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Abstract: Gait phase recognition systems based on surface electromyographic signals (EMGs) are
crucial for developing advanced myoelectric control schemes that enhance the interaction between
humans and lower limb assistive devices. However, machine learning models used in this context,
such as Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM), typically experience
performance degradation when modeling the gait cycle with more than just stance and swing
phases. This study introduces a generalized phasor-based feature extraction approach (PHASOR)
that captures spatial myoelectric features to improve the performance of LDA and SVM in gait
phase recognition. A publicly available dataset of 40 subjects was used to evaluate PHASOR against
state-of-the-art feature sets in a five-phase gait recognition problem. Additionally, fully data-driven
deep learning architectures, such as Rocket and Mini-Rocket, were included for comparison. The
separability index (SI) and mean semi-principal axis (MSA) analyses showed mean SI and MSA
metrics of 7.7 and 0.5, respectively, indicating the proposed approach’s ability to effectively decode
gait phases through EMG activity. The SVM classifier demonstrated the highest accuracy of 82%
using a five-fold leave-one-trial-out testing approach, outperforming Rocket and Mini-Rocket. This
study confirms that in gait phase recognition based on EMG signals, novel and efficient muscle
synergy information feature extraction schemes, such as PHASOR, can compete with deep learning
approaches that require greater processing time for feature extraction and classification.

Keywords: gait; EMG; myoelectric control; feature extraction; deep learning; lower limb; assistive devices

1. Introduction

In the last two decades, there has been an increasing trend in the development of
specific sensors and technologies for human–machine interfaces (HMIs) [1]. This trend was
undoubtedly driven by the availability of minimally intrusive electromyographic (EMG)
probes, which allowed recording large sets of information related to the human motion of
upper and lower limbs in an easy way [2–5]. Additionally, with the increased computational
power in embedded systems, these sensors eventually enabled the applicability of signal
processing and machine learning techniques capable of decoding the volitional intent of
human beings. This aspect was crucial for implementing smart interactions of the limbs
with active prostheses and assistive devices [6–8], making the use of such technologies
particularly advantageous in motor rehabilitation scenarios [9,10]. However, it is worth
noting that the majority of myoelectric technology solutions presented in the literature have
been developed with a primary focus on the upper limb. Efforts to integrate EMG-based
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HMIs into the control policies of lower limb prostheses have been relatively marginal
compared to the upper limb and have only recently received specific attention [11–13].

As emerged in [11,13], lower limb prostheses and assistive exoskeletons fall into
three main categories: passive, semi-active, and active. The first category of devices is
entirely mechanical, whereas semi-active and active systems incorporate microprocessor
systems that use mechanical information to control artificial joint impedance or provide
propulsion, often through actuators or motors that eventually compensate for lost muscu-
lature [14]. In any case, the commercially available systems do not exploit bioelectronic
signals like EMG [12], even if leveraging neuromuscular information in semi-active and
active prostheses can enhance the user experience, making it more biomimetic, functional,
and superior [5,11]. A question that arises concerns why myoelectric control for artificial
lower limb systems is underutilized despite its benefits [11,13]. To find an answer, one has
to consider the nature of the EMG signal [12]. Indeed, although reflecting limb movement
intention, it is a highly stochastic signal and may be particularly sensitive to electrode shifts
or muscle adaptation due to the rise in fatigue [12,15]. Moreover, misinterpretation by the
myoelectric control system can lead to improper human–machine interaction, potentially
endangering the user by causing unexpected falls [13]. This imposes that the high-level
control subsystem of the HMI has to be particularly robust to finely detect transitions of
the gait phase and locomotion modalities [13,16]. Thus, although the use of proportional
myoelectric control in the higher-level controller of such devices represents a final goal for
HMIs, EMG-based pattern recognition solutions still appear appealing to be investigated
and transferred in embedded systems since they provided robust performance in different
control solutions [11–13,17].

