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Abstract: We introduce a high-throughput 3D scanning system designed to accurately measure cattle
phenotypes. This scanner employs an array of depth sensors, i.e., time-of-flight (ToF) sensors, each
controlled by dedicated embedded devices. The sensors generate high-fidelity 3D point clouds, which
are automatically stitched using a point could segmentation approach through deep learning. The
deep learner combines raw RGB and depth data to identify correspondences between the multiple
3D point clouds, thus creating a single and accurate mesh that reconstructs the cattle geometry on
the fly. In order to evaluate the performance of our system, we implemented a two-fold validation
process. Initially, we quantitatively tested the scanner for its ability to determine accurate volume
and surface area measurements in a controlled environment featuring known objects. Next, we
explored the impact and need for multi-device synchronization when scanning moving targets (cattle).
Finally, we performed qualitative and quantitative measurements on cattle. The experimental results
demonstrate that the proposed system is capable of producing high-quality meshes of untamed cattle
with accurate volume and surface area measurements for livestock studies.

Keywords: cattle scanner; deep learning; segmentation; 3D surface reconstruction

1. Introduction

On 15 November 2022, the world’s population surpassed the milestone of 8 billion
people [1], thereby accentuating the significance of food security on a global scale. The
reliable quantification of livestock and plant phenotypes has emerged as a vital factor in
maximizing efficiency and sustainability in food production.

Cattle farming forms an integral part of global agriculture, serving as a substantial
contributor to food resources and economic stability for numerous communities. In
the wake of technological advancements, we see an increasing adoption of innovative
practices aimed at enhancing productivity and sustainability in cattle farming. One such
technological breakthrough proposed here is the automated extraction of cattle phenotypes
through 3D cattle scanning.

Utilizing 3D scanning to capture the volume and surface area of cattle enables farmers
and researchers to extract valuable insights about the animals’ health, growth trends, and
overall welfare [2]. These outcomes are possible because 3D scanning facilitates accurate
and continuous body condition scoring, which supports optimized feed and nutrition
management strategies.

There are several significant challenges in the field of 3D cattle scanning that must be
overcome to develop a reliable and accurate system capable of delivering the aforementioned
benefits. Here are some of the most critical issues:
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1. Untamed Animals: Scanning cattle managed on pastures or rangelands which rarely
interact with humans presents a considerable challenge due to their unpredictable
movements. Restraint using firm structures is necessary, but these structures complicate
the 3D reconstruction process as they must be segmented out from the captured model,
adding complexity and potential for errors.

2. Synchronization of Capturing Process: A robust and meticulously designed synchro-
nization process is essential to minimize errors during the capture phase, particularly
with untamed animals. Inadequate synchronization can lead to inaccurate data due to
animal movement during scanning.

3. Need for Manual Management of Captured Data: The requirement for man-
ual segmentation, reconstruction, and camera calibration for each scan impedes
the development of a high-throughput system. This manual intervention slows
down the process, making it challenging to scan a large number of animals quickly
and efficiently.

Addressing these challenges is crucial for advancing the technology and enhancing its
practical application in livestock management.

Here, we introduce a 3D cattle scanning system designed to overcome the aforemen-
tioned challenges. Our system employs RGBD cameras (Microsoft Corporation, Redmond,
WA, USA) to generate precise and reliable 3D models of cattle, automating the process of
calculating cattle volume and surface area for high-throughput applications. The structure
of this paper is as follows: Section 2 reviews previous work in the areas of 3D animal
scanning, 3D point cloud registration, and 3D surface reconstruction. It establishes the
context for our innovations and the need for advancements over existing technologies. In
Section 3, we provide a detailed overview of our proposed scanning system, describing
the technologies and methodologies incorporated into its pipeline. We also compare our
system’s capabilities with those of existing solutions, highlighting the improvements and
advantages our system offers. In Section 4, we detail the experiments conducted to test
the efficacy of our scanning system. We discuss the setup, execution, and outcomes of
these experiments, providing empirical evidence of the system’s performance. Section 5 is
the conclusion with a comprehensive discussion of the experimental results, evaluating
the system’s effectiveness in various operational scenarios. We also discuss the broader
implications of our findings, the system’s potential impact, and directions for future research
and development.

2. Background and Related Work

The domain of computer vision in measuring livestock physical traits is experiencing
rapid growth, as evidenced by several impactful studies. For instance, the research
discussed in [3] employed three Kinect V1 sensors to evaluate the quality of Japanese Black
cattle. This system benefited from the inclusion of a single tilt sensor that helped adjust the
orientation of the animals post data collection. However, this system has limitations, such
as its inability to scan multiple animals quickly due to its manual operation. Additionally,
it employs a calibration and scanning technique that is not robust enough for scanning
untrained animals.

Another study [4] addressed the issue of measurement accuracy by using a 3D thermo-
sensing device in conjunction with a handheld 3D scanner, which eliminates the need for
camera calibration to construct 3D models. Although the results were promising when
tested on known objects to verify accuracy, the study did not extend these findings to actual
cattle, leaving questions about the accuracy and completeness of the 3D models of live
subjects. Furthermore, the throughput of their system remains low, as it can perform only a
limited number of scans within a given time frame.

The study in [5] employs three Kinect cameras, strategically positioned to synchronize
views and construct 3D models of cattle. A notable aspect of their approach is the attempt
to synchronize the capture process using message passing over a local network. Similarly,
the research described in [6] also utilizes software-based synchronization while allowing
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animals to walk through the scanner. However, both approaches face challenges with
software-based synchronization via local networks, which can be unreliable due to network
congestion or sudden movements of the animals. Moreover, both methods require animals
to traverse the scanning area without restraint. This practice can introduce errors due
to animal movement and is also ineffective for scanning untamed animals, limiting the
applicability of these techniques in real-world scenarios.

