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Abstract: This paper investigates state estimation methods for dynamical systems when model
evaluations are performed on resource-constrained embedded systems with finite precision compute
elements. Minimum mean square estimation algorithms are reformulated to incorporate finite-
precision numerical errors in states, inputs, and measurements. Quantized versions of least squares
batch estimation, sequential Kalman, and square-root filtering algorithms are proposed for fixed-point
implementations. Numerical simulations are used to demonstrate performance improvements over
standard filter formulations. Steady-state covariance analysis is employed to capture the performance
trade-offs with numerical precision, providing insights into the best possible filter accuracy achievable
for a given numerical representation. A low-latency fixed-point acceleration state estimation architec-
ture for optomechanical sensing applications is realized on Field Programmable Gate Array System
on Chip (FPGA-SoC) hardware. The hardware implementation results of the estimator are compared
with double-precision MATLAB implementation, and the performance metrics are reported. Simula-
tions and the experimental results underscore the significance of modeling quantization errors into
state estimation pipelines for fixed-point embedded implementations.

Keywords: optical sensors; Kalman filter; state estimation; quantized filtering; finite-precision; FPGA

1. Introduction

Kalman filters were first introduced into onboard guidance and navigation systems
during NASA’s Apollo Project in the 1960s [1]. However, digital simulations of the filter
for onboard trajectory estimation using finite-precision arithmetic uncovered numerical
stability problems. The filter simulations on the IBM 704 computer with 36-bit floating-point
arithmetic were determined to be numerically unreliable. On the Apollo flight computer
constrained with only 15-bit fixed-point arithmetic operations, onboard implementation
of the filter was infeasible [2]. Since then, efforts to improve filter accuracy and stability
under finite-precision hardware constraints have been a focus for practical realization of
navigation filters. Square-root filtering was invented as a solution for execution on the
Apollo guidance computer to solve the historic circumlunar navigation problem [3]. Square-
root algorithms for state estimation were well-established by the 1970s [4,5] to address
numerical stability issues due to quantization effects. With technological advancements
in microprocessors and hardware accelerators, research on navigation filters continued to
focus on high-speed, hard real-time calculations [6]. Recent research on quantized filtering
algorithms has been enabled by optimized software packages, dedicated hardware for
parallel computing, and purpose-built solutions [7–9].

The quantization problem in state estimation and optimal control has been widely
studied in the literature [10–12]. Quantization is commonly utilized in wireless sensor
networks (WSNs) with low-quality sensors with limited computation and communication
capabilities, and where transmission bandwidth is severely constrained. A class of Kalman
filters where the difference between measurements and its predictions (i.e., innovations)
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are quantized has been developed for decentralized state estimation [12,13]. In these
quantized Kalman filters, measurement predictions are distributed from a fusion center to
a sensor node, where innovations are quantized and sent back to the center for filter update.
The sign of innovation Kalman filter (SOI-KF) [13] operates by quantizing innovations
to only 1-bit, which may give rise to large estimation errors. Filters are also proposed
for multi-bit transmission, such as the multiple-level quantized innovation Kalman filter
(MLQ-KF) [12]. It is shown that with multi-bit quantization, the performance of the
quantized filter can be recovered to nearly match the mean squared errors of standard
the Kalman filter [12]. However, to have such performance, uniformly distributed sensor
nodes collectively convey their quantized information to a fusion center for processing into
a combined target state estimate. Having just one isolated sensor significantly undermines
estimator tracking performance, and a standard Kalman filter operating on high-resolution
measurements from even one sensor is relatively more accurate. Work has also been
reported in utilizing quantized measurements in the development and analysis of particle
filters [14], unscented Kalman filters [15], and their fixed-point implementations [14,16].
These implementations are purpose-built for accelerating filter algorithms for specific
applications and are not easily scalable for generic state estimation problems. To a great
extent, the usual practice for high-speed onboard realization of filtering algorithms vastly
depends upon the hardware resources and also on the choice of an optimal state estimator.
This paper aims to bridge this gap by reformulating minimum mean square estimation
algorithms to explicitly account for finite-precision numerical errors in states, inputs, and
measurements. By integrating quantization noise models into the filter structure, the
proposed approach enables the design of quantized filters that are better suited for fixed-
point implementations on embedded systems.

This research focuses on optimal quantized filtering methods with an application
focus on optomechanical acceleration sensors for inertial navigation. Optomechanical ac-
celerometers rely on the coupling between the mechanical displacement of a test mass and
light captured using an optical detection system [17]. Such a sensor requires optical data
processing on high-speed hardware modules such as Field Programmable Gate Arrays (FP-
GAs) [18] for estimation of acceleration forces from test-mass displacement measurements.
These precision force measuring units are deployed in geodesic applications, including the
Gravity Recovery and Climate Experiment (GRACE) mission [19], the Laser Interferometer
Space Antenna (LISA) [20], and the Laser Interferometer Gravitational-Wave Observatory
(LIGO) [21].