In this context, EMG data are mapped to specific gait phases of the gait cycle by the
trained pattern recognition system [17–19]. However, no consensus in the literature has
been reached regarding the granularity of the gait cycle [20], i.e., how many phases of the
gait cycle one considers and the modalities in which the latter is partitioned. Recent studies
suggest partitioning the gait cycle with a granularity of five phases, i.e., five classes for the
myoelectric pattern recognition architecture as in [21,22]. Although eight phases can be
recognized in the gait cycle [20], a partitioning into five can represent a good compromise
for ensuring smooth motion transitions and reliable gait phase recognition of the lower limb
assistive device [21]. Moreover, it is interesting to notice that standard myoelectric pattern
recognition architectures employed in discriminating among five phases of the gait cycle
show a mean accuracy of around 85% with great variability among the subjects [21–23].
These results obtained with consolidated myoelectric pattern recognition methodologies
open up possibilities for further investigations. Among the various aspects worth men-
tioning, two play a central role in the development of next-generation myoelectric pattern
recognition systems for the lower limb [11]. First, it is essential to understand whether
the use of recent deep learning architectures used for upper limb applications is indeed
advantageous in the case of the lower limb [24]. Second, one should explore whether
lightweight machine learning architectures commonly employed in the state-of-the-art can
be improved by applying novel feature extraction methodologies.

Regarding the first point, there is a notable trend towards using deep learning for hand
gesture recognition aimed at myoelectric control of upper artificial limbs [25,26], which
deserves investigation for lower-limb applications. Architectures such as Convolutional
Neural Networks (CNNs) have assumed a central role in this context [26,27]. However,
they require tuning a large number of parameters, which requires high computational
expense during the training phase and can occupy hundreds of megabytes of memory
during the model storage phase [27,28], which can be a non-optimal approach when
dealing with embedded systems that have to allocate memory for managing multiple
processes before passing the decision to the lower-level controller. Additionally, both
training and operational phases require high volumes of data [25,27]. Such volumes can
be obtained through high-density EMG sensors surrounding the area of interest on the
upper limb or through armbands containing at least eight electrodes [29,30]. This is not
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always possible for the lower limb, where the literature shows a greater use of sparse
surface EMG probes due to the physical conformation of the leg and the different muscles
involved in gait [4,31,32]. It is therefore essential to understand whether, with sparse setups
usable on the lower limb, deep learning techniques can efficiently solve the problem of gait
phase detection, thus understanding whether benefits in terms of reliability and accuracy
merit the cost of the high computational power and memory required to maintain deep
learning in the control system. The aforementioned considerations are closely related to the
second aspect previously mentioned, i.e., improving the performance of pattern recognition
architectures such as Support Vector Machine (SVM) and Linear Discriminant Analysis
(LDA), which have proven robust in myoelectric control problems for both upper and
lower limbs [21,30,33,34], through the use of next-generation feature extraction algorithms.
Indeed, it is notable that CNN-based approaches can enhance accuracy performance
through convolutional blocks, which capture the spatial relationships between muscle
activation patterns of different input EMG signals [27]. In contrast, LDA and SVM are
generally used with hand-crafted features [21,30], which do not prioritize the extraction
of information related to the spatial synergies of muscle activation. A possibility is given
by extracting synergistic features by using non-negative factorization approaches [35–37].
However, such approaches require learning a static map from muscle signals to muscle
synergy space expressed in the form of a matrix, the coefficients of which may require
re-calibration as it happens in many myoelectric control schemes that employ feature
reduction approaches [38].

Hence, the aim of this study is to develop and assess the reliability of a modern fea-
ture extraction approach able to embed spatial muscle synergy information in the feature
space that can be useful to upgrade the performance of consolidated HMIs for lower-limb
myoelectric control applications. To do this, the concept of spatial information embedding
through the phasor approach (PHASOR) was used [39]. This avoids the need for training
specific maps through factorization methods to include spatial synergistic information.
To demonstrate the benefits of PHASOR sets in myoelectric-based gait phase detection, a
detailed comparison with other state-of-the-art EMG feature sets was carried out. More-
over, following the rationale of the study, a deep learning approach using convolutional
kernels was included in the comparison. In particular, the selected architecture has recently
been presented in the field of deep learning time series classification and is known as
Random Convolutional Kernel Transform (Rocket), and the faster variant is the Minimally
Random Convolutional Kernel Transform (Mini-Rocket) [40,41]. Such approaches were
included since they showed great classification accuracy with many different time series
but, differently from CNN, showed extremely reduced training times since they use a single
layer of a large variety of randomly initiated convolutional kernels that do not require
training of the coefficients [40]. Analogous to how the Extreme Learning Machine (ELM) is
to Artificial Neural Networks (ANNs), Rocket can be considered similar to Convolutional
Neural Networks (CNNs). However, while ELM has been widely used for myoelectric
control [42], Rocket and Mini-Rocket appear to have been less employed for this purpose,
being only recently applied in the classification of wrist movements [24]. In this study,
Rocket will therefore be investigated in the context of gait phase detection as a benchmark
for comparison with the PHASOR approach.

