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Abstract: Analysis of unintended compromising emissions from Video Display Units (VDUs) is
an important topic in research communities. This paper examines the feasibility of recovering the
information displayed on the monitor from reconstructed video frames. The study holds particular
significance for our understanding of security vulnerabilities associated with the electromagnetic
radiation of digital displays. Considering the amount of noise that reconstructed TEMPEST video
frames have, the work in this paper focuses on two different approaches to de-noising images for
efficient optical character recognition. First, an Adaptive Wiener Filter (AWF) with adaptive window
size implemented in the spatial domain was tested, and then a Convolutional Neural Network
(CNN) with an encoder–decoder structure that follows both classical auto-encoder model architecture
and U-Net architecture (auto-encoder with skip connections). These two techniques resulted in an
improvement of more than two times on the Structural Similarity Index Metric (SSIM) for AWF and
up to four times for the SSIM for the Deep Learning (DL) approach. In addition, to validate the results,
the possibility of text recovery from processed noisy frames was studied using a state-of-the-art
Tesseract Optical Character Recognition (OCR) engine. The present work aims to bring to attention
the security importance of this topic and the non-negligible character of VDU information leakages.

Keywords: TEMPEST; security; de-noising; adaptive Wiener filter; U-Net; CNN

1. Introduction

The threat posed by unintended emanations in the video domain has drawn attention
from the research community since W. Van Eck’s publication on compromising emana-
tions from Cathode Ray Tube (CRT) screens in 1985 [1]. The author showed that not only
is this type of attack possible but that it can be accomplished using cost-efficient equip-
ment. The following investigations [2,3] have contributed to a better understanding of
the phenomenon. The author details in [2] the threat posed by electromagnetic radiation
from RS-232 cables, and Markus G. Kuhn extended the existent work from only studying
CRT’s emanations to documenting eavesdropping experiments on flat panel displays [3] in
2003. Others [4–6] continued the research in this particular field and have solidified the
concept that video display units in general but especially video data signaling, like HDMI,
Video Graphics Array (VGA), Display Visual Interface (DVI), and Low-Voltage Differential
Signaling (LVDS), suffer from compromising electromagnetic emanations. An important
change in this research field has happened since the development of Software-Defined
Radios (SDRs). This radio equipment has features that ease the TEMPEST signals’ recovery
process. Together with the open-source available software TempestSDR v1 [7], exploiting
compromising emanations of VDUs has become more accessible. Although this type of
attack still may resemble an intelligence method from the Cold War era, data theft through
eavesdropping can be a serious security challenge because of its undetectable nature.
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In [8], the authors explore the possibility of reconstructing video frames from a distance of
80 m under realistic circumstances. As experimental results show in [8], the reconstructed
video frames have a considerable amount of noise. Additionally, their quality could be
decreased by any other possible interference in the specific environment. To quantitatively
analyze the security issue created by VDU leakages, it is necessary to assess whether the
reconstructed frames can be integrated into an automated information extraction system,
represented by optical character recognition engines, which would automatically process
the frames and extract the information displayed on the target monitor as a text file. OCR
tools, implemented with machine learning algorithms, are very popular and aim to extract
machine-coded text from digital images. For the present work, the Tesseract OCR [9] engine
was used, with no preliminary results on text extraction for noisy reconstructed frames.

This paper aims to de-noise the video frames to improve image quality and to make
possible optical character recognition for the reconstructed digital images. To achieve this
goal, two methods were implemented and tested. The first technique, the adaptive Wiener
filter, is implemented in the spatial domain and utilizes a sliding window to modify the
image. This type of filter adjusts its performance based on local statistical parameters along
the image, assuming that areas with high local variance represent important details and
edges that need to be preserved. It exhibits linear behavior, acting as a mean filter for
the areas with a small local variance while keeping the original values unchanged for the
areas with edges and details. A detailed comparative analysis regarding both the filter
versions in the spatial domain and the frequency domain may be found in [10], where the
advantages of using adaptive image processing techniques in protecting sensitive areas
have also been highlighted.