For deployment on a spacecraft or resource-constrained hardware (e.g., FPGA [22,23]),
dynamic range and sensor resolution limitations shall restrict the ability of standard filter-
ing algorithms to precisely estimate states, especially when the dynamical system exhibits
large variations in state variables. This necessitates the adoption of accurate error models
and the use of novel filtering techniques to achieve sufficient estimation accuracy of desired
state variables from the sensor measurements [10,12,24]. Furthermore, in scenarios where
transmitting high-resolution measurements or performing double-precision operations is
impossible or memory-intensive, quantization errors become significant. With increased
performance requirements, the noise from the quantization effects has become an important
aspect to analyze in efforts to maximize signal-to-noise ratio [12,13,25,26]. For the state
estimation problem of dynamical stochastic processes, finite-precision implementation ne-
cessitates estimation to be based on quantized parameters of state, input, and observations.
This requires revisiting the state estimation algorithms to include quantization errors in the
filter implementation. Although using a sufficiently large word length for real-valued state
variables can minimize the effects of quantization, even with a large number of bits, the
system cannot be completely detached from finite word-length effects. In some instances,
the luxury of large dynamic range for storage and computations may not be practicable.
Consequently, the errors due to quantization have to be modeled as process and output
noises, which can be accounted for in the system design using classical state-space and
estimator modeling schemes.
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The key contributions of this work are briefly summarized as follows. Given a finite-
precision representation for system variables, linear state estimation filters are proposed.
They consist of a (1) minimum variance estimator (least squares), quantized forms of (2) a
discrete-time Kalman filter (QDKF), and (3) a square-root Kalman filter (QSRKF). The filter
algorithms are applied to estimate states of an optomechanical oscillator model. The model
formulation and assumptions are based upon the efforts of Kelly et al. [27] and the bench
top experiments from Hines et al. [28]. Numerical simulations of the estimators are reported
to show the prominence of modeling quantization errors in state estimation filters. The
results offer much improved estimator performances over standard implementations of the
respective filters when system variables are quantized. Steady-state filter performance is
analyzed to provide insights into the best possible filter accuracy achievable for a given
numerical representation. A least squares-based dual oscillator model is implemented on
the FPGA board for the state estimation of acceleration forces from simulated measurements.
A reliable estimator performance is reported by comparing the fixed-point implementation
on the FPGA with the floating-point software implementation as a reference. Note that, in
this work, quantization noise is from rounding off of numerical data to a desired number
of bits. From here on, quantization errors and round-off errors are used interchangeably
and refer to the same idea. Moreover, bit overflows are assumed to be negligible due to the
careful selection of dynamic ranges for internal variable representation.

The rest of the article is organized as follows. The sensor model is described in Section 2.
The quantization effects are incorporated into the model and state estimation filters are
proposed in Section 3. Respective filter algorithms are derived in Appendices A–C. Numerical
simulations are reported in Section 4 to illustrate the performance of the proposed filter
structures. In Section 5, an FPGA architecture is proposed for on-board implementation
of a dual-oscillator filter for acceleration estimation problem. Implementation results are
reported. Concluding remarks are drawn in Section 6.

2. Description of Sensor Dynamics

The quantized filter performances are investigated for state estimation of the dynami-
cal system described in this section. The generalized filtering algorithms are developed in
Appendices A–C.

2.1. Discrete-Time Sensor Model

The one degree-of-freedom (1-DOF) accelerometer sensor dynamics are modeled as a
second order spring-mass-damper system [29], equivalent to a perturbed linear harmonic
oscillator. This formulation describes a direct conversion accelerometer, where the dis-
placement of the proof mass x(t) is directly measured using precise laser wavelength as
a length reference [30]. Accounting for drift-causing optical and thermomechanical noise
sources, through a white noise process and a biasing term, the dynamics for the proof mass
displacement in response to the single-axis forcing function g(t) are formulated using the
following equations developed by Kelly [27] et al.:

ẍ + 2ωζ ẋ + ω2x = g(t) + b(t) + nv(t) (1)

ḃ(t) = nu(t) (2)

where ω is the natural frequency of the oscillator, ζ is its damping factor, and the bias
term b(t) is modeled as a Wiener process. In discrete time, the increments of this Wiener
process can be represented as an independent and identically distributed Gaussian random
sequence. The terms nv(t) and nu(t) are uncorrelated, zero-mean Gaussian white-noise
processes with spectral densities σ2

v and σ2
u , respectively.

In continuous-time state space description, the 1-DOF accelerometer model is
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Ẋ(t) =

 0 1 0
−ω2 −2ωζ 1

0 0 0

X(t) +

0
1
0

g(t) +

 0
nv(t)
nu(t)

 (3)

y(t) =
[
1 0 0

]
X(t) + ν(t) (4)

where the states of the system are X(t) = [x(t) ẋ(t) b(t)]T representing displacement, ve-
locity, and bias, in that order. The measurement model implicitly assumes that the position
state, x(t), is observable and that the sensor dynamics do not consider off-axis accelerations.

