Dining Bowl Modeling and Optimization for Single-Image-Based Dietary Assessment
Abstract
:1. Introduction
2. Methods
2.1. Bowl Model
2.2. Formulation of Parameter Estimation
2.3. Numerical Optimization
- Define a coarse grid for and , where each point on the grid corresponds to a bowl model.
- For each bowl model, obtain the optimal camera pose using the Levenberg–Marquardt (LM) algorithm.
- Find candidate bowls based on the selection criteria defined in Equations (10)–(12).
- For each candidate bowl, use random search to explore the neighborhood of and , and use the LM algorithm to optimize the camera pose.
- If the smallest error is less than a preset threshold (determined experimentally), then stop; otherwise, go back to step 3.
2.4. Volumetric Error Analysis
3. Experiments
3.1. Simulated Bowls
3.2. Real-World Bowls
3.2.1. Paper Ruler Selection
3.2.2. Landmark Labeling of Real-World Bowl Image Processing
3.2.3. Accuracy of Bowl Parameter Estimation
3.3. Validation of the Bowl Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, C.; He, Y.; Khannan, N.; Parra, A.; Boushey, C.; Delp, E. Image-based food volume estimation. In Proceedings of the 5th International Workshop on Multimedia for Cooking & Eating Activities, Barcelona, Spain, 21 October 2013; pp. 75–80. [Google Scholar]
- Baranowski, T. 24-hour recall and diet record methods. Nutr. Epidemiol. 2012, 40, 49–69. [Google Scholar]
- Krall, E.A.; Dwyer, J.T. Validity of a food frequency questionnaire and a food diary in a short-term recall situation. J. Am. Diet. Assoc. 1987, 87, 1374–1377. [Google Scholar] [CrossRef] [PubMed]
- Cade, J.; Thompson, R.; Burley, V.; Warm, D. Development, validation and utilisation of food-frequency questionnaires—A review. Public Health Nutr. 2002, 5, 567–587. [Google Scholar] [CrossRef] [PubMed]
- Salim, N.O.; Zeebaree, S.R.; Sadeeq, M.A.; Radie, A.; Shukur, H.M.; Rashid, Z.N. Study for food recognition system using deep learning. J. Phys. Conf. Ser. 2021, 1963, 012014. [Google Scholar] [CrossRef]
- Kiourt, C.; Pavlidis, G.; Markantonatou, S. Deep learning approaches in food recognition. In Machine Learning Paradigms: Advances in Deep Learning-Based Technological Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 83–108. [Google Scholar]
- Subhi, M.A.; Ali, S.H.; Mohammed, M.A. Vision-based approaches for automatic food recognition and dietary assessment: A survey. IEEE Access 2019, 7, 35370–35381. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, C.; Liu, F.; Qiu, Z.; He, Y. Application of deep learning in food: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1793–1811. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, L.; Zhu, H.; Wang, W.; Ren, Z.; Zhou, Q.; Lu, S.; Sun, S.; Zhu, Z.; Gorriz, J.M. Deep learning in food category recognition. Inf. Fusion 2023, 98, 101859. [Google Scholar] [CrossRef]
- Tahir, G.A.; Loo, C.K. A comprehensive survey of image-based food recognition and volume estimation methods for dietary assessment. Healthcare 2021, 9, 1676. [Google Scholar] [CrossRef]
- Konstantakopoulos, F.S.; Georga, E.I.; Fotiadis, D.I. A Review of Image-Based Food Recognition and Volume Estimation Artificial Intelligence Systems. IEEE Rev. Biomed. Eng. 2024, 17, 136–152. [Google Scholar] [CrossRef]
- Lo, F.P.W.; Sun, Y.; Qiu, J.; Lo, B. Image-based food classification and volume estimation for dietary assessment: A review. IEEE J. Biomed. Health Inform. 2020, 24, 1926–1939. [Google Scholar] [CrossRef]
- Amugongo, L.M.; Kriebitz, A.; Boch, A.; Lütge, C. Mobile computer vision-based applications for food recognition and volume and calorific estimation: A systematic review. Healthcare 2022, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Lo, F.P.-W.; Sun, Y.; Qiu, J.; Lo, B. Food volume estimation based on deep learning view synthesis from a single depth map. Nutrients 2018, 10, 2005. [Google Scholar] [CrossRef] [PubMed]
