIC algorithm and AP-HSIC algorithm. Each iteration is represented by 16-QAM, 32-QAM,
and 64-QAM modulations, respectively. The performance was compared under the presence of
Rayleigh deep-fading and high-level AWGN.

Number of Iterations (NoI) 16QAM

Figure 8. Comparisons of an average number of iterations for each average SNR value between
LM-HSIC and AP-HSIC under 16-QAM modulation in the presence of Rayleigh deep-fading.
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In Figure 9, we present comparisons between the BER performances of AP-HSIC under
the scenarios of Rayleigh fading in the Single-Input Single-Output (SISO) case with 16-,
32-, 64-QAM to the theoretical 16-, 32-, and 64-QAM SISO AWGN only. We also present
comparisons between the Rayleigh fading SISO case scenarios with 16-, 32-, and 64-QAM
and no error correction algorithm. It is clear from Figure 9 that the numerical result of the
AP-HSIC algorithm is situated between the trade-off region of the theoretical graphs to
the system with no error correction algorithm. These results illustrate the reliability of the
AP-HSIC algorithm and the decoding improvement capabilities in the parallel decoding
mode under the assumptions of Rayleigh fading, including AWGN.

Probability of Error Performance

Theoretical-64QAM SISO AWGN only

Rayleigh fading-64QAM SISO

Rayleigh fading-32QAM SISO

Rayleigh fading-16QAM SISO

Theoretical-32QAM SISO AWGN only

Theoretical-16QAM SISO AWGN only

AP-HSIC Rayleigh fading-16QAM SISO

AP-HSIC Rayleigh fading-32QAM SISO

AP-HSIC Rayleigh fading-64QAM SISO

Figure 9. Comparisons between BER performances vs. the average SNR of AP-HSIC under the
scenarios of Rayleigh fading–SISO with 16-, 32-, and 64-QAM and the theoretical 16-, 32-, and 64-
QAM SISO AWGN only, and between the scenarios of Rayleigh fading SISO 16-, 32-, and 64-QAM
without any correction algorithm.

6. Discussion, Conclusions, and Future Directions

Dealing with interference offset demands precise spatial selectivity and accurate chan-
nel estimation through channel sharing and receiver–transmitter feedback. An intelligent
algorithm upgrade for the receiver is crucial for achieving high interference cancella-
tion capabilities and enabling cognitive and collaborative radio communications. This
computational feedback is essential for advancing MIMO technology in modern wireless
communications, especially for technologies relying on Ultra-Reliable Low-Latency Com-
munication Coding (URLLC) [61], some of which must be able to respond instantaneously,
such as robots, autonomous vehicles, and medical equipment. Moreover, some technolo-
gies physically do not allow feedback (e.g., satellite communications) [61]. Therefore,
computational feedback is critical when applying these technologies.

The simulation results showed that there is a necessary balance between energy
efficiency and computational capabilities. The findings suggest that merely boosting trans-
mission power does not always decrease the BER when faced with different interference
scenarios, especially when there is a requirement to enhance the amount of information
and transmit at a higher data rate (such as when higher modulation is necessary). Equally
important, the ability to decode a heavy information transmission in parallel spatial decod-
ing mode and simultaneously to SIC in complex interference scenarios is critical for the
next generation of modern wireless network MIMO systems. The diversity of SIC decoding
algorithms, such as AP-HSIC and LM-HSIC, enables real-time decoding capabilities in the
real world of advanced MIMO techniques and allows them to break through the limitations
of real-time space-SIC algorithms.

In our study, we observed a significant improvement in decoding performance by
analyzing the BER versus SNR graphs of AP-HSIC and LM-HSIC algorithms. We compared
these algorithms to the decoding algorithm MGSTC when dealing with destructive inter-
ference phenomena such as Rayleigh deep-fading and high-level AWGN. Our theoretical
analyses and simulations enabled us to highlight the main contributions of the AP-HSIC
and LM-HSIC decoding algorithms, which are as follows: Improved BER versus SNR
performance, resulting in significantly enhanced diversity gain and diversity order of the
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AP-HSIC and the LM-HSIC compared to MGSTC, especially in relation to the second and
third iterations of MGSTC, which fail to converge to a minimum BER for information
decoding. The AP-HSIC and LM-HSIC algorithms play a crucial role in enhancing energy
efficiency. A more efficient communication system combining the AP-HSIC and LM-HSIC
decoding algorithms, allowing for the transmission of six times less transmission energy
per symbol compared to the first iteration of MGSTC (which has an order antenna array
of 2× 6), three times less transmission energy per symbol compared to the second iter-
ation (order antenna array of 4× 6), and 1.5 times less transmission energy per symbol
compared to the third iteration (order antenna array of 6× 6). This is achieved while
maintaining a fixed-order antenna array of 6× 6 antennas in the AP-HSIC and LM-HSIC
without needing orthonormal matrix bases to mitigate interferences, which are ineffective
in Rayleigh deep-fading scenarios. Additional contributions are the ability of AP-HSIC and
LM-HSIC algorithms to decode information in parallel compared to the serial decoding of
MGSTC, as well as the capability of computational feedback without the need for closed-
loop MIMO capabilities, enabling the handling of diverse interference scenarios such as
Rayleigh deep-fading.

In our upcoming research, we aim to enhance the concept of computational feed-
back, examine assumptions regarding selective channels in frequency and time-space, and
explore non-stationary channels in a comprehensive manner. We also intend to develop
techniques (based on Machine Learning) to estimate the channels between the transmit-
ter and the receiver and evaluate the channels between the interference and the receiver,
including identifying and classifying the interference or jamming. Our overall aim is to
produce optimal feedback that offsets interference and increases the channel capacity and
reliability under the same concept of optimal feedback.
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