2. Materials and Methods
2.1. Dataset Presentation and Pre-Processing

The data employed in this study belong to a publicly available repository called
SIAT-LLMD [21], which contains a detailed collection of EMG signals and kinematic
data specifically tailored to capture lower limb movements, including typical walking
patterns [21]. A total of 40 subjects, 30 male and 10 female, were considered in this
study. Raw EMG signals were collected using a surface electromyographic recording
system, with a sampling frequency of 1920 Hz [21]. Probes were placed to record the
myoelectric activity of 9 leg muscles of the left side, i.e., tensor fascia lata, rectus femoris,
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vastus medialis, semimembranosus, upper tibialis anterior, lower tibialis anterior, lateral
gastrocnemius, medial gastrocnemius, and soleus. A stereophotogrammetric system,
synchronous with EMG recording systems, recorded the kinematics of infrared reflective
markers, while ground reaction forces were collected through two force-plates [21]. Further
details regarding the walking locomotion modes and the processed variables obtained and
gathered in the repository can be found in [21].

For this study, only free-walking condition data were considered. A total of 10 gait
cycles per subject were provided by the authors of the dataset, along with the labeled
class vectors for the phases of the gait cycles. The authors adopted a granularity level of
five classes for partitioning the gait cycles [20,21], namely, heel strike (HS), flat foot (FF),
mid-stance (MS), heel-off (HO), and toe-off (TO). These vectors constitute the ground truth
for training and testing the pattern recognition models, thereby ensuring the reliability of
comparisons between the developed pattern recognition systems [21]. Hence, raw EMG
data from each subject for each gait cycle were pre-processed using a zero-lag Butterworth
band-pass filter of the fourth order, with a frequency range between 10 and 400 Hz [43].
The filtered data were then used in specific feature extraction pipelines as defined in the
following section.

2.2. PHASOR-Based Features and State-of-the-Art Feature Sets

The PHASOR feature extraction approach maps synergistic muscle activation patterns
through a complex representation, specifically polar coordinates. This method has shown
particular benefits in upper-limb myoelectric control problems, where the electrodes are
placed radially around the circumference of the residual part of the limb [39]. The PHASOR
transformation can potentially be applied to any feature computed from a set of radial
electrodes, as it requires associating each electrode with a unique position represented by a
polar coordinate [39]. An intuitive way to achieve this is by partitioning the 2π angle into a
set of k2π/N positions, where k is the index of the channel that ranges from 0 to N− 1, and
N is the total number of channels present in the recording system. This approach allows for
the creation of a multidimensional feature expressed by an N-dimensional vector, where
each element is given by

fkej k2π
N with k = 0 . . . N − 1 (1)

where fk is the f feature type, i.e., waveform length (WL), root-mean-square (RMS), and
so on, extracted from the kth channel. Hence, the PHASOR representation of the feature
P f characterized with respect to the nine EMG channels used in this study can be written
as follows:

P f =
[

f0 f1ej 2π
9 f2ej 4π

9 · · · f8ej 16π
9

]
(2)

The PHASOR representation is then used to highlight the spatial synergistic infor-
mation of muscle activation patterns in the new feature set by computing the modulus
of the difference between each single element of P f [39]. This results in feature vectors of
dimension N · (N − 1)/2 that can be represented by D f , with elements given by

| fkej k2π
N − flej l2π

N | with k ̸= l (3)