To tackle the issues associated with fixed scanning setups and the difficulties in
managing animal movement during scanning, [7] introduces a novel portable scanner. This
device employs two scanning cameras mounted on a sturdy, portable frame, simplifying the
calibration process due to the fixed nature of the cameras. This design makes the calibration
straightforward and less prone to error. However, the study lacks a crucial component: it
does not report accuracy tests using known objects, which is essential for validating the
precision of the system.

Moreover, the proposed scanning methodology in [7]—where the scanner is mounted
on a human operator who then moves around the animals—proves impractical for scanning
large numbers of cattle. This approach requires substantial time and effort per animal,
making it inefficient for use in large-scale farming operations where quick and numerous
scans might be necessary.

Contributions

We propose a system that expands on the growing body of research in animal
phenotyping by presenting a high-throughput sensor rig comprising a flexible number
of time-of-flight sensors arranged on a frame. Our scanning system offers three distinct
advantages over comparable systems:

1. Flexibility: The automatic point cloud registration provides operators with the
flexibility to disassemble and reassemble the camera set in any configuration they
desire. This versatility facilitates the system’s transport, making it both possible
and practical.

2. High Throughput: By employing multiple advanced algorithms to process each
cattle’s data, such as a deep learning-based segmentation model and an autonomous
image point cloud registration method, the system accelerates data acquisition and
processing. This allows operators to scan numerous animals within a relatively
short time.

3. Ability to Scan Untamed Animals: Scanning untamed animals, which are considerably
more challenging to restrain and scan, necessitates a robust and narrow chute to
keep the animal still during the data capture. This narrow chute features solid
horizontal bars that limit the animal’s space and a manually activated head catch that
securely holds the animal’s neck, preventing any movement. Such narrow chutes
can complicate the point cloud segmentation of the animal. However, since the
developed software can successfully segment the animals from other objects even in
highly cluttered environments, the frame can be mounted encircling a chute or any other
device suitable for containing untamed animals.

We show that our system can produce highly accurate scans, while extracting animal
traits in real-time. This efficiency is largely due to the utilization of a sophisticated image
segmentation model, which relies on both depth and RGB images to automate the same
segmentation process.

3. Proposed Scanning System

In this section, we will describe our proposed platform to build the 3D cattle scanner
system and its hardware and software implementation details.

3.1. Platform

Figure 1 presents the platform used in our 3D cattle scanner. The frame is completely
isolated from and mounted around the chute to prevent any disturbances due to the animals’
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movements. A control box (Figure 1b) is responsible for controlling the cameras and taking
images of the cattle which will be described in detail in what follows.
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Figure 1. (a) A schematic representation of the scanning system. (b) Real-life figure of the camera
frame and the system components.

3.2. Hardware

The hardware for the scanner consists of three main parts: the camera setup, the
control box, and the user interface. The camera setup is flexible and designed to create a
volume large enough to cover the entire animal. The current setup for large beef and dairy
cattle is as follows:

(a) Two cameras in the front to cover the head/neck of the animal.
(b) Two cameras on top to cover the dorsal view of the animal.
(c) Two cameras on each side to cover the lateral and ventral portions of the animal.
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The automatic point cloud registration described in the software section allows for a
flexible camera setup that is not tied to any specific arrangement. During our experiments
(detailed in Section 4), we varied the setup to handle both small, known objects at close
proximity for accuracy and interference measurements, as well as practical applications such
as cattle scanning. In each case, the system adapted to the number and spatial arrangement
of sensors used.

The control box shows the next component of the scanner system hardware. As
depicted in Figure 1, the control box houses the embedded devices (Nvidia Corporation,
Santa Clara, CA, USA) , a pair of wire networking hubs, a wireless hub, and the power
distribution unit. Each embedded device is paired with an individual ToF sensor and
manages the image acquisition of its respective camera. A total of up to ten embedded
devices and sensors can be installed in one control box, and multiple control boxes can
be interconnected for additional ToF sensors. All elements within the control box are
linked via a private wireless network to the user interface, enabling control over the
scanning procedure.

3.3. Software and Pipeline

As depicted in Figure 2, the block diagram outlines the proposed software pipeline of
the scanner along with a more detailed summary in Pipelines 1 and 2. The software for the
scanning system has four (4) major components: acquisition, processing, registration and
trait-extraction.
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Figure 2. Overview of the software pipeline: The pipeline begins with the data acquisition of RGBD
data, which undergo a segmentation and filtering step to eliminate the background pixels and noise
in both depth and RGB space. The filtered data are subsequently backprojected into 3D space and
then stitched to form a unified 3D model. A mesh is then constructed over the 3D point cloud. Finally,
we measure our traits of interest, volume, and surface area.

3.3.1. Acquisition

The scanning process starts with the acquisition of RGBD (color and depth) images of the
animal, captured by the entire camera assembly. A user-friendly software has been designed,
providing operators the ability to customize settings for the image acquisition process, such
as an automated or manual assignment of cattle IDs. This software, henceforth known as
the Client program, establishes connections with all the embedded devices. Each embedded
device hosts a Server program that processes requests from the Client and orchestrates the
data acquisition process at a software level. Socket connections facilitated by the ZeroMQ
messaging protocol enabled communication between the Client and the Server programs.
Following image collection, all RGB and depth images are saved locally on the embedded
devices along with each sensor’s intrinsic parameters. These images are then transmitted to
the operator’s laptop over a private network for subsequent processing. See Figure 3.
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SERVERS

ZeroMQ

STORAGE

USER INTERFACE

CLIENT

Figure 3. Schematic layout of Server–Client: In this configuration, the Client sends a capture request
to 10 Server programs. Each Server program performs the image acquisition request from the Client
and the captured data are transmitted to a storage device.