The second approach involves modern deep learning algorithms, specifically, Convolu-
tional Neural Networks (CNNs) [11–13], to implement a network with an encoder–decoder
structure. The objective is to learn a latent representation of the noisy video frame and re-
construct its corresponding clean version. The model architecture follows a U-Net structure,
featuring two symmetric CNNs with skip connections between them. DL algorithms have
been proven to be very useful in the context of TEMPEST images, and several successful
experiments have already been published [14,15]. The authors detail in [14] the training
process of a deep convolutional encoder–decoder network to remove white Gaussian noise,
yielding promising results. Also, closer to our subject, ref. [15] explores various artificial
intelligence approaches for its goal of de-noising intercepted frames, including U-Net,
auto-encoder, and Mask R-CNN.

Other state-of-the art de-noising techniques rely on transformer-based networks, and
J. Liang et al. [16] performed successful experiments in video restoration by incorporating
recurrent design into transformer-based models.

The authors of [17] propose a different approach in this field, as their method consists
of first processing the image with a small set of highly specialized de-noisers, each trained
with a different noise distribution and then passing their results to a kernel prediction
network that estimates per-pixel de-noising kernels. The method is well suited for real-
world applications where the noise distribution is unknown. The main difference between
the other works presented and our approach lies in the information security analysis on
the text in the de-noised video frames.

The proposed methods in this paper were assessed through the SSIM. The SSIM
was first introduced in [18], and it relies on extracting three key features from an image:
luminance, contrast, and structure. A comparison between two images is made considering
these three features. Also, for evaluating the performance, OCR precision on de-noised
frames was analyzed and discussed.

2. Materials and Methods
2.1. Data Acquisition Setup

Considering that the phenomena of TEMPEST compromised signal emanations is
well known in the communication security field, the work in this paper is focused on
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laboratory measurements since the main purpose of the experiment is to employ new
methods for improving video raster. Distances or environmental conditions could affect
the data acquisition process unless an adequate preamplifier is used in the receiver chain,
and thus they must be carefully considered for real-scenario experiments.

Unintended emanations were captured in a laboratory setup, as shown in Figure 1,
using an anechoic chamber, which ensures a clean electromagnetic environment and a
control room to process the leaked video signal. The equipment used was a 1980 × 1080
resolution Dell S2421HN LED monitor with a 60 Hz refresh rate and a pixel clock value
equal to 148,500 MHz. It was placed on the test bench and connected to the graphics card
of a TEMPEST pre-tested laptop to prevent unwanted interferences. Equipment Under Test
(EUT) is connected to the power supply through a Line Impedance Stabilization Network
(LISN), which filters any radio frequency signal that may appear as a conducted emission
from the AC main and could affect the experiment’s quality and creates a known impedance
between the EUT and power line providing the conducted emission testing.
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Figure 1. The setup used to capture EUT’s emanations.

For the reception of compromising radiation emanations corresponding to the video
signal generated by the studied equipment, appropriate electromagnetic translators suitable
for the spectrum of interest were used. Thus, in the frequency range of 30 MHz–200 MHz,
the R&S HE526 active antenna was used, while in the frequency range of 200 MHz–1 GHz,
the R&S HE527 active antenna was used. The signal received with the help of a translator
was then transferred to the control room where the reception equipment was located
through an RF connector panel. The reception equipment consisted of a radio frequency
receiver, an SDR, and a workstation for controlling the equipment and processing the
received signals. The employed receiver was a wideband receiver suitable for TEMPEST
testing and evaluation, R&S FSWT26.

The acquisition of the video signal was undertaken using an SDR SignalHound BB60D,
and Figure 2 displays two complete video frames with a total duration of 33.4 ms.

Despite the availability of a spectrum receiver equipped with an image reconstruction
(raster) module, a more accessible and user-friendly application was developed to meet the
specific requirements of the task. The principle of image reconstruction from unintended
electromagnetic radiation is well known and has been extensively studied since the late
20th century. Currently, the literature does not describe a method for obtaining colored
images from the analyzed device’s emissions. Instead, colored images are obtained using
various gradient techniques to represent pixel values.
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Figure 2. Captured video signal visualized in the time domain.