Modifying the approach suggested in [39], one can generalize an f-PHASOR feature
set of the following form:

f -PHASOR =
[
log(D f ) log(D f /∇D f )

]
(4)

where ∇D f is obtained using the same methodology over the time derivative of the EMG
signals estimated through simple numerical differentiation.
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In this study, the f -PHASOR approach was used with waveform length (WL) and
Root Mean Square (RMS), resulting in WL-PHASOR and RMS-PHASOR. The equations for
computing WL and RMS, given a sliding window of L samples, are as follows:

WL =
L−1

∑
i=1

|xi+1 − xi| (5)

RMS =

√√√√ 1
L

L

∑
i=1

x2
i (6)

where xi is the value of the signal at the ith sample. It is worth noting that, unlike in [39],
the WL-PHASOR and RMS-PHASOR were used separately and then tested in combination
as in [39], where they are referred to as the PHASOR feature set. This was performed to
assess whether each f -PHASOR set can provide reliable performance on its own without
the need for aggregation into larger, and thus more computationally expensive, feature
sets. Moreover, other recent state-of-the-art feature sets that do not employ the phasor
representation were used for comparison. In particular, the Hudgins time domain feature
set (HTD) [6], time-domain power spectral descriptors (TDPSD) [44], time-domain features
with autoregressive coefficients (TDAR) [30], and the feature set proposed in [15] (Du) were
used as standard hand-crafted feature sets for comparison. Additionally, the proportion
of positive peaks and the maximum peak value of the convolutional layer of Rocket and
Mini-Rocket were considered as feature sets and used for classification in accordance with
the tools proposed in [40,41].

For each subject and trial, features were extracted using a window length of 150 ms
with a sliding increment of 25 ms [4]. The data were used to assess the quality of the
feature spaces, then normalized with the z-score approach to perform pattern recognition
experiments. All signal processing, feature extraction and pattern recognition tests were
conducted using Python 3.11.4 on a computer with a core i7 processor, a RAM of 16 GB,
and an NVIDIA GeForce GTX 1060 GPU (Nvidia, Santa Clara, CA, USA).

2.3. Feature Space Quality Metrics

In order to assess the quality of the class separability in the feature spaces considered
in Section 2.2, two specific metrics used in myoelectric pattern recognition were used [7].
In particular, the first metric employed was the separability index (SI) [45]. The SI can be
computed following the procedure in [45]; thus, given the covariance matrix of the data
belonging to class i, expressed through Σi, and the covariance matrix of the data belonging
to the most conflicting class ΣCi , one can first compute the average covariance matrix Σ as

Σ =
Σi + ΣCi

2
(7)

Then, the SI is computed using Σ following the procedure in [45]. Thus,

SI =
1
K

K

∑
i=1

(
1
2
{
(mi − mCi )

TΣ−1(mi − mCi )
} 1

2

)
(8)

where i indicates the specific cluster of data belonging to the ith class. K is the total number
of classes considered; thus, in this study, it was set to 5. mi and mCi represent, respectively,
the centroid of the ith cluster and its most conflicting one [43,45]. The SI mirrors the distance
between the classes in the assessed feature space. Hence, the greater the SI, the better the
capability of the feature in distinctly mapping each gait phase.

The second metric employed is the mean semi-principal axis (MSA), which quantifies
the compactness of the clusters in the feature space [7,45]. To compute this metric, each
cluster is approximated as a hyper-ellipsoid in the feature space using singular value
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decomposition on the data belonging to each class. Then, the geometric mean is applied to
the singular values as follows:

MSA =
1
K

K

∑
i=1

( D

∏
p=1

aip

) 1
D

(9)

where aip is the pth singular value of the ith class, and D indicates the dimension of the
feature space. MSA reflects the agglomeration properties of each cluster, i.e., it accounts for
the inner variance of the clusters; thus, the lower the MSA, the more compact the cluster is
in the considered feature space.