The linear system in Equation (3) can be discretized using a zero-order hold (ZOH)
approximation, assuming that inputs and noise change only at discrete sampling intervals
∆t. In this discretization, gk is assumed constant over each sampling interval. However,
it’s crucial to note that if gk varies more rapidly than can be observed within the interval
∆t, the Nyquist theorem limits our ability to estimate gk accurately. This highlights the
importance of selecting an appropriate sampling rate in relation to the system’s dynamics.
The discretized state space model is

Xk+1 = Φ(tk+1, tk)Xk + Γ(tk+1, tk)gk + wk (5)

where the transition from a state Xk+1 to Xk for the linear time-invariant system is deter-
mined by a matrix exponential of the system matrix in Equation (3) (denoted as A):

Φ(tk+1, tk) = eA∆t (6)

Also,

Ψ(tk+1, tk) =
∫ tk+1

tk

Φ(tk+1, τ)dτ

Γ(tk+1, tk) =
[
Ψ12(tk+1, tk) Ψ22(tk+1, tk) Ψ32(tk+1, tk)

]T
(7)

The stochastic process noise term wk, additive to the discrete-time state evolution, is
described as

wk =
∫ tk+1

tk

Φ(tk+1, τ)
[
0 nv(τ) nu(τ)

]Tdτ

Q = E[wkwT
k ]

(8)

For the linear system described here, the state transition matrix Φ and the covariance
matrix Q associated with wk can both be analytically derived [27]. E[·] denotes the expected
value operator.

Regarding the observation model, the displacement measurements are acquired at a
fixed rate from an accurate one-dimensional interferometric displacement sensor. Following
the state-space representation in Equation (4), the discrete-time measurement model is
given by

yk = xk + νk (9)

This measurement model embeds the analog readout noise νk in the measurements.
This observation error is treated as zero-mean white noise with an error variance of σ2

m.
However, in practice, a change in the sensor’s output does not always translate exactly

to a change in the mechanical input. As a result, the one-to-one association between the
measured and the physical displacements in Equation (27) may not always hold true. The
deviation in the sensor’s sensitivity is modeled through a scale factor and is estimated
through sensor calibration and compensated during device operation [31]. The process of
scale factor calibration and its associated uncertainties are not addressed in this paper.
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However, the scale factor error arising from calibration uncertainty can be incorporated
into the readout noise model for state estimation. To this extent, departure from unity
scaling is modeled through scale factor error ϵs to account for the total readout error:

yk = (1 + ϵs,k)xk + νk (10)

Although not rigorously treated, this direction is briefly noted in Section 3.3.

2.2. Calibrated Sensor Model

Accelerometer bias accumulates over time, as indicated in Equation (2). The bias
model is

bk+1 = bk +
∫ tk+1

tk

nu(τ)dτ (11)

A reasonable calibration step must be implemented periodically to correct for the
sensor bias to prevent its build-up effect on state estimation. A calibration sequence shall
be performed by applying a known input to the sensor and observing the system response
(as described in previous work [27]). This calibration step provides us with an estimate of
the bias b̂ and its error statistics as follows:

b0 = b̂ + nb0 and bk = b0 +
∫ tk

t0

nu(τ)dτ (12)

E[bk − b̂] = 0 (13)

E[(bk − b̂)(bk − b̂)T ] = σ2
b0 + (tk − t0)σ

2
u (14)

where, at the time of calibration t0, the unbiased bias estimate b0 is corrupted by a white
noise source nb0 and has a variance of σ2

b0. The bias estimate is assumed to not significantly
degrade between periodic calibrations, but its variance grows as the bias evolves with a
dependence upon the zero-mean Gaussian process nu(t) as shown in Equation (2).

Assuming that an independent calibration step has been performed to estimate the
sensor bias, the model dynamics in position and velocity (Equation (5)), influenced by the
instantaneous bias term bk, can be written as follows:[

xk+1
ẋk+1

]
=

[
Φ11 Φ12
Φ21 Φ22

][
xk
ẋk

]
+

[
Ψ12
Ψ22

]
gk +

[
Φ13
Φ23

]
b̂ + w̃k

w̃k =

[
Φ13
Φ23

]
(bk − b̂) +

∫ tk+1

tk

[
nv(τ)Φ12(tk+1, τ)
nv(τ)Φ22(tk+1, τ)

]
dτ

(15)

It can be shown that, to integrate the uncertainty in the instantaneous bias value into
the system dynamics, the redefined process noise covariance Q̃ is derived as:

Q̃ =

[
Φ2

13 Φ13Φ23
Φ23Φ13 Φ2

23

]
(σ2

b0 + σ2
u(tk − t0))+

σ2
v

[ ∫ tk+1
tk

Φ2
12(tk+1, τ)dτ

∫ tk+1
tk

Φ12(tk+1, τ)Φ22(tk+1, τ)dτ∫ tk+1
tk

Φ12(tk+1, τ)Φ22(tk+1, τ)dτ
∫ tk+1

tk
Φ2

22(tk+1, τ)dτ

] (16)

The objective of this work is to estimate the forcing acceleration from position measure-
ments. To achieve this, the governing equations for the system dynamics can be leveraged
to estimate the states using either a minimum variance or a Kalman filter approach. How-
ever, the practical implementation of an onboard state estimation filter also accounts for
additional artifacts arising from implementation on finite-precision computing architec-
ture. In particular, discrete-time systems are susceptible to numerical errors when finite
word-length registers are used to represent the states and measurements [25]. For accurate
estimation of the forcing acceleration, it is essential to account for these finite word-length
effects due to quantization. Neglecting such effects will degrade the estimation accuracy, as
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will be shown through the numerical simulations that follow. Thus, quantization effects
necessitate reformulating the state-space model described in Equation (5) to account for the
corresponding numerical errors.