Pipeline 1 Data Acquisition Protocol for 3D Scanner

1: Initialize Client on host device
2: Establish ZeroMQ connections to all Servers (embedded devices)
3: for each Server do
4: Send acquisition trigger to Server
5: Wait for acknowledgment from Server
6: Retrieve data from Server
7: Process and store incoming data
8: end for
9: Terminate connections

3.3.2. Processing

In the next step of our pipeline, RGB and depth images are processed to segment the
animal’s body, a crucial step for subsequent 3D registration. Initially, we apply a filtering
technique based on the method proposed in [8], effectively mitigating the “flying pixel”
artifacts typical of ToF sensors.

Following this, we employed Mask R-CNN (Region-based Convolutional
Neural Network), a state-of-the-art deep learning model renowned for its efficacy
in image segmentation [9]. Figure 4 shows a detailed description of the Mask
R-CNN architecture.
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Mask-RCNN Framework

Network Heads:

Figure 4. Mask R-CNN Architecture [9]: Mask R-CNN builds upon two existing Faster R-CNN
heads as detailed in [10,11]. The left and right panels illustrate the heads for the ResNet C4 and FPN
backbones, respectively, with an added mask branch. Spatial resolution and channels are indicated
by the numbers, while arrows represent conv, deconv, or FC layers, inferred from the context (conv
layers maintain spatial dimensions, whereas deconv layers increase them). All conv layers are 3 × 3,
except for the output conv which is 1 × 1. Deconv layers are 2 × 2 with a stride of 2, and ReLU [12] is
used in hidden layers. On the left, ‘res5’ refers to the fifth stage of ResNet, which has been modified
so that the first conv layer operates on a 7 × 7 RoI with a stride of 1 (instead of 14 × 14 with a stride
of 2 as in [10]). On the right, ‘×4’ indicates a stack of four consecutive conv layers.

Our contribution lies in the novel adaptation of the Mask R-CNN framework, which is
traditionally trained solely on RGB images from the COCO (common objects in context)
dataset. In other words, we expanded the work in [13], by using both RGB and depth inputs
and by fine-tuning the Mask R-CNN through a multi-task loss function, we combined
three different types of losses: classification loss (Lcls), bounding box loss (Lbox), and mask
loss (Lmask). The overall loss function is represented as L = Lcls + Lbox + Lmask. The
classification loss given by Lcls = −

∑
i(yilog(pi)) is a cross-entropy loss which measures

the difference between the predicted class probabilities and the true class labels for
each region of interest, where yi is the ground truth one-hot encoded class label, and
pi is the predicted probability of the i-th region of interest belonging to the true class.
The bounding box loss is a smooth L1 loss which measures the difference between the
predicted bounding box coordinates and the ground truth coordinates. It is given by
Lbox =

∑
i smoothL1(ti − t∗i ), where ti is the predicted bounding box coordinates for the

i-th ROI, and t∗i is the ground truth bounding box coordinates for the i-th ROI. And
smoothL1(x) = 0.5x2 if |x| < 1 and |x| − 0.5 otherwise. Then, the mask loss is a pixel-wise
binary cross-entropy loss applied to the predicted segmentation masks and the ground
truth masks given by Lmask = −

∑
i([milog(pi) + (1−mi)log(1− pi)], where mi is the ground

truth mask label for the i-th pixel and pi is the predicted probability of the i-th pixel being
in the object mask.
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As indicated above, in the proposed approach, two separate Mask R-CNN networks
were fine-tuned on two different input types using the same hand-labeled cattle dataset:
RGB and depth. The final mask prediction is obtained by performing an OR operation on
the masks generated by the two models. Formally, let MRGB be the mask predicted by the
RGB model and Mdepth be the mask predicted by the depth model. The final mask M f inal
can be obtained as M f inal = MRGB ∨Mdepth, where ∨ denotes the element-wise logical OR
operation. This approach uses the complementary information provided by the RGB and
depth images to improve the accuracy and robustness of the final segmentation mask.

The usage of RGB+depth inputs significantly enhances the model’s capacity to
accurately segment cattle within our application-specific dataset. By integrating depth
data, our fine-tuned Mask R-CNN not only retains its original segmentation capabilities but
also gains an increased sensitivity to the spatial nuances critical to effective 3D scanning in
agricultural settings.

3.3.3. Registration

After segmentation, the 2D coordinates of the segmented object are backprojected into
3D space, resulting in a segmented point cloud for each sensor. These point clouds are then
stitched/registered to construct a 3D model of the cattle as illustrated in Figure 5.

1H2

2 H
3

1H
4

4H
51 H

6

V1 V2

V3

V6

V4

V5

N = 6 Input Point Clouds Pairwise Registration with ColoredICP Registered Cattle

Vi :  Camera View 1
iHj : Transformation from view j to i

 (a)  (b)  (c)

Figure 5. Multi-view point cloud registration: (a) Given N = 6 point clouds, we perform a simple
pairwise registration of point cloud fragments of the scanned cattle. (b) We use the Colored ICP
algorithm to solve for the coordinate transformation from camera coordinate frame j to camera
coordinate frame i (denoted as iH j). Each view is aligned into the coordinate frame of its adjacent
camera. We fix the coordinate frame of Camera 1 (V1) as the world coordinate frame and then align
all views with respect to coordinate frame 1. (c) This results in a well-aligned point cloud of the
scanned cattle.