2.4. Pattern Recognition Models and Testing

Two pattern recognition models used in myoelectric control, i.e., SVM with Radial
base function (RBF) kernel, the γ parameter of the kernel set as the product between
the number of the features and the variance of the features, and LDA with the principal
diagonal covariance matrix model were implemented using Python libEMG toolbox [46]
https://libemg.github.io/libemg/index.html (accessed on 8 April 2024), which represents
a useful framework for modeling pattern recognition systems [46]. Models were trained
intra-subjects using the feature sets described in Section 2.2, and using a five-fold leave-one-
trial-out testing scheme (five-fold LOTO). This was performed to obtain a robust estimation
of the performance metrics provided by the classifiers. The same approach was used
to assess Rocket and Mini-Rocket architectures [40,41]. In this case, the pre-processed
EMG windows were used directly to feed both architectures, leaving to them the hidden
extraction of possible spatial activation patterns through the large convolutional layer,
which was set to 84 kernels both for Rocket and Mini-Rocket.

Two metrics were used to assess the goodness of the architectures, accuracy (ACC) and
the Matthews correlation coefficient (MCC) [2]; such metrics guarantee a clearer picture of
the classifier performance when the testing data are unbalanced. This is common in gait
phase recognition when the number of samples belonging to the stance and swing with
their relative subphases are different. Both ACC and MCC were evaluated in the five-fold
LOTO, and are presented averaged among the 40 subjects. Moreover, for each subject and
each model, the computational time, which includes the extraction of testing features and
the classification of data points, was considered a computational performance metric in
the analysis. To ensure fairness and reproducibility among all different feature sets and
machine learning models, the same computer was used for all computations. Additionally,
features were extracted using the libEMG package [46], or the Rocket and Mini-Rocket
open-source codes [40,41] to ensure the possibility of replicating the implementation on
any other machine.

3. Results
3.1. Feature Space Quality Metrics

The SI and MSA metrics described in Section 2.3 were computed for each subject
and for each feature set described in Section 2.2. Figure 1 reports the mean SI among
the 40 subjects contained in the dataset. The PHASOR feature set showed the highest
SI value of 7.7 with the greatest standard deviation of 2.1, which is consistently greater
than all the other feature sets. Indeed, all the hand-crafted feature sets showed a mean SI
not greater than 3.3, which was obtained for the TDAR set. In contrast, Rocket and Mini-
Rocket showed mean SI values of 6.5 and 4.3, respectively, indicating superior separability
properties compared to the hand-crafted feature sets.

https://libemg.github.io/libemg/index.html
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Figure 1. Mean SI obtained in testing for the 40 subjects analyzed. PHASOR feature set obtained the
best performance when used with SVM among all the feature sets and models employed.

Regarding the mean MSA, the WL-PHASOR showed the lowest value of 0.24, followed
by RMS-PHASOR and TDPSD, which respectively showed mean MSA values of 0.35 and
0.44 as shown in Figure 2. Moreover, PHASOR showed a comparable MSA with respect
to the aforementioned feature sets, i.e., mean value of 0.5, which suggests the repeatable
mapping of myoelectric activity in the five considered gait phases. It is noteworthy that
all the other feature sets showed greater mean MSA, especially Rocket, which showed the
highest value of 2.5, indicating low compactness of the clusters, and thus more spread
patterns in the feature space.

Figure 2. Mean MSI obtained in testing for the 40 subjects analyzed. PHASOR feature set obtained
the best performance when used with RBF-SVM among all the feature sets and models employed.
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3.2. Performance Metrics and Computation Time

The mean ACC of LDA, SVM, Rocket, and Mini-Rocket are reported in Figure 3. It
is noteworthy that PHASORS showed the best performance among all the comparisons,
with an accuracy greater than 82%, whereas the other classifiers did not exceed 80%.
Moreover, a convolutional kernel approach like Rocket did not outperform the majority
of the hand-crafted feature sets analyzed when used with SVM, although it performed
always better than LDA (see Figure 3). On the other hand, Mini-Rocket achieved an ACC of
56%, making it the poorest model in terms of automatic gait phase recognition. Regarding
the comparison between LDA and SVM models, the former performed worse than the
latter in each hand-crafted feature set investigated, except for TDPSD, where the results are
comparable. However, in this case, the mean ACC obtained was not greater than 76%.

Figure 3. Mean accuracy (ACC) obtained in testing for the 40 subjects analyzed. PHASOR feature set
obtained the best performance when used with SVM among all the feature sets and models employed.