3. Model Reformulation and State Estimation
3.1. Dynamical System: Fixed-Point Realization

A fixed-point realization of a discrete-time system is a problem that considers the
presence of quantization noise due to rounding off of products within the realization.
Systematic approaches to deal with the adverse effects of fixed-point implementation in
digital filters are developed by Mullis [26], Hwang [32], Williamson and Kadiman [33],
Liu and Skelton [10]. These approaches involve formulating discrete-time models, such as
those in Equations (5) and (9) where the system state Xk, input gk, and the measurement
variable yk are quantized at each instance of computation. The discrete-time model in
Equation (5) is now redefined as

Xk+1 = Φ(tk+1, tk)Q[Xk] + Γ(tk+1, tk)Q[gk] + wk (17)

yk = [1 0 0]Q[Xk] + νk (18)

where Q[.] here represents the quantization by round-off. The additive property of the
round-off errors enables their modeling into the system description as

Q[Xk] = Xk + ϵx,k (state quantization) (19)

Q[gk] = gk + ϵg,k ( D/A conversion) (20)

Q[yk] = yk + ϵy,k ( A/D conversion) (21)

Here, ϵx,k arises from quantization at the state nodes, ϵg,k is from digital-to-analog
(D/A) conversion of input, and ϵy,k stems from rounding-off of the sampled measurements
from an analog-to-digital (A/D) converter. This approach assumes that the state nodes are
quantized after double-length accumulation. However, round-off errors in the coefficients
are not independently treated in this model. It is assumed that coefficient round-off
errors accumulate at the state nodes, and optimizing for state quantization tends to also
account for coefficient quantization errors, as direct optimization of coefficient errors is not
tractable [10].

Typically, round-off errors are characterized as zero-mean independent random vari-
ables that follow a uniform distribution [34]. This modeling approach accurately captures
the inherent uncertainty associated with the precision of numerical computations. There-
fore, the error statistics of round-off errors can be described as

E{ϵx,k} = 0 ∀ k and Σx = E{ϵx,kϵT
x,k} = qx Ix; qx ≜

2−2Bx

12
(22)

E{ϵg,k} = 0 ∀ k and Σg = E{ϵg,kϵT
g,k} = qg; qq ≜

2−2Bg

12
(23)

E{ϵy,k} = 0 ∀ k and Σy = E{ϵy,kϵT
y,k} = qy; qy ≜

2−2By

12
(24)

where Bx, Bg, and By represent the word-lengths of state node registers and A/D and
D/A converters. IX is an identity matrix corresponding to the number of states. For a
multi-output system where multiple measurements are available at an epoch, the mea-
surement round-off covariance is qIy, as will be utilized in the subsequent derivation of
the least squares estimator. By extension, for a multi-input system, the input round-off
covariance could be defined as qIg. Iy and Ig have the dimensions that correspond to the
number of inputs and outputs. The multi-input multi-output generalization is provided in
Appendices A–C.
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3.2. Formulation of Least Squares Estimator

The linear time-invariant system in Equation (15) implies that a measurement obtained
at the nth instant from k (n > k) is related to the states and input at the instant tk as

yk+n =
[
Φ

(n)
11 Φ

(n)
12 Ψ

(n)
12

]xk
ẋk
gk

+ Φ
(n)
13 b̂ + ν̃k+n (25)

ṽk+n = νk+n + Φ
(n)
13 (bk − b̂) +

∫ tk+n

tk

Φ12(tk+n, τ)nvdτ (26)

where Φ
(n)
ij and Ψ

(n)
ij represent the respective elements of Φ(tk+n, tk) and Ψ(tk+n, tk) (refer

Equation (5)).
For a batch of N + 1 position measurements during which the input acceleration and

the bias are assumed unchanged, the instantaneous states and the acceleration input are
linearly related as follows:

yk
yk+1

...
yk+N


︸ ︷︷ ︸

ỹ

=


1 0 0

Φ
(1)
11 Φ

(1)
12 Ψ

(1)
12

...
Φ

(N)
11 Φ

(N)
12 Ψ

(N)
12


︸ ︷︷ ︸

Hk

xk
ẋk
gk


︸ ︷︷ ︸

X̃k

+


0

Φ
(1)
13
...

Φ
(N)
13


︸ ︷︷ ︸

ηk

b̂ +


ν̃k

ν̃k+1
...