The task of registering all the point clouds was performed in a pairwise manner,
utilizing the multi-scale Colored Iterative Closest Point (ICP) algorithm [14,15] with an
initial alignment. The initial alignment of the point clouds was facilitated through the
use of a specially designed calibration cube. This cube was embedded with AprilTag
fiduciaries [16], a type of 2D barcode, which provides reliable and accurate 3D pose
estimation. This initial alignment sets the stage for the more refined multi-scale Colored
ICP algorithm. Subsequent to this initial alignment, the point clouds from each pair are
registered using the Colored ICP algorithm. The algorithm iteratively minimizes the
difference between the points of two point clouds, simultaneously taking into account the
color and geometric information. The optimization is performed over the objective function
using the Colored ICP as follows:
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E(T) = (1− δ)EC(T) + δEG(T) (1)

where T is the transformation matrix to be estimated; EC and EG are the photometric and
geometric terms, respectively; and δ ∈ [0, 1] is a weight parameter that has been determined
empirically. In that sense, the geometric term EG is given by

EG(T) =
∑

(p,q)∈K

(
(p− Tq) · np

)2
(2)

whereK is the correspondence set in the current iteration and np is the normal of point p.
Similarly, the color term EC is expressed by

EC(T) =
∑

(p,q)∈K

(
Cp( f (Tq)) −C(q)

)2
(3)

The rationale for these terms is to measure the difference between the color of the
point q (denoted as C(q)) and the color of its projection on the tangent plane p.

The main contribution of this multi-scale approach to the method is that it progressively
refines the alignment starting from a coarse scale and gradually moves it to a finer one,
thereby ensuring a globally optimal solution while avoiding local minima.

Upon successful pairwise registration, all the registered pairs are linked together. This
process effectively consolidates the registered point clouds from each individual camera
perspective into one unified, globally consistent coordinate frame. The final holistic point
cloud brings together the different views, offering a comprehensive 3D representation of
the object of interest. Figure 5c shows a registered point cloud of an animal after registering
all the views.

To further refine our 3D model, we employ DBSCAN clustering [15,17], which
effectively removes small, potentially erroneous point clusters. The result of this is a
well-segmented point cloud ready for surface reconstruction.

3.3.4. Trait Extraction

The pipeline concludes with a 3D surface reconstruction of the registered point cloud,
facilitated by the Poisson Surface Reconstruction algorithm. As the name suggests, the
Poisson Surface Reconstruction method aims to reconstruct a surface from a set of oriented
points by computing an implicit function X that is 1 inside the surface and 0 outside. The
actual surface is then reconstructed by extracting an appropriate isosurface. This is achieved
by solving the Poisson equation ∆X = ∇V, where V is a vector field derived from the
normals of the oriented points, ∆ is the Laplacian operator, and ∇ is the gradient operator.
This algorithm is designed to reconstruct a smooth, watertight surface from a disorganized
collection of 3D points [18,19], enabling the system to extract any traits of interest. While
our current application primarily focuses on measuring the volume and surface area of
cattle, this stage of the pipeline is designed to be adaptable, accommodating the extraction
of various phenotypes according to user specifications. The system’s flexibility here allows
users to define and extract additional traits of interest, extending beyond the initial focus
on volume and surface area. Thus, although we demonstrate the utility of this process
through our specific measurements, the scanning system is broadly applicable and can be
tailored to meet the diverse needs of its different users.
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Pipeline 2 Scanning Software Pipeline

1: Input
2: I All frames (RGBD + K)
3: C Color images
4: D Depth images
5: K Camera intrinsic matrices associated with images
6: T Initial guess from Apriltag extrinsic calibration
7: Output
8: M Reconstructed mesh
9: SA Surface area

10: V Volume
11: for all {Di, Ci, Ki} ∈ I do
12: D f

i ← FlyingPixelFilter(Di) ▷ Eliminate flying pixels

13: Cm
i , Dm

i ←MaskR−CNN(Ci, D f
i ) ▷ Generate masked depth and color

14: PCDm
i ← π(C

m
i , Dm

i , Ki) ▷ Backproject to create filtered point cloud
15: PCDi ← TSDF(Ci, Di) ▷ Generate unfiltered point cloud
16: PCDm

list.add
(
PCDm

i

)
▷ Append PCDm

i to filtered point clouds
17: PCDlist.add(PCDi) ▷ Append PCDi to unfiltered point clouds
18: end for
19: PCDm

all, PCDall ← PairAlign
(
PCDm

list, PCDlist, T
)

▷ Stitch point clouds

20: PCDm
all ← CompOrientNormals

(
PCDm

all

)
▷ For filtered point cloud

21: PCDc
all ← DBSCAN

(
PCDm

all

)
▷ Refine segmentation via Clustering

22: M← Poisson
(
PCDc

all

)
▷ Reconstruct Mesh

23: SA, V ← ExtractSurfaceAreaVolume(M)

3.4. Justification for Choice of Algorithms

At this point, we have covered the entire scanning pipeline from the acquisition of the
data to the reconstruction of the cattle surface. In this section, we will present the rationale
behind each of the pipeline’s specific choices of algorithms.

• Colored ICP for Registration: In the realm of 3D point cloud registration, nu-
merous methods have been developed, which can be broadly categorized into lo-
cal and global approaches. Global methods, such as those described in [20,21],
typically rely on extracting geometric features like Fast Point Feature Histograms
(FPFHs) [22]. However, these features do not always guarantee the production of
unique and expressive descriptors, significantly impacting the algorithm’s ability to
converge to a desirable result. Additionally, global methods do not produce tight
alignment results and are primarily used to initialize local methods. Local methods,
on the other hand, depend on a good coarse alignment of the point clouds as ini-
tialization. When there is a reliable initial alignment, these methods can guarantee
convergence [14,23,24]. Given that we have colored point clouds and a fiduciary
cube for obtaining a reliable initial alignment, we opted to use the Colored ICP
algorithm [14]. This choice is justified since this local method optimizes not only
a geometric objective but also a photometric objective using a multi-scale strategy,
consistently resulting in a tight alignment of our point clouds.

• Mask R-CNN for Segmentation: The unified architecture of Mask R-CNN allows for
the accurate identification and localization of multiple objects within complex scenes,
making it an ideal solution for tasks demanding a detailed understanding of visual
data. Mask R-CNN achieves state-of-the-art accuracy on several benchmarks due to
its ability to refine the object boundaries and accurately segment instances [9].