A similar analysis can be carried out using the MCC values reported in Table 1.
All the MCC values obtained were positive, indicating that none of the models were
completely influenced by randomness in their decision outputs. PHASOR with SVM
showed the best MCC, while Rocket provided the lowest. It deserves to be noticed that RMS-
PHASOR and WL-PHASOR with SVM also showed values greater than 0.74, indicating
good generalization capabilities even in unbalanced data conditions. Furthermore, the
MCC values confirm the superiority of SVM compared to LDA (see Table 1). Consistent
with the ACC results reported in Figure 3, the Mini-Rocket classifier demonstrated a greater
capability of generalizing the data compared to Rocket, but in any case, it showed lower
MCC with respect to PHASOR.

The running time analysis reported in Figure 4 highlights the mean time required
for the extraction and classification of testing data. It is noteworthy that among the hand-
crafted feature sets, PHASORS, RMS-PHASORS, and WL-PHASORS showed computation
times that are comparable to state-of-the-art feature sets such as HTD and Du. These
feature sets also exhibited lower computation demands compared to TDPSD and TDAR,
which required running times greater than 35 ms. The comparison between SVM and
LDA suggests that the latter is slightly superior to the former in terms of running time.
Furthermore, Rocket and Mini-Rocket demonstrated running times greater than 100 ms,
which were consistently higher than those of all the other feature sets and models employed.
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Table 1. The Matthews correlation coefficient (MCC) obtained in testing averaged among the
40 subjects analyzed as reported in Section 2.2. The MCC ranges from −1 to 1. Values close to
1 indicate very good prediction, values equal to 0 indicate random prediction by the classifier, while
values that tend towards negative indicate consistent mistakes in the classifier output. PHASOR
with SVM obtained the highest MCC as highlighted by bold numbers, confirming the accuracy trend
shown in Figure 3.

Classifier

H
T

D

T
D

PS
D

PH
A

SO
R

R
M

S-
PH

A
SO

R

W
L-

PH
A

SO
R

D
u

T
D

A
R

SVM 0.74 ± 0.10 0.69 ± 0.12 0.77 ± 0.08 0.75 ± 0.10 0.74 ± 0.09 0.75 ± 0.10 0.71 ± 0.13
LDA 0.71 ± 0.11 0.69 ± 0.11 0.64 ± 0.13 0.70 ± 0.12 0.71 ± 0.11 0.71 ± 0.11 0.67 ± 0.12

Rocket 0.36 ± 0.14
Mini-Rocket 0.74 ± 0.10

Figure 4. Mean processing time in ms for computing the feature sets in testing and performing
the classification output. PHASORS, RMS-PHASORS and WL-PHASORS provided processing times
comparable with other hand-crafted feature sets as HTD and Du, and showed better computational
performance with respect to TDPSD and TDAR sets, for both LDA and SVM classifiers. Rocket and Mini-
Rocket showed a consistently higher computational demand with respect to the hand-crafted features.