ν̃k+N


︸ ︷︷ ︸

ν̃k

(27)

where the forcing acceleration input gk is now treated as an additional state for estimation.
Additionally, incorporating round-off errors described in Equation (17) into the above

model yields:

ỹ = Hk(X̃k + ϵX̃,k) + ηk(b̂ + ϵb̂,k) + ν̃k + ϵỹ (28)

where the bias round-off error (ϵb̂,k) is assumed to have the same variance as that of state
(qx). The input round-off error from D/A, ϵg,k, is absorbed into the estimation state error
ϵX̃,k. Finally, the uncorrelated errors due to quantization in the measurement batch are
accumulated in a vector of length N + 1 as ϵỹ.

Grouping the error terms together in a new variable µ, the above linear system of
equations can be expressed as

ỹ − ηk b̂ = HkX̃k + µ

µ = HkϵX̃,k + ηkϵb̂,k + ν̃k + ϵỹ
(29)

The measurement error mean and the covariance (Pµµ) can be obtained as

E[µ] = HkE[ϵX̃,k] + ηkE[ϵb̂,k] +E[ν̃k] +E[ϵỹ] = 0 (30)

Pµµ = E[µµT ] = HkΣX̃HT
k + ηkΣb̂ηT

k + Pν̃ν̃ + Σỹ (31)

where the quantization noise covariances (ΣX̃, Σb̂, and Σỹ) are obtained from Equations (22)–(24)
as

ΣX̃ = diag(qx, qx, qg); Σb̂ = qx; and Σỹ = qyIỹ (32)

Moreover, the elements of the measurement noise covariance matrix Pνν have ex-
plicit dependence on time and will require periodic calibration to prevent measurement
degradation [27]. The covariance elements can be computed in indicial notation as
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Pνν,ij = σ2
mδij + Φ

(i)
13 Φ

(j)
13
(
σ2

b0 + σ2
u(tk − t0)

)
+ σ2

v

∫ tk+i

tk

Φ2
12(tk+i, τ)dτ (33)

Ultimately, an optimal state estimate using the batch of measurements ỹ, are obtained
by solving the normal equations as

ˆ̃X(k) = [HT
k P−1

µµ Hk]
−1HT

k P−1
µµ (ỹ − ηk b̂) (34)

The above expression is a stochastic moving average filter, and it consumes at least
three running measurements (N ≥ 3) to provide the estimates for the single-axis position,
velocity, and acceleration states at every estimation epoch. Evidently, the filter averages
the measurements from two future time events, causing the filter to lag the measurement
sequence by at least two measurement cycles. The minimum variance estimation with
quantized states and measurements for a linear system is derived in Appendix A.

3.3. Note on State Estimation with Scale Factor Errors

The readout error in Equation (26) can be modified to account for the scale factor
error described in Equation (10). This modification starts with acknowledging that the
measurements are contaminated by measurement noise and scale factor errors as

yk+n = (1 + ϵs,k+n)xk+n + νk+n (35)

wherein the scale factor error is modeled as an uncorrelated zero-mean Gaussian white
noise with variance σ2

ϵs .
As a consequence, the total readout error in Equation (26) has an additional term

ϵs,k+nxk+n such that

ν̃k+n = ϵs,k+nxk+n + νk+n + Φ
(n)
13 (bk − b̂) +

∫ tk+n

tk

Φ12(tk+n, τ)nvdτ (36)

Notice that the measurement noise is now linearly related to the displacement state.
This problem can be addressed by using an a priori estimate of displacement state (x̂a,k+n)
from the propagation of model dynamics (Equation (15)) [35].

Now, using x̂a,k+n for evaluating the scale factor error contribution, it can be shown
that the additional variance that contributes to the measurement noise variance is

σ2
ν̃k+n

= σ2
νk+n

+ σ2
ϵs,k+n

(x̂a,k+n)
2 (37)

Following a procedure similar to the one described in Section 3.2, this updated mea-
surement noise variance can now be used to compute Pν̃ν̃ in Equation (31). Note that the
incorporation of a priori state information and corresponding a priori error covariance (Q̃)
allows us to extend the least squares filter to update the state estimates as described in
Appendix A.3. Additionally, since acceleration is an estimated state, its contribution to the
process noise is evaluated as a tunable parameter (details in Section 3.5).

3.4. Multi-Oscillator Problem

The dynamic response of a harmonic oscillator depends on the oscillator’s natural
frequency, damping, and the driving signal frequency. To attain a wide dynamic range
for precise inertial measurements, multiple oscillators may be deployed in a multiplexed
sensing network [28]. The estimates of forcing accelerations from multiple sensing nodes
are appropriately fused to obtain an estimate with high confidence. If the estimates are
calculated from the observations sampled by the same hardware system at the same
instance, a covariance-weighted average of all the arriving estimates can be implemented
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to reduce noise over a wide working range of measurable accelerations using the multi-
oscillator system’s response.