• Poisson for Surface Reconstruction: In the field of 3D surface reconstruction, various
methods have been developed to generate surfaces from unorganized point clouds.
These methods can be broadly classified into explicit and implicit approaches. Explicit
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methods typically involve connecting sample points with triangles, resulting in an
exact interpolation of the sample points. However, these methods often struggle with
noisy data and can lead to holes or non-manifold situations. In contrast, implicit
methods aim to find a manifold surface that approximates the original set of points,
resulting in a closed, watertight reconstruction. Among explicit methods, the alpha
shapes method [25] is a notable example. It generalizes the concept of a convex hull
by initially wrapping the set of points in a convex hull and then carving away parts
to reveal the underlying surface. Although effective, it tends to produce non-smooth
surfaces. Similarly, the ball pivoting algorithm [26] is related to the alpha shapes
method and reconstructs the surface by rolling a 3D ball with a fixed radius along
the points. When the ball touches three points without falling through, it forms a
triangle. The algorithm continues to pivot from the edges of existing triangles, creating
new triangles as it encounters suitable point triplets. Like alpha shapes, the ball
pivoting algorithm often results in non-smooth surfaces, making it less suitable for
tasks requiring high-quality reconstructions. On the other hand, the Poisson surface
reconstruction algorithm constructs surfaces by solving a regularized optimization
problem, ensuring smoothness and continuity. It is particularly known for its robustness
to noisy and irregularly sampled point clouds, making it more suitable for generating
high-quality meshes.

4. Experimental Results and Discussions

In this section, we present the experimental results to demonstrate the effectiveness of
our proposed scanning system in terms of accuracy and throughput. The experiments are
designed to highlight the following aspects:

(a) The impact of effective synchronization on the quality of the scanning results.
(b) The precision of our proposed scanning system in estimating volume and surface area,

by varying object position and orientation, object sizes, lighting conditions, and the
distance to the sensor.

(c) Tests on real cattle to evaluate the system’s performance in terms of both accuracy and
scanning speed.

4.1. Sensor Synchronization

The primary objective of these experiments is to demonstrate the crucial role of ToF
sensor synchronization in optimizing data quality. ToF sensors operate by projecting
modulated near-IR illumination onto a scene, and in a multi-sensor configuration, the
potential for signal interference is high if emissions are not carefully timed. In our setup,
ten (10) ToF sensors were arranged pairwise along a rod, and two differently sized boxes
were used as scanning targets. A synchronization strategy was implemented, introducing a
sequential delay of 160 µs between each sensor’s activation.

We conducted scans in two distinct operational modes: with and without hardware
synchronization, capturing images from ten different perspectives (N = 10). The quali-
tative impact of synchronization is profoundly demonstrated by the data: for instance,
as shown in Figure 6, Camera 9 captured 38,631 points when synchronized; without
synchronization, the point count drastically dropped to 17,098 for the same camera.
Notably, as illustrated in Table 1, the master camera (Camera 1) returned a slightly
higher point count when unsynchronized. This is expected since Camera 1 always
fires first in both synchronized and unsynchronized capture modes, thus avoiding
interference from other sensors. These results, illustrated in Table 1 and Figure 6,
underscore that improper synchronization can lead to a significant loss of data—more
than 50% of the object’s points in some cases. This stark contrast highlights the critical
necessity of precise synchronization to prevent substantial data degradation and to
ensure the reliability of multi-sensor ToF systems.
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(a) (b)
Figure 6. Comparison of 3D point cloud capture quality with and without synchronization using a
large box with known dimensions. The left image displays the results without synchronization (0 µs),
capturing a total of 17,098 points. The right image shows the same box captured with synchronization
(160 µs) with all other settings the same, resulting in a total of 38,631 points, illustrating the significant
improvement in data acquisition quality. (a) Large box, 0 s delay, n = 17,098. (b) Large box, 160 µs
delay, n = 38,631.

Table 1. Measurements of the number of points generated in the synchronized and unsynchronized
mode of the ToF sensor.

Sensor ID Number of Points
Synchronized (160 µs)

Number of Points
Unsynchronized (0 µs)

Camera 1 33,607 36,062
Camera 2 16,127 15,235
Camera 3 15,333 13,937
Camera 4 24,743 22,969
Camera 5 28,597 25,573
Camera 6 32,044 27,303
Camera 7 42,803 29,432
Camera 8 37,469 35,046
Camera 9 37,583 35,149

Camera 10 38,631 17,098

4.2. Experiments on Volume and Surface Area Accuracy Using Known Objects

Several experiments were conducted to validate the proposed scanning system’s
accuracy in determining the target object’s volume and surface area. Four different objects,
including three boxes and one cylinder with known dimensions, were used for testing.

4.2.1. Single Object, Multiple Orientations

To demonstrate that the behavior of the scanning system is consistent with respect
to the object’s pose, we conducted a test using a cylindrical object positioned in various
configurations. We varied both the translation and orientation of the cylinder, placing it
in eight (8) distinct positions. Images were captured from ten (10) different cameras for
each position. The acquired RGB-D images were subsequently stitched together and then a
mesh model of the cylinder was generated. We then calculated the surface area and volume
based on this mesh. The results, presented in Figure 7, confirm that our scanner consistently
and accurately computed the surface area and volume of the cylinder across all tested
orientations. Specifically, the mean surface area was 0.725 m2 (averaged over eight poses),
closely approaching the ground truth of 0.73 m2 with a narrow standard deviation of
0.009 m2. For volume, the mean value was 0.027 m3 (averaged over eight poses), nearly
matching the ground truth of 0.03 m3 with an exceptionally low standard deviation of
0.0008 m3. These results not only affirm the precision of our measurements but also validate
the robustness of our scanning system across diverse orientations.
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(a) (b)
Figure 7. Results of scanning a cylindrical object in multiple orientations, highlighting the scanner’s
accuracy across diverse poses. The horizontal axis displays the predicted volumes and surface areas
obtained in each test. Given that the same object was used throughout, the ground truth volume and
surface area remain constant. This plot demonstrates the scanner’s precision, as evidenced by the
close alignment of the predicted values with the consistent ground truths, illustrating the system’s
reliability in varying orientations. (a) Surface area calculation results. (b) Volume calculation results.