Regarding video frame composition and its parameters, the process of image recon-
struction from video display units involves scaling the captured samples within a range of
0–255, resulting in grayscale image reconstruction. Considering the video frame refresh
rate and the display’s resolution, the 1D array was reshaped into a 2D array. Applying
a median filter to the resulting matrix facilitated the reconstruction of the video frame
corresponding to the image displayed by the analyzed device.

Due to the video signal’s bandwidth and the unintentional generation of harmonics
by the studied device, the image reconstruction process initially produced a noisy frame.
To improve the clarity of the obtained image, a median filter was applied. Those frames
served as input data for this experiment. It is worth noticing that determining the video
line duration precisely is very important for a successful reconstruction process. In Figure 3,
one test image is presented in both its clean version and its reconstructed state.
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video signal.

2.2. Adaptive Wiener Filter

Images studied in the present paper are very specific, featuring a white background
with black characters. The objective of a conventional filtering method is to preserve the
characters while effectively smoothing as much as possible the background, enhancing the
signal-to-noise ratio (SNR) value. For this task, the adaptive Wiener filter implemented in
the spatial domain was considered the most appropriate. Its main theoretical purpose is
to estimate the image without noise, minimizing mean square error between noisy data
and ground truth by using local statistics. To implement the filter using the pixel-by-pixel
method, a sliding window is used, within which, based on local statistical parameters,
the corrected value of the central pixel is determined according to the linear combination
between the local mean value and the unmodified pixel value. Applying this logic, the
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weight given by the average of neighboring pixels and that given by the noisy image itself
were determined by the ratio between the local variance in the window and the maximum
local variance considering windows with the same size, as described in Equation (1):

r(i, j) = α·µ(i, j) + β·s(i, j), (1)

where

α =
σmax − σL(i, j)

σmax
(2)

and

β =
σL(i, j)
σmax

(3)

with σL(i, j) being the local variance in that particular window, σmax the maximum local
variance along the image (taking into consideration windows with the same size only), r(i,j)
the modified pixel in the filtered image, and s(i,j) the original pixel. This strategy assures a
simple linear model that processes the input noisy frames accordingly for each area in the
image. For the purpose of further explanations, the ratio between σL(i, j) and σmax will be
called the relative local variance in this paper.

The immediate question that needs to be addressed is how large should the window
be. First, if considering windows with small sizes (3 × 3, 5 × 5, 7 × 7), the changes will be
visible but not quite satisfactory. Nevertheless, this could be useful in many cases. Secondly,
if larger windows are used, an effective visible blur will be caused in the background, but
closer to the characters, a large local variance value will be computed within the window,
and no modifications will be made to the pixels in characters’ proximity. The latter is
presented in Figure 4. The unfiltered noise around the characters could pose a problem
for the Tesseract OCR engine, which uses a binarization algorithm as a preprocessing step
before character prediction.
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Figure 4. (a) Filter effectively applies a mean filter in the area selected; (b) the area selected has high
local variance and r(i,j)’s value is mostly influenced by s(i,j).

Adaptive window size was implemented in order to fix the issue presented. Specif-
ically, by default, a large window will be set (e.g., 13 × 13, 15 × 15, 17 × 17). However,
whenever the relative local variance exceeds a threshold value within that large window
that has been set by default, the window size will automatically be adjusted to 3 × 3 as it is
assumed that a sensitive area is being handled at that moment, and all the operations that
define this filter will be performed using 3 × 3 windows. Also, whenever the relative local
variance value decreases under the threshold, filtering process will be handled using the
large window. By incorporating this feature into the adaptive Wiener filter, it is possible to
benefit both from efficient background blur produced caused by large windows and from
the heightened attention paid by small windows in areas closely adjacent to the characters.
The result of applying this method is presented in Figure 5.
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Figure 5. Final visual result for adaptive Wiener filter approach; it should be noted that a median
filter was used before the proposed method.

For the present work, the filter was applied to images 512 × 256 in size, the large
window size was 13 × 13, and the threshold value was set to 0.85. For reproducibility, it is
recommended to maintain the same proportions between the image size and the default
window size.