Assuming that the estimation errors (from least squares filter independently applied
to measurements from different oscillators) are independent and unbiased (zero-mean), the
acceleration estimates are fused by using a weighted average with the reciprocal variance
values as weights [36]:

g(k) =

i=N
∑

i=0
ĝi(k). 1

Pi
33

i=N
∑

i=0

1
Pi

33

(38)

where N represents the number of independent estimates and Pi
33 is the estimated non-zero

variance of ĝi(k). The variance σ2
ḡ of the fused estimate is always lower or equal to the best

individual estimate and is given by

σ2
ḡ =

i=N

∑
i=0

1
Pi

33
(39)

Note that the independence of error in estimates is a loosely constructed term and
difficult to fulfill, especially when the oscillators are of the same type. If the individual
estimation errors are not independent, the covariance-weighted average still yields a correct
estimate, but its assigned confidence is overestimated.

3.5. Quantized Discrete-Time Kalman Filter (QDKF)

The least squares moving average filter described in Section 3.2 uses an N + 1 mea-
surement batch to estimate the states at every epoch. In this section, a Kalman filter
formulation is briefly described where the state variables are sequentially estimated by
fusing predictions of the state variables from the oscillator dynamical model with noisy
position measurements.

The discrete-time dynamics given in Equation (15) can be remodeled to accommodate
the instantaneous forcing acceleration input as a state. However, since the forcing acceler-
ation is not directly observed through a model, it is estimated from new measurements.
The process covariance is augmented with an acceleration model uncertainty parameter α
that is appropriately scaled to indicate the confidence in the evolution of gk. After all, the
acceleration input cannot be perfectly delivered to the system and is affected by a noise
process that is denoted here as wg,k. An independent periodic calibration step prevents
accumulation of errors in acceleration estimates. The dynamical model therefore can be
reformulated with the evolution of the modified states, Xk = [xk ẋk gk]

T , as given by the
discrete-time dynamics asxk+1

ẋk+1
gk+1


︸ ︷︷ ︸

Xk+1

=

Φ11 Φ12 Ψ12
Φ21 Φ22 Ψ22

0 0 1


︸ ︷︷ ︸

Φ̃

xk
ẋk
gk


︸ ︷︷ ︸

Xk

+

Φ13
Φ23

0


︸ ︷︷ ︸

Γ̃

b̂ +
[

w̃k
wg,k

]
︸ ︷︷ ︸

w̄k

(40)

Finally, the dynamical and the measurement models, under the influence of quantiza-
tion noises, can be reformulated as

Xk+1 = Φ̃k(Xk + ϵX,k) + Γ̃k(b̂ + ϵb̂,k) + w̄k (41)

yk = Hk(Xk + ϵX,k) + ν̃k + ϵy (42)

where Hk = [1 0 0] is the observation model matrix indicating that the position of
the proof mass is directly observable through measurements. The round-off errors in-
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cluded in the model follow the same definitions as described in the least squares estimator
(Section 3.2).

With the reformulated dynamics and the observation models described in
Equations (41) and (42), the round-off errors are incorporated into the Kalman filter for-
mulation for sequential state estimation. Starting from an initial value of state and cor-
responding error covariance, a quantized form of Kalman filter, QDKF, is thus realized.
Algorithm 1 describes the recursive operations involved in the implementation of the
QDKF. The derivation of the QDKF is presented in Appendix B.

Algorithm 1: Quantized discrete-time Kalman filter (QDKF).
1: Initialize

X̂+
0 = E[X0] (43)

P+
0 = E[(X̂0 − X0)(X̂0 − X0)

T ] (44)

2: Propagate

X̂−
k+1 = Φ̃kX̂+

k + Γ̃k b̂ (45)

P−
k+1 = Φ̃k(P

+
k + ΣX,k)Φ̃

T
k + Γ̃kΣb̂,kΓ̃

T
k +

[
Q̃ 0
0 α

]
(46)

3: Update

Kk = P−
k HT

k [HkP−
k HT

k + HkΣX,kHT
k + Rk + Σy,k]

−1 (47)

X̂+
k = X̂−

k + Kk(yk − HkX̂−
k ) (48)

P+
k = [I − KkHk]P

−
k (49)

An equivalent expression for the covariance update in Equation (49) can be written
in a symmetric form, as shown below. This symmetric version is often used in software
implementation as it guarantees positive semi-definiteness of P+

k in the presence of round-
off errors.

P+
k = [I − KkHk]P

−
k [I − KkHk]

T + Kk[HkΣX,kHT
k + Rk + Σy,k]K

T
k (50)

3.6. Quantized Square-Root Kalman Filter (QSRKF)

For onboard implementation with limited computational word-length, the standard
Kalman filter algorithm is susceptible to numerical instability. Round-off errors can cause
loss of positive definiteness in error covariance matrices during computation [2,37]. Square-
root Kalman filters (SRKFs) mitigate this numerical degradation by computing and propa-
gating the square roots of the error covariance matrices for both time and measurement
updates. The quantized version of square-root filters, termed QSRKF here, incorporates
quantization errors into the SRKF formulation, thereby improving performance as well as
the filter’s numerical stability under fixed-point implementation.