4. Discussion

Integrating human volitional control through neuromuscular information extracted
from EMG signals is pivotal for advancing the current technologies available for lower
limb assistance [4,11]. From this perspective, the data processing pipeline and classification
architecture employed are crucial components. On one hand, the quality of the feature space
ensures a reliable and consistent mapping of muscle electrical activity into distinct, easily
separable, and classifiable patterns. On the other hand, the efficiency of the architecture, in
terms of reduced computational cost and energy consumption, is essential for the practical
implementation of machine learning systems in portable devices. This suggests the use
of well-established and shallow machine learning models, such as SVM and LDA, as
employed in this study. Hence, one can focus on enhancing the feature extraction process
to capture spatial activation patterns for improving class separability [2].
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The analysis performed using the SI and MSA metrics highlights that WS-PHASOR,
RMS-PHASOR, and PHASOR can be more robust compared to other classical feature sets
like HTD, Du, TDPSD, and TDAR, which do not employ a phasor approach to highlight
spatial synergy patterns in EMG signals. In particular, as highlighted in Section 3.1, the
PHASOR feature space showed the greatest mean SI among the 40 subjects present in
the data, confirming that such a feature set consistently separates cluster centroids, thus
making gait phases more distinguishable. Additionally, MSA suggested the significant
compactness of the data clusters in the PHASOR feature space, indicating a low level
of interference between two contiguous clusters. This is important to reduce the false
positive or false negative detection of the actual gait phase, thus protecting the user from
undesired transitions and avoiding excessive metabolic costs. The highlighted separability
was mirrored by the ACC of SVM models compared to LDA. This may be attributed to
two aspects: first, phasor-based feature extraction schemes tend to enlarge the feature
space, which naturally fits with the SVM characteristics, i.e., they work well in large
dimensional spaces. Secondly, LDA works better with Gaussian features, whereas the
SVM approach is geometric and can better deal with non-linear patterns [47]. To further
support the effectiveness of the best model, i.e., SVM trained with PHASOR, Figure 5
shows the confusion matrices obtained during testing, averaged among the subjects. It is
evident that convolutional kernel approaches such as Rocket and Mini-Rocket had a higher
fault detection rate as indicated by the less clean confusion charts. In contrast, PHASOR
demonstrated a high capability in reducing the misclassification rate.

Figure 5. Confusion matrices for Rocket, Mini-Rocket, and PHASOR averaged among subjects.
PHASOR exhibits a dominant principal diagonal with low misclassification rates outside the principal
diagonal. In contrast, Rocket shows the worst performance, while Mini-Rocket performs well but not
as well as PHASOR. Overall, the confusion matrices confirm the analysis performed using SI and
MSA metrics.
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The MCC analysis supports the ACC results obtained in testing as reported in Table 1.
Given the intrinsically unbalanced nature of the data, i.e., the number of samples attributed
to each gait phase is naturally different [21], a positive MCC greater than 0.75, as obtained
with PHASOR and SVM, demonstrates the robustness of the model even under unbalanced
data conditions. Furthermore, the computational time obtained with PHASOR is not
significantly different from HTD, which is fast due to containing only time-domain features
(see Figure 3). Moreover, the running time analysis shows that TDAR and TDPSD seemed
to require more computational time with respect to the other sets. Although this can be
expected for TDAR, what was observed for TDPSD seems to contradict past works [34,44].
However, this can be imputed to the libEMG implementation, which recomputes the three
even spectral moments for each moment-dependent feature, unavoidably expanding the
computational time.

It deserves to be noted that in this study, a wide range of myoelectric feature extraction
schemes were tested on the SIAT-LLMD dataset, which were not assessed in previous
works [21] This ensured that the f-PHASOR extraction approach was evaluated against con-
solidated approaches that were not yet used in lower limb gait phase recognition, making
the comparisons fair and highlighting the possible limitations of standard approaches that
do not encompass synergistic effects in myoelectric activations. Indeed, typical feature sets,
including TDAR and TDPSD, which are among the most suitable for myoelectric control of
upper limb devices [30], produced lower performance results in the five-phase detection
problem considered in this study. This may be attributed to the fact that, in gait, more
than other motor tasks, the extraction of features that carry synergistic myoelectric patterns
related to spatial information can be essential to unfold the intrinsic complex nature of
decoding volitional neuromuscular control [39,48]. However, although the aforementioned
aspect was exploited for problems involving the upper limb [39,48], it seems to be less
encountered for lower limb assistive devices, even if the recent literature highlights the
importance of using myoelectric information to decode myoelectric patterns for smoothing
the interaction between human and exoskeleton or prostheses in the lower limb [12,49].
The present results confirm that new feature extraction schemes based on the proposed
approach can enhance the detection accuracy of standard machine learning models embed-
ded in microcontrollers for gait phase recognition. In practical scenarios, such as prosthetic
control, this represents a useful result since the f-PHASOR can benefit from embedding
the positional information of electrode locations available in the prosthetic socket. These
electrodes are generally located radially with respect to the residual limb and thus are
easy to associate with the f-PHASOR extraction method, which was generalized in this
study to N electrodes. On the other hand, no particular benefits were observed when fully
data-driven convolutional transform approaches, such as Rocket or Mini-Rocket, were ap-
plied. This was confirmed by the poor ACC and MCC obtained for Rocket, while relatively
good performance results were achieved with Mini-Rocket, suggesting that the Rocket
architecture was prone to overfitting the data. In any case, the running time analysis indi-
cated higher computational demands for such architectures compared to LDA and SVM,
revealing the bottleneck of deep learning methodologies when tested in a five-fold LOTO
scheme, i.e., Rocket and Mini-Rocket produce results comparable with standard machine
learning approaches, supporting the importance of smart synergistic muscle activation
patterns as highlighted by f-PHASOR.