4.2.2. Multiple Objects, Static Pose

To further evaluate the performance of our scanning system, we conducted a series of
tests focusing on its ability to consistently predict surface area and volume across a range of
objects differing in size and shape. The test suite included a cylinder, a small box, a medium
box, and a large box, each with precisely known dimensions. Given the demonstrated
pose-independence of our scanner, all objects were placed in the same central position and
subjected to 10 consecutive scans without altering their pose.

We computed the average predicted surface area and volume from these scans and
performed a regression analysis to assess the precision of our measurements. The fit through
the predicted volume and surface area data yielded an R2 value of 0.997 for surface area
and 0.999 for volume, indicating extremely high accuracy and consistency.

The results, displayed in Figure 8, underscore the robustness and reliability of the
scanner. The system not only predicts volume and surface area accurately across diverse
object types but also demonstrates excellent repeatability. These findings confirm the
efficacy of the scanner in various operational scenarios, enhancing its applicability in
real-world conditions.

(a) (b)
Figure 8. Regression analysis of predicted versus known surface area and volume for multiple static
objects. The plots displays the correlation between the scanner’s predicted values and the actual
measurements for a cylinder, small box, medium box, and large box, all placed in the same pose across
10 consecutive scans. The high R2 values of 0.997 for surface area and 0.999 for volume demonstrate
the scanner’s accuracy and consistency in various object dimensions and shapes under controlled
conditions. (a) Surface area calculation results. (b) Volume calculation results.
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4.2.3. Scanner Performance under Sunlight

To assess the robustness of our scanner in realistic operational environments, particu-
larly for livestock (cattle) 3D scanning, we conducted an experiment in an outdoor setting
under direct sunlight. This test aimed to determine the impact of sunlight on the accuracy
of surface area and volume measurements. A single box was used for this purpose, with
10 consecutive scans performed to ensure consistent results.

The processed data from these scans were stitched together to create a mesh from
which the surface area and volume were computed. The results indicate a mean volume
of 0.10911 m3, with the ground truth being 0.125 m3, a 12.71% difference, with a standard
deviation of 0.0090 m3. For surface area, the mean measurement across the scans was
1.393 m2, compared to the ground truth of 1.500 m2, a 7.13% difference with a standard
deviation of 0.0999 m2.

These findings, depicted in Figure 9, highlight the scanner’s ability to perform under
challenging lighting conditions, though they also suggest a slight decrease in measurement
accuracy due to the effects of sunlight on the infrared sensors. This insight is crucial for
optimizing scanner deployment in outdoor livestock scanning scenarios.

(a) (b)
Figure 9. Performance of the scanner under direct sunlight, using a standard box to simulate
outdoor livestock scanning conditions. The graphs show the mean and standard deviation of volume
and surface area measurements across 10 consecutive scans. The results here illustrate the slight
impact of sunlight on the scanner’s infrared sensors, affecting measurement accuracy. (a) Surface
area calculation results from data collected in sunlight. (b) Volume calculation results from data
collected in sunlight.

4.2.4. Varying Object Distance to the Sensor

In this experiment, we sought to explore how the distance of an object from the sensor
influences the measured surface area and the number of points captured by the sensor. We
positioned the object at incremental distances, starting from 2 feet up to 7 feet, from the
sensor. Using a single ToF sensor, measurements were taken at each foot interval using both
the narrow field of view (NFOV) and wide field of view (WFOV) settings of the ToF sensor.

The results, as depicted in Table 2, indicate that the surface area measurements and the
number of points captured varied with distance, but not in a linear fashion. For both NFOV
and WFOV, the maximum surface area was recorded at a distance of 3 feet with values
of 0.349 m2 and 0.343 m2, respectively. Notably, both the surface area and the number of
points tend to decrease as the object is positioned further from 3 feet, reaching their lowest
at 7 feet with surface area values of 0.251 m2 for NFOV and 0.254 m2 for WFOV.

Interestingly, the measurements do not show a consistent decrease as distance increases,
which suggests that the optimal distance for scanning in terms of maximizing the captured
surface area and point density using our ToF sensor is around 3 feet. Beyond this point,
both metrics begin to decline, possibly due to the spreading and weakening of the sensor’s
signal with increased distance.

These findings highlight the importance of sensor placement relative to the target
object in capturing the most accurate and detailed data possible.
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Table 2. The statistical results of varying the distance of the object to the ToF sensor.

Distance to
Sensor

Surface Area
NFOV (m2)

Surface Area
WFOV (m2)

Number of
Points NFOV

Number of
Points WFOV

2ft 0.290 0.294 2815 3058
3ft 0.349 0.343 3015 3253
4ft 0.278 0.280 2869 3135
5ft 0.315 0.335 3202 3442
6ft 0.277 0.283 2882 3153
7ft 0.251 0.254 2731 3010

4.3. Experiments on Real Cattle

Following the validation of the scanner on objects with known dimensions, we
proceeded to conduct experiments on real cattle. The initial step in the experimen-
tal pipeline involved fine-tuning the segmentation network to adapt it specifically to
cattle data.

Fine-Tuning Mask R-CNN

For this process, we captured both depth and RGB images using the camera sensors.
Two pre-trained Mask R-CNN models were fine-tuned using these image types, respectively.
To determine the most effective segmentation approach, we employed a voting arbitration
mechanism between the two models. The outcomes of four different voting arbitration
strategies are presented in Table 3.