In QSRKF, error covariance matrices are factored into square-root matrices computed
using QR decomposition. The square roots of the initial state error, process noise, mea-
surement noise, and quantization noise covariance matrices are calculated once using the
Cholesky method. For linear time-invariant systems, these can often be predetermined and
stored onboard. For the dynamical system described in the QDKF formulation (Section 3.5),
Algorithm 2 presents the operations involved in QSRKF realization. The filter algorithm is
described in detail in Appendix C.
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Algorithm 2: Quantized Square-Root Kalman filter (QSRKF).
1: Initialize

X̂+
0 = E[X0] (51)

S+
0 =

√
E[(X̂0 − X0)(X̂0 − X0)T ] (52)

2: Propagate

X̂−
k+1 = Φ̃kX̂+

k + Γ̃k b̂ (53)

S−
k+1 = qr{

[
ΦkS+

k | ΦkΛx,k | ΓkΛu,k | γkSw,k
]T}T (54)

3: Update

Szz,k = qr{
[
HkS−

k | HkΛx,k | Sv,k | Λy,k
]T}T (55)

Kk = S−
k (HkS−

k )
T(Szz,kST

zz,k)
−1 (56)

X̂+
k = X̂−

k + Kk(yk − HkX̂−
k ) (57)

S+
k = qr

{[
[I − KkHk]S

−
k | Kk

[
HkΛx,k | Sv,k | Λy,k

]]T}T
(58)

The following is true for the above algorithm:

• S+
0 is the square-root factor of the initial estimation error covariance.

• S−
k+1 and S+

k represent the prior and posterior estimation error covariance square-
root factors.

• Sv,k and Sw,k are the square-roots of the measurement and process noise covari-
ance matrices.

• Λx,k, Λy,k, and Λu,k represent the matrix square-roots of the quantization error covari-
ances for state, measurement, and output noises.

• qr{·} indicates QR decomposition operation.

4. Numerical Simulations

The optomechanical inertial sensor parameters and the corresponding noise processes
modeled in this simulation are highlighted in Table 1. These parameters are derived from
laboratory experiments and sensor benchtop prototypes described in references [28,31,38].
The contributing process noise sources, including thermal, mechanical, and cavity drifts,
have been thoroughly investigated in the cited works. The oscillator parameters, process
noise terms (σv, σu) driving the discrete-time state evolution, calibrated sensor bias as well as
the readout noise floor [27], are set to values consistent with the experimental observations.

Noisy position measurements are simulated from true position states corrupted by
a stochastic measurement noise process (σm) along with an additive quantization process
(qy). The stochastic processes (σv, σu) driving the discrete-time state evolution, the state
quantization processes (qx), the standard deviation of the calibrated bias estimate (σb0), and
its corresponding quantization process (qb̂) are also presented in Table 1.

In this simulation, sensor bias is assumed to be estimated through an independent
calibration step that is briefly described in Section 2.2 and detailed in [27]. The bias estimate
b̂ is randomly drawn from N (0, σ2

b0), and the acceleration input is simulated as a sinusoidal
signal of frequency 0.01 Hz and amplitude 1 × 10−5 g. In this analysis, the state and bias
values are stored with fractional word length of internal registers configured to signed 16
bits (Bx = Bb0 = 16). This means that the fractional parts of the states and input nodes are
rounded off to 16 bits, with the word-length of the measurements being the only variable.
The measurements are quantized to fractional lengths (FLs) of 8 to 16 bits (By) to emulate
different ADC resolutions available on development boards. To prevent numerical under-
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flows and to maintain precision, the covariance matrix elements are assigned higher word
lengths compared with the state and measurement variables. For FPGA implementation,
dedicated digital signal processing (DSP) blocks can be utilized to efficiently multiply
the covariance matrix elements with the corresponding state or measurement variables.
Modern FPGAs typically provide DSP blocks that support multiplication of 18-bit and
25-bit operands. To handle higher word lengths of the covariance matrix elements, multiple
DSP blocks can be cascaded to perform pipelined multiply-and-accumulate operations,
enabling accurate computations while maintaining high throughput.

Table 1. Simulated sensor model and noise parameters.

Parameter Value Units

Oscillators
Sampling frequency ( fs) 30.5 Hz

Oscillator-1 frequency (ω1) 3.76 Hz
Oscillator-2 frequency (ω2) 8.5 Hz

Damping ratios (ζ1, ζ2) 4.386 × 10−6

Modeling processes
σv 1 × 10−9 m/s

√
Hz

σu 1 × 10−8 m/s2
√

Hz
σm 1 × 10−11 m
σb0 1 × 10−8 m/s2

Quantization processes
qx

√
2−2Bx /12 unit of corresponding state

qy
√

2−2By /12 m
qb̂

√
2−2Bb̂ /12 m/s2

Figure 1 shows the results for the errors in the estimated acceleration and the corre-
sponding 3σ estimation error bounds from the moving average least squares method. In
this figure, the errors and the 3σ bounds for the least squares implementation are compared
for measurements of 12 versus 16-bit fractional length. The least squares filter structure
defined in Equation (34) supplements the measurement noise covariance with the quanti-
zation error covariance that reflects the bit resolution. Hence, the simulation in Figure 1
demonstrates additional errors in the acceleration estimates due to less precise represen-
tation of measurements. The simulation also signifies the expansion of the 3σ bounds,
indicative of added uncertainties in the estimated errors due to increased quantization
noise in the measurements. For instance, acceleration estimates with the measurements
rounded off to a fractional length of 12-bits have larger errors and covariance bounds than
those of 16-bit measurements.