Although a direct comparison with other works was beyond the aim of this study,
given the absence of works that used the same dataset and the LOTO approach, it can
be observed that the ACC obtained with PHASOR, with a granularity of five phases, is
comparable to the ACC obtained in [22,23], showing accuracy greater than 85% under
optimal conditions. It should also be noted that the type of population selected for test-
ing the methodology, i.e., healthy subjects, is in line with other studies dealing with the
development of myoelectric interfaces for lower limb prosthetic control [31,32]. Moreover,
the number of subjects in previous studies was consistently lower, i.e., not greater than
10 [22,23], and their testing procedures did not account for the LOTO scheme, which is less
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commonly employed but more useful for accurately estimating the actual performance of
the trained models. The high variability of the accuracy in [22,23] may be related to the
use of standard myoelectric feature sets, which were challenged in correctly discriminat-
ing among the different phases when the granularity of the gait cycle was increased [50].
This motivated the introduction of electroencephalographic or mechanical information
to improve gait phase detection performance and reduce classifier performance variabil-
ity while maintaining a consistent granularity of the gait cycle equal to or greater than
five [50,51]. However, the use of PHASOR seems to enhance performance without the need
for additional sensors attached to the body of the subject, relying only on the spatial EMG
setup configuration on the leg, making this approach valuable for further investigation.
It is worth mentioning that although the f-PHASOR was tested on a large number of
subjects, i.e., 40, none of them had amputations. Therefore, the direct applicability of the
methodology to a real-case scenario of prosthetic control was not tested. This constitutes a
limitation of the present work, which can, however, be addressed in future studies. Indeed,
the f-PHASOR approach can also be applied with EMG signals recorded through the EMG
channels located in the prosthetic socket [52]. In this case, although the f-PHASOR necessar-
ily works with myoelectric information recorded from the electrodes radially located in the
socket, it should be able to highlight the synergistic effects of physically close muscle fibers.
This idea of transitioning from sparse setups, i.e., considering multiple muscle locations [4],
to dense setups, i.e., collecting the myoelectric activity of closely related muscle fibers, is
not surprising, and it was used in upper limb hand gesture recognition from amputees with
good applicability as demonstrated in [53]. This approach can also be transferred to lower
limb prosthetic sockets [52], which will allow the applicability of f-PHASOR by computing
features with high synergistic information content and thus with a greater separability
power as shown in this study.

Ultimately, the classification performance results reported in this study were not
altered by any kind of postprocessor, which generally processes the classification output
stream by smoothing the decision output and ensuring feasible actuation at the lower level
of specific control policies of the active elements belonging to the assistive device. Typical
examples of such postprocessors are based on majority voting or Bayesian approaches as
widely described in the literature [2,33]. Thus, it is important to note that when dealing
with the real-time implementation of the architecture proposed in this work, it can be
particularly beneficial to include a postprocessing scheme that mitigates possible spurious
misclassifications by refining the decision output using a queue of past classifier states
along with the current one. This aspect can play a crucial role in avoiding unwanted
behavior of the myoelectric interface, thereby increasing the safety of the user [2].

5. Conclusions

In this paper, an f -PHASOR approach was proposed as a new way to embed spatial
muscle synergy information into the feature space to enhance gait phase recognition without
additional information. This approach can be useful for upgrading the performance of
shallow classifiers used in lower-limb myoelectric control applications. Indeed, the feature
set separability metrics, together with the accuracy performance obtained in five-fold
LOTO testing, suggest the superiority of the proposed approach compared to state-of-the-
art feature sets used for myoelectric control.
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