The RGB-only model achieved the highest average Intersection over Union (IOU)
score across all arbitrations, suggesting strong segmentation performance. However, this
model also exhibited a high rate of false negatives, which could result in the loss of essential
surface details crucial for accurate surface area computation of the cattle.

Table 3. The statistical results (the average IOU, the false positive rate (FR), and the false negative
rate (FN)) of using different voting arbitration for the segmentation models. The bold font specifies
the best scores among the others.

Voting Arbitration Avg. IOU FP Rate (%) FN Rate (%)

RGB only 0.9653 1.4480 3.7249
Depth only 0.9495 2.6401 4.9985
1-Vote (OR) 0.9629 3.2592 2.2631

2-Vote (AND) 0.9518 0.7655 6.4603

In contrast, the single-vote arbitration method, combining votes from both the depth
and RGB models, provided an IOU score comparable to the RGB-only model but sig-
nificantly reduced the false negative rate. Consequently, this method was selected for
further segmentation tasks. Qualitative results of the segmentation on the test set are
displayed in Figure 10.

After successfully detecting and masking the animals within the RGB and depth
images, we used the generated masks to precisely extract the animals from the overall
image. This segmentation isolates the animal alone, facilitating further processing of
the data.

4.4. Extracting Surface and Volume Measurements on Cattle

Table 4 shows the statistics of the experiment conducted on live cattle versus their
hides post-slaughter. Hides were removed at variable distances from the head and hooves.
See Figure 11.
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RGB MASKRCNN

Depth MASKRCNN

ARBITRATOR

(Logical OR)

Segmented Depth

Segmented RGB

Figure 10. Segmentation of cattle using combined RGB and depth models via Mask R-CNN: The figure
shows an RGBD image of cattle segmented using both RGB and depth data. Results from each model are
integrated using a voting arbitrator, resulting in a well-defined segmentation in both modalities.

Table 4. Comparison between the measured surface area using the proposed 3D cattle scanner and the
hand measurements from the hide of slaughtered animals. Each of the animals (which is determined
by its cattle ID) was scanned 5 times and the average value was calculated over the scans.

Cattle ID Manual-Measured
Surface Area (m2)

Average
Estimated

Surface
Area (m2)

Surface Area
Std (m2)

Average
Error (%)

Average
Processing

Time (s)

1 5.316 5.52270 0.09810 3.887 10.64
5 5.088 5.03896 0.09579 1.482 11.02
7 5.189 5.63482 0.08180 8.591 11.04
8 5.202 5.39062 0.06005 3.625 10.89

13 5.660 5.55332 0.12395 2.229 11.11
14 5.406 5.50881 0.04657 1.901 11.63
15 5.024 5.48532 0.05472 9.182 10.90
18 5.329 5.42638 0.09839 1.827 11.22
21 5.278 5.54710 0.06522 5.098 10.43
22 5.571 5.34380 0.15375 4.078 10.74

Average - - 0.08783 4.1906 10.96

Figure 11. Poisson reconstructed meshes of cattle from which we compute the surface area and
volume estimates.
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5. Conclusions and Future Works

This study introduced a new deep learning-based scanner optimized for high-
throughput cattle phenotyping. Our proposed system proficiently captured and recon-
structed meshes from various objects, demonstrating robustness across multiple challenging
conditions. The key contributions of this work included the flexibility to use a variable
number of time-of-flight sensors, the capability to scan untamed animals by effectively
utilizing deep learning-based segmentation models to clean point clouds obtained from
animals within a heavy-duty chute mechanism, and the full automation of the scanning
pipeline, allowing researchers and farmers to scan large numbers of cattle with high
throughput. Through a series of tests, we have shown that the scanner maintains consistent
accuracy irrespective of the object’s geometry, orientation, position, distance to sensor,
and exposure to environmental elements such as sunlight. In real-world applications,
direct sunlight could be minimized using tents or other apparatus. The scanner has shown
remarkable resilience in handling both stationary and untamed cattle, a capability enhanced
by the our Server–Client program working in tandem with hardware synchronization. This
synchronization effectively mitigated the issue of time-of-flight (ToF) sensor interference,
which is crucial for accurate data acquisition.

The design of our system included a heavy-duty chute mechanism, which, together
with timely camera triggers, guaranteed reliable data capture from dynamic subjects.
The entire process, from capture to the computation of mesh measurements like volume
and surface area, was completed within an average time of just 10.96 s. This efficiency
underscored the system’s suitability for high-throughput applications, making it a valuable
tool for modern agricultural practices.

Author Contributions: Conceptualization, J.D., D.B. and G.N.D.; Methodology, G.O., S.M.A.T. and
G.N.D.; Software, G.O. and S.M.A.T.; Validation, G.O. and S.M.A.T.; Formal analysis, G.O. and
S.M.A.T.; Investigation, G.O. and S.M.A.T.; Resources, G.O. and S.M.A.T.; Data curation, G.O. and
S.M.A.T.; Writing—original draft, G.O. and S.M.A.T.; Writing—review & editing, G.O., S.M.A.T. and
G.N.D.; Visualization, G.O. and S.M.A.T.; Supervision, J.D., D.B. and G.N.D.; Project administration,
J.D., D.B. and G.N.D. All authors have read and agreed to the published version of this manuscript.