- Abdur Rahman, L.; Papathanail, I.; Brigato, L.; Mougiakakou, S. A comparative analysis of sensor-, geometry-, and neural-based methods for food volume estimation. In Proceedings of the 8th International Workshop on Multimedia Assisted Dietary Management, Ottawa, ON, Canada, 29 October 2023; pp. 21–29. [Google Scholar]
- Ege, T.; Yanai, K. Estimating food calories for multiple-dish food photos. In Proceedings of the 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), Nanjing, China, 26–29 November 2017; pp. 646–651. [Google Scholar]
- Konstantakopoulos, F.; Georga, E.I.; Fotiadis, D.I. 3D reconstruction and volume estimation of food using stereo vision techniques. In Proceedings of the 2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE), Kragujevac, Serbia, 25–27 October 2021; pp. 1–4. [Google Scholar]
- Hassannejad, H.; Matrella, G.; Ciampolini, P.; Munari, I.D.; Mordonini, M.; Cagnoni, S. A new approach to image-based estimation of food volume. Algorithms 2017, 10, 66. [Google Scholar] [CrossRef]
- Xu, C.; He, Y.; Khanna, N.; Boushey, C.J.; Delp, E.J. Model-based food volume estimation using 3D pose. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; pp. 2534–2538. [Google Scholar]
- Rahman, M.H.; Li, Q.; Pickering, M.; Frater, M.; Kerr, D.; Bouchey, C.; Delp, E. Food volume estimation in a mobile phone based dietary assessment system. In Proceedings of the 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, Naples, Italy, 25–29 November 2012; pp. 988–995. [Google Scholar]
- Fang, S.; Shao, Z.; Mao, R.; Fu, C.; Delp, E.J.; Zhu, F.; Kerr, D.A.; Boushey, C.J. Single-view food portion estimation: Learning image-to-energy mappings using generative adversarial networks. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 251–255. [Google Scholar]
- Okamoto, K.; Yanai, K. An automatic calorie estimation system of food images on a smartphone. In Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management, Amsterdam, The Netherlands, 16 October 2016; pp. 63–70. [Google Scholar]
- Martin, C.K.; Kaya, S.; Gunturk, B.K. Quantification of food intake using food image analysis. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 6869–6872. [Google Scholar]
- Chen, J.-C.; Lin, K.W.; Ting, C.-W.; Wang, C.-Y. Image-based nutrition composition analysis with a local orientation descriptor. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 004211–004216. [Google Scholar]
- Liang, Y.; Li, J. Deep learning-based food calorie estimation method in dietary assessment. arXiv 2017, arXiv:1706.04062. [Google Scholar]
- Kadam, P.; Pandya, S.; Phansalkar, S.; Sarangdhar, M.; Petkar, N.; Kotecha, K.; Garg, D. FVEstimator: A novel food volume estimator Wellness model for calorie measurement and healthy living. Measurement 2022, 198, 111294. [Google Scholar] [CrossRef]
- Sharma, A.; Czarnecki, C.; Chen, Y.; Xi, P.; Xu, L.; Wong, A. How Much You Ate? Food Portion Estimation on Spoons. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–21 June 2024; pp. 3761–3770. [Google Scholar]
- Akpa, E.A.H.; Suwa, H.; Arakawa, Y.; Yasumoto, K. Smartphone-based food weight and calorie estimation method for effective food journaling. SICE J. Control. Meas. Syst. Integr. 2017, 10, 360–369. [Google Scholar] [CrossRef]
- Jia, W.; Ren, Y.; Li, B.; Beatrice, B.; Que, J.; Cao, S.; Wu, Z.; Mao, Z.-H.; Lo, B.; Anderson, A.K. A novel approach to dining bowl reconstruction for image-based food volume estimation. Sensors 2022, 22, 1493. [Google Scholar] [CrossRef]
- Jia, W.; Chen, H.-C.; Yue, Y.; Li, Z.; Fernstrom, J.; Bai, Y.; Li, C.; Sun, M. Accuracy of food portion size estimation from digital pictures acquired by a chest-worn camera. Public Health Nutr. 2014, 17, 1671–1681. [Google Scholar] [CrossRef]
- Jia, W.; Yue, Y.; Fernstrom, J.D.; Yao, N.; Sclabassi, R.J.; Fernstrom, M.H.; Sun, M. Image based estimation of food volume using circular referents in dietary assessment. J. Food Eng. 2012, 109, 76–86. [Google Scholar] [CrossRef]
- Agarwal, R.; Bansal, N.; Choudhury, T.; Sarkar, T.; Ahuja, N.J. IndianFoodNet-30. Available online: https://universe.roboflow.com/indianfoodnet/indianfoodnet (accessed on 15 August 2024).