2.3. Deep Learning

The recent results of artificial intelligence in various domains recommend these meth-
ods for widespread use and may represent a solution for the abstract nature of the noise in
TEMPEST reconstructed images.

The second proposed approach involved utilizing the auto-encoder-based DL method
for this de-noising task. An auto-encoder is built from two CNNs with symmetric archi-
tecture and a central latent representation called a bottleneck. The first CNN, known as
the encoder, performs basic operations specific to feature extraction. The output of the
encoder is a compressed representation of data capturing important features. The decoder
then attempts to up-sample the latter in order to reconstruct input data. In this paper, the
implementation of the auto-encoder aimed to use the noisy video frames as input and force
the model to reconstruct them into clean versions, as shown in Figure 6.
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2.3.1. Creating the Dataset

One of the main challenges is creating the dataset because for each noisy video frame,
its corresponding clean version is needed in order to be used as a target for the model
prediction in the training phase. Thus, the dataset will consist of several reconstructed–
original image pairs. As presented in Figure 3, the intercepted frame is skewed, noisy,
and misaligned. Additionally, synchronization errors could be observed, causing image
displacement. Knowing that the loss between model prediction and the original image has
to be computed, an exact alignment has to exist. To create the dataset and to overcome
the challenges presented, on the test monitor four patches of text were displayed, and the
reconstructed frame was aligned with its corresponding clean version using the Oriented
FAST and Rotated BRIEF (ORB) algorithm. Its performance was evaluated and compared
to other state-of-the-art algorithms, like SIFT and SURF in [19]. The result of applying ORB
algorithm to align noisy video frames can be seen in Figure 7.
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The alignment was not always possible unless supplementary filtering was applied
to the TEMPEST video frames. These filters include the median filter and the adaptive
Wiener filter detailed above in this paper. The alignment was verified through overlaying
the image pairs, and in the cases where the ORB still could not produce satisfactory results
after applying the filters, the text patches were not included in the dataset in order to
avoid compromising the experiment. Nevertheless, biases or errors that could result after
applying ORB might be compensated by integrating a loss function that is invariant to
misalignment errors, such as Normalized Compressed Distance (NCD) [20] or the SSIM.

Once the reconstructed frame is aligned with the clean one, each patch of text is
extracted in pairs, and several augmentation operations are applied to increase the vari-
ability of the dataset. Specifically, random Gaussian noise, random Gaussian blur, random
contrast adjustments, random brightness adjustments, random cropping, and histogram
equalization are applied. The entire processing flow is schematically depicted in Figure 8.
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Figure 8. The approach for creating the dataset.

The proposed approach generated 4000 image pairs which were split into training data
and validation data at a ratio of 4 to 1. The augmentation ensured diversity throughout
the dataset by applying various transformations in order to reduce the risk of overfitting
and to allow the model to generalize better to new data. Table 1 notes the percentage of the
dataset to which a type of augmentation has been applied.

Table 1. Augmentation overview.

Augmentation Applied Gaussian Blur Gaussian Noise Random Contrast Random Brightness Histogram Equalization None

Percentage of Dataset 12.5% 12.5% 12.5% 12.5% 12.5% 37.5%

Random cropping was applied across the entire dataset.

2.3.2. Training and Models

The training process was conducted using a GTX 1080 graphics card with 12 GB of
memory. The input images’ dimension was 512 × 256 in grayscale format. The feature
extraction block (encoder) consisted of convolutional layers with an increasing number
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of filters and a 3 × 3 kernel size. The compressed data representation had a dimension of
32 × 16 × 128 and served as input for the decoder block which utilizes transpose convolu-
tional layers to reconstruct the image. For the whole network, regularization techniques,
such as dropout and batch normalization, were used to prevent overfitting during training.
Also, as activation function for the training Rectified Linear Unit (ReLu) was employed,
while at the last convolutional layer, sigmoid was used. The deep learning model was
trained for 50 epochs, with a batch size of 32 and a learning rate 0.05, utilizing Mean
Squared Error (MSE), described in Equation (4) as the loss function:

MSE =
∑N

k=1
∥∥Yk − Ŷk

∥∥2

N
(4)

where Yk is the predicted value for the k-th sample, Ŷk is the target value for the k-th sample,
and N is the number of samples in the dataset. In order to update the weights’ values, an
Adam optimizer was utilized.

