Advanced Sensing and Control Technologies for Autonomous Robots
1. Introduction
2. Overview of the Published Articles
3. Conclusions
- Multi-sensor data fusion: The inherent limitations of a single sensor pose significant challenges in the deployment of autonomous robots in complex scenarios, such as intelligent transport systems. Consequently, the integration and analysis of data from multiple sensor sources are imperative to generate comprehensive, accurate, and reliable information. This will involve addressing data heterogeneity and uncertainties from a broad range of sensors, ensuring the integrity and trustworthiness of the fused information, and advancing the development of productive fusion algorithms to enable a rapid response when needed.
- Perception-control coupling method: Autonomous robots complete some specific tasks in which accurate control is required, such as safe navigation under interference, the sensor faults of aircrafts, and the palletizing tasks of industrial robots. In current robotics systems, the perception and control layers often operate as distinct components. Notably, the localization results of the robot are typically considered accurate within the control framework. However, in practical applications, external errors persist, whether associated with LiDAR-based or vision-based localization strategies. In the absence of an appropriate strategy on the part of the controller, these errors can lead to severe system instability or substantial tracking deviations. Therefore, formulating a well-structured perception-control method becomes paramount to effectively mitigate such problems.
Conflicts of Interest
List of Contributions
- Liu, Z.; Jin, H.; Zhao, J. An Adaptive Control Scheme Based on Non-Interference Nonlinearity Approximation for a Class of Nonlinear Cascaded Systems and Its Application to Flexible Joint Manipulators. Sensors 2024, 24, 3178. https://doi.org/10.3390/s24103178.
- Zhang, H.; Song, B.; Xu, J.; Li, H.; Li, S. Adhesion Coefficient Identification of Wheeled Mobile Robot under Unstructured Pavement. Sensors 2024, 24, 1316. https://doi.org/10.3390/s24041316.
- Pizzino, C.A.P.; Costa, R.R.; Mitchell, D.; Vargas, P.A. NeoSLAM: Long-Term SLAM Using Computational Models of the Brain. Sensors 2024, 24, 1143. https://doi.org/10.3390/s24041143.
- Siwek, J.; Żywica, P.; Siwek, P.; Wójcik, A.; Woch, W.; Pierzyński, K.; Dyczkowski, K. Implementation of an Artificially Empathetic Robot Swarm. Sensors 2024, 24, 242. https://doi.org/10.3390/s24010242.
- Jiang, D.; Wang, M.; Chen, X.; Zhang, H.; Wang, K.; Li, C.; Li, S.; Du, L. An Integrated Autonomous Dynamic Navigation Approach toward a Composite Air–Ground Risk Construction Scenario. Sensors 2024, 24, 221. https://doi.org/10.3390/s24010221.
- Zhang, Y.; Li, Y.; Chen, P. TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments. Sensors 2023, 23, 9807. https://doi.org/10.3390/s23249807.
- Zhang, Y.; Chen, P. Path Planning of a Mobile Robot for a Dynamic Indoor Environment Based on an SAC-LSTM Algorithm. Sensors 2023, 23, 9802. https://doi.org/10.3390/s23249802.
- Yi, J.-B.; Nasrat, S.; Jo, M.-s.; Yi, S.-J. A Software Platform for Quadruped Robots with Advanced Manipulation Capabilities. Sensors 2023, 23, 8247. https://doi.org/10.3390/s23198247.
- Neaz, A.; Lee, S.; Nam, K. Design and Implementation of an Integrated Control System for Omnidirectional Mobile Robots in Industrial Logistics. Sensors 2023, 23, 3184. https://doi.org/10.3390/s23063184.
- Yan, F.; Feng, S.; Liu, X.; Feng, T. Parametric Dynamic Distributed Containment Control of Continuous-Time Linear Multi-Agent Systems with Specified Convergence Speed. Sensors 2023, 23, 2696. https://doi.org/10.3390/s23052696.
- Meng, J.; Xiao, H.; Jiang, L.; Hu, Z.; Jiang, L.; Jiang, N. Adaptive Model Predictive Control for Mobile Robots with Localization Fluctuation Estimation. Sensors 2023, 23, 2501. https://doi.org/10.3390/s23052501.
- Gao, F.; Ma, J. Indoor Location Technology with High Accuracy Using Simple Visual Tags. Sensors 2023, 23, 1597. https://doi.org/10.3390/s23031597.
- Mahboob, H.; Yasin, J.N.; Jokinen, S.; Haghbayan, M.-H.; Plosila, J.; Yasin, M.M. DCP-SLAM: Distributed Collaborative Partial Swarm SLAM for Efficient Navigation of Autonomous Robots. Sensors 2023, 23, 1025. https://doi.org/10.3390/s23021025.
- Liu, Y.; Wang, S.; Xie, Y.; Xiong, T.; Wu, M. A Review of Sensing Technologies for Indoor Autonomous Mobile Robots. Sensors 2024, 24, 1222. https://doi.org/10.3390/s24041222.