- Gao, J.; Tan, W.; Ma, L.; Wang, Y.; Tang, W. MUSEFood: Multi-Sensor-based food volume estimation on smartphones. In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23 August 2019; pp. 899–906. [Google Scholar]
- Kim, J.-H.; Lee, D.-S.; Kwon, S.-K. Food Classification and Meal Intake Amount Estimation through Deep Learning. Appl. Sci. 2023, 13, 5742. [Google Scholar] [CrossRef]
- Agarwal, R.; Choudhury, T.; Ahuja, N.J.; Sarkar, T. Hybrid Deep Learning Algorithm-Based Food Recognition and Calorie Estimation. J. Food Process. Preserv. 2023, 2023, 6612302. [Google Scholar] [CrossRef]
- Jia, W.; Li, B.; Xu, Q.; Chen, G.; Mao, Z.-H.; McCrory, M.A.; Baranowski, T.; Burke, L.E.; Lo, B.; Anderson, A.K. Image-based volume estimation for food in a bowl. J. Food Eng. 2024, 372, 111943. [Google Scholar] [CrossRef]
- Maddock, B.; Offense, F. Dimensions. Available online: https://www.dimensions.com/collection/bowls (accessed on 1 August 2024).
- Kei. 7 Must Know Japanese Ramen Bowl Shapes, Sizes, and Materials. Available online: https://www.apexsk.com/blogs/japan-lifestyle/ramen-bowl-shapes-sizes-and-material-how-to-find-the-perfect-one-for-you (accessed on 14 August 2024).
- Faugeras, O. Three-Dimensional Computer Vision: A Geometric Viewpoint; MIT Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Ma, Y.; Soatto, S.; Košecká, J.; Sastry, S. An Invitation to 3-d Vision: From Images to Geometric Models; Springer: New York, NY, USA, 2004. [Google Scholar]
- Forsyth, D.A.; Ponce, J. Computer Vision: A Modern Approach, 2nd ed.; Pearson Eductaion: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Lu, X.X. A review of solutions for perspective-n-point problem in camera pose estimation. J. Phys. Conf. Ser. 2018, 1087, 052009. [Google Scholar] [CrossRef]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Sard, A. Linear Approximation; American Mathematical Soc.: Washington, DC, USA, 1963. [Google Scholar]
- Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer Science + Busuiness Media: New York, NY, USA, 2006. [Google Scholar]
- Press, W.H. Numerical Recipes 3rd Edition: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Raju, V.B.; Hossain, D.; Sazonov, E. Estimation of plate and bowl dimensions for food portion size assessment in a wearable Sensor system. IEEE Sens. J. 2023, 23, 5391–5400. [Google Scholar] [CrossRef] [PubMed]
R (mm) | (mm) | (mm) | (mm) | (mm) | (°) | (°) | (°) | |
---|---|---|---|---|---|---|---|---|
#1 | #2 | #3 | #4 | #5 | |
---|---|---|---|---|---|
Actual H (mm) Estimated H (mm) Relative error * (%) | 51.0 51.5 ± 0.5 0.9 ± 1.0 | 71.5 71.6 ± 0.6 0.1 ± 0.8 | 32.0 32.2 ± 0.5 0.5 ± 1.5 | 44.0 44.2 ± 0.4 0.4 ± 0.9 | 78.0 76.6 ± 0.6 −1.7 ± 0.8 |
Actual R (mm) Estimated R (mm) Relative error * (%) | 64.0 64.3 ± 0.6 0.5 ± 1.0 | 102.0 102.0 ± 0.8 0.3 ± 0.8 | 80.0 80.4 ± 1.2 0.5 ± 1.5 | 55.0 55.2 ± 0.5 0.4 ± 0.9 | 130.0 128.0 ± 1.0 −1.7 ± 0.8 |