In order to achieve optimal results, both the classical auto-encoder architecture dis-
cussed earlier and the U-Net architecture, which is a specific implementation of auto-
encoder that involves adding skip connections between the symmetrically disposed layers,
were tested. U-NET is very well known for image segmentation [21], but can also be used
for de-noising tasks. The two model architectures are schematically described in Figure 9,
together with data dimensions and the number of filters at every step of the network.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 13 
 

 

2.3.2. Training and Models 
The training process was conducted using a GTX 1080 graphics card with 12 GB of 

memory. The input images’ dimension was 512 × 256 in grayscale format. The feature ex-
traction block (encoder) consisted of convolutional layers with an increasing number of 
filters and a 3 × 3 kernel size. The compressed data representation had a dimension of 32 
× 16 × 128 and served as input for the decoder block which utilizes transpose convolutional 
layers to reconstruct the image. For the whole network, regularization techniques, such as 
dropout and batch normalization, were used to prevent overfitting during training. Also, 
as activation function for the training Rectified Linear Unit (ReLu) was employed, while 
at the last convolutional layer, sigmoid was used. The deep learning model was trained 
for 50 epochs, with a batch size of 32 and a learning rate 0.05, utilizing Mean Squared Error 
(MSE), described in Equation (4) as the loss function: MSE = ∑ ‖ ‖   (4)

where 𝑌  is the predicted value for the k-th sample, 𝑌  is the target value for the k-th 
sample, and N is the number of samples in the dataset. In order to update the weights’ 
values, an Adam optimizer was utilized. 

In order to achieve optimal results, both the classical auto-encoder architecture dis-
cussed earlier and the U-Net architecture, which is a specific implementation of auto-en-
coder that involves adding skip connections between the symmetrically disposed layers, 
were tested. U-NET is very well known for image segmentation [21], but can also be used 
for de-noising tasks. The two model architectures are schematically described in Figure 9, 
together with data dimensions and the number of filters at every step of the network. 

  

 

(a) (b) (c) 

Figure 9. (a) Basic auto-encoder architecture; (b) auto-encoder with skip connections (U-Net); (c) 
legend. 

Initial experiments showed that the number of filters was an important hyperparam-
eter for this application because having too many neurons not only increased training time 
but also generated overfitting issues. In the final network configuration, the number of 
filters ranged from 1 to 128 as the network became deeper. Several tests also focused on 
the behavior of the model when ranging the learning rate from 0.005 to 0.5, and the con-
clusion was that the model’s capability to convergence was not affected but only the time 
it took to converge. 

The addition of skip connections to the encoder–decoder structure was inspired by 
deep Residual Network (ResNet) models [22], and the benefit, in the case of this experi-
ment, addresses two possible drawbacks of the classical auto-encoder. During the feature 
extraction process, important image details can be lost, making efficient reconstruction 

Figure 9. (a) Basic auto-encoder architecture; (b) auto-encoder with skip connections (U-Net);
(c) legend.

Initial experiments showed that the number of filters was an important hyperparame-
ter for this application because having too many neurons not only increased training time
but also generated overfitting issues. In the final network configuration, the number of
filters ranged from 1 to 128 as the network became deeper. Several tests also focused on the
behavior of the model when ranging the learning rate from 0.005 to 0.5, and the conclusion
was that the model’s capability to convergence was not affected but only the time it took
to converge.

The addition of skip connections to the encoder–decoder structure was inspired by
deep Residual Network (ResNet) models [22], and the benefit, in the case of this experi-
ment, addresses two possible drawbacks of the classical auto-encoder. During the feature
extraction process, important image details can be lost, making efficient reconstruction
much more challenging. When skip connections are part of the architecture, the feature
maps passed to deeper layers carry important image details, which can be helpful for de-
convolution layers to reconstruct a much cleaner image. Additionally, a problem frequently
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addressed in the literature is that deeper networks could suffer from gradients vanishing,
making it difficult for the networks to learn efficiently. Skip connections tackle this issue
by creating additional paths for the gradient flow, allowing for better backpropagation
through the network.