References
- Zhao, J.; Liu, S.; Li, J. Research and Implementation of Autonomous Navigation for Mobile Robots Based on SLAM Algorithm under ROS. Sensors 2022, 22, 4172. [Google Scholar] [CrossRef]
- Yue, X.; Li, H.; Shimizu, M.; Kawamura, S.; Meng, L. YOLO-GD: A Deep Learning-Based Object Detection Algorithm for Empty-Dish Recycling Robots. Machines 2022, 10, 294. [Google Scholar] [CrossRef]
- Zou, Q.; Sun, Q.; Chen, L.; Nie, B.; Li, Q. A Comparative Analysis of LiDAR SLAM-Based Indoor Navigation for Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6907–6921. [Google Scholar] [CrossRef]
- Arents, J.; Greitans, M. Smart Industrial Robot Control Trends, Challenges and Opportunities within Manufacturing. Appl. Sci. 2022, 12, 937. [Google Scholar] [CrossRef]
- Jefroy, N.; Azarian, M.; Yu, H. Moving from Industry 4.0 to Industry 5.0: What Are the Implications for Smart Logistics? Logistics 2022, 6, 26. [Google Scholar] [CrossRef]
- Vorasawad, K.; Park, M.; Kim, C. Efficient Navigation and Motion Control for Autonomous Forklifts in Smart Warehouses: LSPB Trajectory Planning and MPC Implementation. Machines 2023, 11, 1050. [Google Scholar] [CrossRef]
- Huang, J.; Junginger, S.; Liu, H.; Thurow, K. Indoor Positioning Systems of Mobile Robots: A Review. Robotics 2023, 12, 47. [Google Scholar] [CrossRef]
- Steenbeek, A.; Nex, F. CNN-Based Dense Monocular Visual SLAM for Real-Time UAV Exploration in Emergency Conditions. Drones 2022, 6, 79. [Google Scholar] [CrossRef]
- Meng, J.; Wang, S.; Jiang, L.; Hu, Z.; Xie, Y. Accurate and Efficient Self-Localization of AGV Relying on Trusted Area Information in Dynamic Industrial Scene. IEEE Trans. Veh. Technol. 2023, 72, 7148–7159. [Google Scholar] [CrossRef]
- Bovcon, B.; Muhovič, J.; Vranac, D.; Mozetič, D.; Perš, J.; Kristan, M. MODS-A USV-Oriented Object Detection and Obstacle Segmentation Benchmark. IEEE Trans. Intell. Transp. Syst. 2022, 23, 13403–13418. [Google Scholar] [CrossRef]
- Halwani, M.; Ayyad, A.; AbuAssi, L.; Abdulrahman, Y.; Almaskari, F.; Hassanin, H.; Zweiri, Y. A Novel Vision-Based MultiFunctional Sensor for Normality and Position Measurements in Precise Robotic Manufacturing. Precis. Eng. 2024, 88, 367–381. [Google Scholar] [CrossRef]
- Girbés-Juan, V.; Armesto, L.; Hernández-Ferrándiz, D.; Dols, J.F.; Sala, A. Asynchronous Sensor Fusion of GPS, IMU and CAN-Based Odometry for Heavy-Duty Vehicles. IEEE Trans. Veh. Technol. 2021, 70, 8617–8626. [Google Scholar] [CrossRef]
- Xiao, Y.; Yan, Y.; Yu, Y.; Wang, B.; Liang, Y. Research on pose adaptive correction method of indoor rail mounted inspection robot in GIS Substation. Energy Rep. 2022, 8, 696–705. [Google Scholar] [CrossRef]
- Morales-Díaz, A.B.; Gómez-Casas, J.; Treesatayapun, C.; Muñiz-Valdez, C.R.; Galindo-Valdés, J.S.; Martínez-Villafañe, J.F. Data-Driven Adaptive Modelling and Control for a Class of Discrete-Time Robotic Systems Based on a Generalized Jacobian Matrix Initialization. Mathematics 2023, 11, 2555. [Google Scholar] [CrossRef]
- Cheng, J.; Bi, S.; Yuan, C.; Chen, L.; Cai, Y.; Yao, Y. A Graph Theory-Based Method for Dynamic Modeling and Parameter Identification of 6-DOF Industrial Robots. Appl. Sci. 2021, 11, 10988. [Google Scholar] [CrossRef]
- Mancilla, A.; García-Valdez, M.; Castillo, O.; Merelo-Guervós, J.J. Optimal Fuzzy Controller Design for Autonomous Robot Path Tracking Using Population-Based Metaheuristics. Symmetry 2022, 14, 202. [Google Scholar] [CrossRef]
- Guo, Z.; Ren, H.; Li, H.; Zhou, Q. Adaptive-Critic-Based Event-Triggered Intelligent Cooperative Control for a Class of Second-Order Constrained Multiagent Systems. IEEE Trans. Artif. Intell. 2023, 4, 1654–1665. [Google Scholar] [CrossRef]
- Cardona, G.A.; Calderon, J.M. Robot Swarm Navigation and Victim Detection Using Rendezvous Consensus in Search and Rescue Operations. Appl. Sci. 2019, 9, 1702. [Google Scholar] [CrossRef]
- Singh, Y.; Bibuli, M.; Zereik, E.; Sharma, S.; Khan, A.; Sutton, R. A Novel Double Layered Hybrid Multi-Robot Framework for Guidance and Navigation of Unmanned Surface Vehicles in a Practical Maritime Environment. J. Mar. Sci. Eng. 2020, 8, 624. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, B.; Zhou, J.; Zhang, Y.; Liu, X. Real-Time Localization and Mapping Utilizing Multi-Sensor Fusion and Visual–IMU–Wheel Odometry for Agricultural Robots in Unstructured, Dynamic and GPS-Denied Greenhouse Environments. Agronomy 2022, 12, 1740. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Wang, S.; Zheng, S.; Hu, Z. Advanced Sensing and Control Technologies for Autonomous Robots. Sensors 2024, 24, 5478. https://doi.org/10.3390/s24175478
Xie Y, Wang S, Zheng S, Hu Z. Advanced Sensing and Control Technologies for Autonomous Robots. Sensors. 2024; 24(17):5478. https://doi.org/10.3390/s24175478
Chicago/Turabian StyleXie, Yuanlong, Shuting Wang, Shiqi Zheng, and Zhaozheng Hu. 2024. "Advanced Sensing and Control Technologies for Autonomous Robots" Sensors 24, no. 17: 5478. https://doi.org/10.3390/s24175478