Actual q Estimated q Relative error * (%) | 6.3 6.3 ± 0.4 −0.6 ± 6.7 | 9.0 8.9 ± 0.2 −1.1 ± 1.9 | 3.5 3.5 ± 0.2 0.0 ± 6.6 | 5.2 5.2 ± 0.3 0.4 ± 6.8 | 8.5 8.7 ± 0.3 2.5 ± 3.6 |
Actual volume (cm3) Estimated volume (cm3) Relative error * (%) | 500.0 506.4 ± 10.1 1.3 ± 2.0 | 1909.0 1921.3 ± 45.6 0.6 ± 2.4 | 409.0 415.3 ± 17.9 1.4 ± 4.4 | 302.0 305.3 ± 8.2 1.1 ± 2.7 | 3352.0 3194.0 ± 79.5 −4.7 ± 2.4 |
Experimental Calculated | 0.020 0.027 | 0.024 0.018 | 0.044 0.041 | 0.027 0.028 | 0.024 0.019 |
Bowl#6 | Bowl#7 | Bowl#8 | Bowl#9 | Bowl#10 | Bowl#11 | Bowl#12 | |
---|---|---|---|---|---|---|---|
Actual H (mm) | 45.0 | 52.0 | 59 | 61.0 | 43.0 | 65.0 | 63.0 |
Estimated H (mm) | 52.4 ± 2.1 | 53.6 ± 1.9 | 63.8 ± 2.7 | 65.3 ± 2.1 | 44.8 ± 0.4 | 64.0 ± 0.0 | 64.0 ± 0.0 |
Relative error * (%) | 16.4 ± 4.6 | 3.1 ± 3.6 | 8.1 ± 4.6 | 7.0 ± 3.5 | 4.1 ± 0.8 | −1.5 ± 0.0 | 1.5 ± 0.0 |
Actual R (mm) | 50.5 | 60.5 | 75.5 | 76.0 | 87.5 | 76.0 | 75.5 |
Estimated R (mm) | 52.4 ± 2.1 | 61.0 ± 1.2 | 76.0 ± 2.1 | 71.0 ± 1.2 | 89.5 ± 0.7 | 80.0 ± 0.0 | 80.0 ± 0.0 |
Relative error * (%) | 3.8 ± 4.1 | 0.8 ± 2.0 | 0.7 ± 2.8 | −6.6 ± 1.6 | 2.3 ± 0.8 | 5.3 ± 0.0 | 5.9 ± 0.0 |
Actual q | 8.0 | 3.3 | 5.5 | 4.9 | 2.3 | 3.0 | 5.1 |
Estimated q | 8.3 ± 0.4 | 3.7 ± 0.2 | 5.9 ± 1.0 | 7.4 ± 0.6 | 2.9 ± 0.1 | 2.9 ± 0.1 | 4.9 ± 0.1 |
Relative error * (%) | 4.2 ± 5.4 | 11.5 ± 7.2 | 8.0 ± 18.7 | 5.0 ± 13.3 | 28.2 ± 3.1 | −3.3 ± 4.7 | −4.9 ± 1.4 |
Actual volume (cm3) | 288.0 | 371.0 | 773.0 | 787.0 | 557.0 | 705.0 | 818.0 |
Estimated volume (cm3) | 365.6 ± 40.7 | 405.6 ± 8.7 | 859.9 ± 34.5 | 811.5 ± 17.1 | 671.2 ± 22.4 | 761.3 ± 15.2 | 911.1 ± 3.9 |
Relative error * (%) | 26.9 ± 14.1 | 9.3 ± 2.3 | 11.2 ± 4.5 | 3.1 ± 2.2 | 20.5 ± 4.0 | 8.0 ± 2.1 | 11.4 ± 0.5 |
Bowls | #13 | #14 | #15 | #16 | #17 | #18 | #19 | #20 | #21 | #22 |
---|---|---|---|---|---|---|---|---|---|---|
MAE (inches) | 0.009 | 0.076 | 0.017 | 0.038 | 0.016 | 0.029 | 0.036 | 0.008 | 0.026 | 0.017 |
Relative MAE (%) | 0.397 | 2.552 | 0.777 | 1.240 | 0.632 | 1.268 | 1.541 | 0.276 | 1.383 | 0.777 |
RMSE (inches) | 0.012 | 0.096 | 0.029 | 0.060 | 0.021 | 0.044 | 0.048 | 0.011 | 0.038 | 0.029 |
Relative RMSE (%) | 0.490 | 2.996 | 0.968 | 1.503 | 0.770 | 1.546 | 1.857 | 0.339 | 1.685 | 0.968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Sun, M.; Mao, Z.-H.; Jia, W. Dining Bowl Modeling and Optimization for Single-Image-Based Dietary Assessment. Sensors 2024, 24, 6058. https://doi.org/10.3390/s24186058
Li B, Sun M, Mao Z-H, Jia W. Dining Bowl Modeling and Optimization for Single-Image-Based Dietary Assessment. Sensors. 2024; 24(18):6058. https://doi.org/10.3390/s24186058
Chicago/Turabian StyleLi, Boyang, Mingui Sun, Zhi-Hong Mao, and Wenyan Jia. 2024. "Dining Bowl Modeling and Optimization for Single-Image-Based Dietary Assessment" Sensors 24, no. 18: 6058. https://doi.org/10.3390/s24186058
APA StyleLi, B., Sun, M., Mao, Z. -H., & Jia, W. (2024). Dining Bowl Modeling and Optimization for Single-Image-Based Dietary Assessment. Sensors, 24(18), 6058. https://doi.org/10.3390/s24186058