Funding: This research was funded by the Agriculture and Food Research Initiative Competitive
Grant no. 2021-67021-33448 from the USDA National Institute of Food and Agriculture.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ritchie, H.; Rodés-Guirao, L.; Mathieu, E.; Gerber, M.; Ortiz-Ospina, E.; Hasell, J.; Roser, M. Population Growth. Our World in

Data. 2023. Available online: https://ourworldindata.org/population-growth (accessed on 14 June 2024 ).
2. Le Cozler, Y.; Allain, C.; Caillot, A.; Delouard, J.; Delattre, L.; Luginbuhl, T.; Faverdin, P. High-precision scanning system

for complete 3D cow body shape imaging and analysis of morphological traits. Comput. Electron. Agric. 2019, 157, 447–453.
[CrossRef]

3. Kawasue, K.; Ikeda, T.; Tokunaga, T.; Harada, H. Three-Dimensional Shape Measurement System for Black Cattle Using KINECT
Sensor. Int. J. Circuits Syst. Signal Process. 2013, 7, 222–230.

4. Yoshida, K.; Kawasue, K. Compact three-dimensional vision for ubiquitous sensing. In Proceedings of the UBICOMM 2014—8th
International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, Rome, Italy, 24–28 August 2014;
pp. 157–163.

5. Ruchay, A.N.; Dorofeev, K.A.; Kalschikov, V.V.; Kolpakov, V.I.; Dzhulamanov, K.M. Accurate 3D shape recovery of live cattle with
three depth cameras. IOP Conf. Ser. Earth Environ. Sci. 2019, 341, 012147. [CrossRef]

6. Li, J.; Ma, W.; Li, Q.; Zhao, C.; Tulpan, D.; Yang, S.; Ding, L.; Gao, R.; Yu, L.; Wang, Z. Multi-view real-time acquisition and 3D
reconstruction of point clouds for beef cattle. Comput. Electron. Agric. 2022, 197, 106987. [CrossRef]

7. Wang, K.; Guo, H.; Ma, Q.; Su, W.; Chen, L.; Zhu, D. A portable and automatic Xtion-based measurement system for pig body
size. Comput. Electron. Agric. 2018, 148, 291–298. [CrossRef]

https://ourworldindata.org/population-growth
http://doi.org/10.1016/j.compag.2019.01.019
http://dx.doi.org/10.1088/1755-1315/341/1/012147
http://dx.doi.org/10.1016/j.compag.2022.106987
http://dx.doi.org/10.1016/j.compag.2018.03.018


Sensors 2024, 24, 5275 18 of 18

8. Sabov, A.; Krüger, J. Identification and correction of flying pixels in range camera data. In Proceedings of the Spring Conference
on Computer Graphics, Budmerice Castle, Slovakia, 21–23 April 2008.

9. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [CrossRef]

10. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

11. Lin, T.Y.; Dollár, P.; Girshick, R.B.; He, K.; Hariharan, B.; Belongie, S.J. Feature Pyramid Networks for Object Detection. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 936–944.

12. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the International
Conference on Machine Learning, Haifa, Israel, 21–24 June 2010.

13. Gümeli, C.; Dai, A.; Nießner, M. ObjectMatch: Robust Registration using Canonical Object Correspondences. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 13082–13091.

14. Park, J.; Zhou, Q.Y.; Koltun, V. Colored Point Cloud Registration Revisited. In Proceedings of the 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 143–152. [CrossRef]

15. Zhou, Q.Y.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. arXiv 2018, arXiv:1801.09847v1.
16. Olson, E. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the 2011 IEEE International Conference on

Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3400–3407. [CrossRef]
17. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.

In Proceedings of the KDD’96: Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA,
2–4 August 1996; AAAI Press: Washington, DC, USA, 1996; pp. 226–231.

18. Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson surface reconstruction. In Proceedings of the Fourth Eurographics Symposium on
Geometry Processing, Cagliari, Sardinia, Italy, 26–28 June 2006; Volume 7.

19. Kazhdan, M.; Hoppe, H. Screened poisson surface reconstruction. ACM Trans. Graph. 2013, 32, 1–13. [CrossRef]
20. Yang, H.; Shi, J.; Carlone, L. TEASER: Fast and Certifiable Point Cloud Registration. IEEE Trans. Robot. 2021, 37, 314–333.

[CrossRef]
21. Zhou, Q.Y.; Park, J.; Koltun, V. Fast Global Registration. In Computer Vision—ECCV 2016; Springer: Cham, Switzerland, 2016;

Volume 9906. [CrossRef]
22. Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D registration. In Proceedings of the 2009 IEEE

International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217. [CrossRef]
23. Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3-D

Digital Imaging and Modeling, Quebec City, Canada, 28 May–1 June 2001; pp. 145–152. [CrossRef]
24. Besl, P.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [CrossRef]
25. Edelsbrunner, H.; Kirkpatrick, D.; Seidel, R. On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 1983, 29, 551–559.

[CrossRef]
26. Bernardini, F.; Mittleman, J.; Rushmeier, H.; Silva, C.; Taubin, G. The ball-pivoting algorithm for surface reconstruction. IEEE

Trans. Vis. Comput. Graph. 1999, 5, 349–359. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/ICCV.2017.25
http://dx.doi.org/10.1109/ICRA.2011.5979561
http://dx.doi.org/10.1145/2487228.2487237
http://dx.doi.org/10.1109/TRO.2020.3033695
http://dx.doi.org/10.1007/978-3-319-46475-6_47
http://dx.doi.org/10.1109/ROBOT.2009.5152473
http://dx.doi.org/10.1109/IM.2001.924423
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/TIT.1983.1056714
http://dx.doi.org/10.1109/2945.817351

	Introduction
	Background and Related Work
	Proposed Scanning System
	Platform
	Hardware
	Software and Pipeline
	Acquisition
	Processing
	Registration
	Trait Extraction

	Justification for Choice of Algorithms

	Experimental Results and Discussions
	Sensor Synchronization
	Experiments on Volume and Surface Area Accuracy Using Known Objects
	Single Object, Multiple Orientations
	Multiple Objects, Static Pose
	 Scanner Performance under Sunlight
	Varying Object Distance to the Sensor

	Experiments on Real Cattle
	Extracting Surface and Volume Measurements on Cattle

	Conclusions and Future Works
	References