Because this paper aims to compare a classical method with a DL method for de-
noising TEMPEST video frames, to select the model for further discussion and performance
evaluation, 50 epochs of training were employed, and the U-Net architecture was chosen
based on the higher validation SSIM. The results can be observed below in Figure 10.
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with skip connections (U-Net) reached 0.77; the model’s prediction on the test image from Figure 4 is
shown below the graph.

Using 4-fold cross-validation on our dataset, we validated the robustness and
generalizability of the auto-encoder. This process also highlighted consistent perfor-
mance, with minimal fluctuations in accuracy, reinforcing the reliability of the proposed
de-noising method.

3. Results

The analysis of the proposed methods was initially conducted by calculating the
SSIM [18] value both before and after each implemented technique. Furthermore, consider-
ing the security perspective associated with TEMPEST imagery, the open-source Tesseract
OCR engine [9] was used to assess its accuracy in character recognition from denoised
video frames.

3.1. Structural Similarity Index Metric (SSIM)

Many of the evaluation metrics rely on calculating the differences in pixel intensities
between a test image and a reference image (e.g., MSE, Mean Absolute Error (MAE), Root
Mean Square Error (RMSE)). The SSIM, on the other hand, takes a different approach and
is computed based on three fundamental comparison functions that represent key features
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in an image: luminance comparison Function (5), contrast comparison Function (6), and
structure comparison Function (7). The following equations describe these functions:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(5)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(6)

s(x, y) =
σxy + C3

σxσy + C3
(7)

where µx/y and σx/y are mean intensity and standard deviation of all pixels, respectively,
for images x and y, and C1, C2, and C3 are constants meant to ensure stability when the
denominator becomes 0. Also, σxy denotes the covariance of the two images. Knowing
these, the similarity is computed according to Equation (8):

SSIM(x, y) = [l(x, y)]α
[

c(x, y)]β[s(x, y)]γ (8)

with α > 0, β > 0, γ > 0 denoting the importance of each of the functions. For the present
work, α = β = γ = 1, and C3 = C2

2 , which change Equation (9) as follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(9)

Considering the above theoretical notes, a more efficient approach is to implement the
SSIM locally in images and then take the overall mean of the SSIM. Thus, as detailed in [16],
an 11 × 11 circular-symmetric Gaussian weighting function was used, and the required
metrics calculated locally are described in following equations:

µx = ∑N
i=1 wixi (10)

σx = (∑N
i=1 wi(xi − µx)

2)
1
2 (11)

σxy = ∑N
i=1 wi(xi − µx)(yi − µy) (12)

where wi is the Gaussian weighting function. The global SSIM value is then computed
based on the mean of all the local SSIMs for images X and Y:

SIM(X, Y) =
1
M∑M

j=1 SSIM(xj, yj) (13)

3.2. Performance Evaluation

The similarity between processed noisy video frames and clean ones was studied in
the first assessment. To check the algorithms’ robustness, besides testing the image as it
was reconstructed from unintended emanations, additional Gaussian noise with increasing
sigma values was added. The SSIM value for each circumstance is shown in Table 2.

The application of the proposed methods in the initial test yielded a significant increase
in the SSIM from 0.22 to 0.53 and 0.77, respectively. These results offer promising research
perspectives both in the direction of classical image processing methods and especially in
the direction given by the emergence of DL methods. The tests where extra Gaussian noise is
added to the test image demonstrate the robustness of the algorithms, as the SSIM value for
the implemented filter remains above 0.4, whereas the auto-encoder model’s performance
only starts to decrease after a very high sigma value characterizing the additional noise.
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Table 2. Evaluation of the proposed methods from the SSIM perspective, with and without extra
noise added to intercepted frames.

Test Setup Avg. SSIM Intercepted Video Frame Avg. SSIM Adaptive Wiener Filter Avg. SSIM Auto-Encoder
with Skip Connections

No Additional
Noise Added 0.22 0.53 0.78

Additional Gaussian
Noise Added (σ = 15) 0.14 0.46 0.77

Additional Gaussian
Noise Added (σ = 25) 0.07 0.44 0.76

Additional Gaussian
Noise Added (σ = 55) 0.01 0.43 0.64

Considering security concerns, the most important evaluation lies in assessing the
amount of private information that could be automatically extracted from the processed
video frames using the proposed methods. To better emphasize the obtained results,
from the reconstructed images, five of them are presented in Figure 11. The process of
reconstruction leads to successfully recognizing approximately 350 characters from different
images. As previously mentioned, the OCR engine Tesseract was used, and its predictions’
accuracy was analyzed. Results are shown in Table 3.
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Table 3. Performance assessment from an OCR perspective.

Method OCR Acc.
Image Test #1

OCR Acc.
Image Test #2

OCR Acc.
Image Test #3

OCR Acc.
Image Test #4

OCR Acc.
Image Test #5

OCR Acc.
Total Characters

Adaptive Wiener Filter 50% 64% 58% 41% 59% 54%
Auto-Encoder With
Skip Connections 75% 85% 69% 66% 79% 74%

From the OCR results perspective, it becomes evident that while both demonstrate
proficiency, the DL method stands out as a superior choice due to the larger number of
recovered characters.

Table 4 shows the runtime for the methods discussed and points to the auto-encoder
as being the best choice when considering the computational complexity for real-world
applications. The adaptive Wiener filter has a bigger de-noising time due to its nature,
being based on sliding windows in the spatial domain. It is also well known that applying
the filter in the spatial domain to images larger than those used in this paper will increase
de-noising time for the AWF.

Table 4. Computational complexity.

Method Auto-Encoder with Skip Connections Adaptive Wiener Filter

De-noising Time 170 ms 4 s
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4. Discussion

This study examines TEMPEST video frames and implements two processing methods
for de-noising them in order to increase awareness among users regarding video display
unit security breaches and to facilitate video frame reconstruction during the TEMPEST
testing of electronic devices. Given the recent advances in artificial intelligence and the
necessity for the secure usage of electronic devices in various domains, the proposed
methods will significantly enhance defenses against eavesdropping on video display units.
Proving the security risks to which an end user might be exposed reinforces the importance
of considering countermeasures against electronic equipment eavesdropping. Even if
the communication between endpoints is encrypted, processed information could still be
compromised by an EM security breach.

Both the adaptive Wiener filter and auto-encoder led to a significant improvement in
terms of the average SSIM. Moreover, these methods demonstrated robustness to additional
Gaussian noise. Additionally, the study explored recoverable text information from the
noisy video frames, which was not feasible with the unprocessed images. The results
confirm the anticipated good results of introducing skip connections in the auto-encoder
architecture. Training the auto-encoder involved noisy–clean image pairs, but other papers
have also studied noise2noise DL models [23]. As for the adaptive filter, a suitable variant
has been successfully implemented for the type of data generated by TEMPEST imagery,
inspired by the work of J. S. Lim [10], who extensively details the theoretical concept.

It is important to note the similarity between the studied methods. Specifically, the
adaptive Wiener filter is a linear approach that modifies the pixels only if local variance is
small or applies a skip connection for the pixels where local variance is large. On the other
hand, the utilized U-Net architecture represents a non-linear filtering approach of increased
complexity, in which the same skip connections pass features before further processing.

This research work adopts different new approaches regarding the analysis of the
unintended electromagnetic emanations generated by electronic devices. Besides the
development of the VDU-based process of image reconstruction, another future direction
consists of using artificial intelligence in order to colorize the reconstructed frame. Also,
a key point regarding our future research work is represented by focusing on the image
artifacts that can be observed as horizontal or vertical stripes on the video frames.

Last but not least, Nevertheless, different neural networks could be developed to
discover new approaches to the detection and analysis of unintended electromagnetic
emissions generated by electronic devices. Applying various neural networks on datasets
corresponding to different signals studied in the TEMPEST domain, such as audio, key-
board keystroke signal, USB transfer signal, etc., will reduce the TEMPEST operator’s
efforts during the electronic equipment’s testing process.
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