Figure 2 shows the estimation error results for the Kalman filter formulation, where the
process noise associated with the acceleration channel is modeled as a zero-mean process
with a variance of 0.1 (α = 0.1). As in the least squares method, the errors and error bounds
from the Kalman filter are sensitive to the precision in the measurements. This sensitiv-
ity is illustrated in Figure 2a,b, which respectively compare 8 and 12-bit measurements
against measurements with 16-bit fractional resolution. The analysis suggests that as the
measurement precision increases, the errors and the error bounds tend to align statistically
with those of a floating-point implementation of the discrete-time Kalman filter, despite
finite-precision hardware constraints. In another observation, the least squares filter has
lower variance than that of the QDKF for this application. This is because the least squares
filter need not account for the process noise associated with the acceleration channel.

Furthermore, accounting for finite word-length effects in the filter implementation
not only accurately predicts the uncertainty in the estimation errors but also reduces these
errors. Shown in Figure 3 is discrete-time Kalman filter (DKF) implementation without
considering round-off errors in the filter design versus the quantized discrete-time Kalman
filter (QDKF) proposed in this work (Algorithm 1). In this comparison, the measurements
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are quantized to 12-bits in both the DKF and the QDKF implementations, but the filter
formulation in DKF does not incorporate quantization error covariances as the proposed
QDKF algorithm does. Evidently, the QDKF filter resulted in lower error values than the
DKF and also higher 3σ bounds to represent increased covariance due to quantization
errors. Moreover, the DKF errors are numerically inconsistent with the corresponding
error covariances, as its formulation does not account for quantization noise statistics. The
same phenomenon is also evident in the least squares estimation, as observed in Figure 1.
Furthermore, numerical round-off errors exacerbate the lack of observability in the bias
state, resulting in growing uncertainty in acceleration estimation errors.

0 10 20 30 40 50

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 1. Acceleration estimation errors (E) and the corresponding 3σ bounds from the least squares-
based moving average filter. The filter is run using 12 and 16-bit fractional length (FL) measurements.
The 3σ bounds from double precision (DP) implementation of the least squares filter are also indicated.
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(a)
Figure 2. Cont.
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0
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(b)
Figure 2. Acceleration estimation results from the quantized discrete-time Kalman filter (QDKF).
The 3σ bounds from double precision (DP) simulations of the discrete-time Kalman filter without
quantization errors are also shown for comparison. (a) Errors and corresponding 3σ bounds with
quantized measurements of fractional lengths 8 and 16 bits. (b) Errors (E) and corresponding 3σ

bounds with quantized measurements of fractional lengths of 12 and 16 bits.
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-0.2
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0.2

0.3

0.4

Figure 3. Acceleration estimation errors (E) and the corresponding 3σ bounds from the DKF and the
QDKF. Measurements are quantized to fractional length of 12-bits.

4.1. Steady-State Performance

In practice, the Kalman filter is often run for long periods of time. As k → ∞ and if
given input remains within reasonable magnitude, the error covariance (P−

k ) converges to a
bounded steady-state value P. For a large k, P−

k+1 = P−
k ≜ P, and Equation (46) satisfies the

discrete-time algebraic Riccati equation [24]:

P = Φ̃k[I − KkHk]PΦ̃
T
k + Φ̃kΣX,kΦ̃

T
k + Γ̃kΣb̂,kΓ̃

T
k +

[
Q̃ 0
0 α

]
(59)

with Kk given in Equation (47).
Figure 4 shows the standard deviation contours for steady-state acceleration estimation

errors. These contours illustrate how the steady-state error bounds change as a function
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of the fractional length in measurement quantization and the process noise associated
with the acceleration channel. In the absence of quantization errors, the contour isolines
maintain constant values for given levels of process noise. As the numerical precision of
measurements increases, the contours asymptotically approach the steady-state perfor-
mance achieved by floating-point implementation. The sensitivity analysis curves that
graphically illustrate the impact of quantization noise on the state estimation accuracy are
an important contribution of this work.

0.08

0.1
0.1

0.12

0.12
0.14

0.14
0.16

8 10 12 14 16

0.2

0.4

0.6

0.8

1

Figure 4. Steady-state 1σ contours for acceleration estimates. The contour lines are plotted as
a function of measurement precision on the x-axis and the model uncertainty parameter for the
acceleration channel, (α), on the y-axis.

The steady-state behavior reflects the filter performance over an extended period,
depicting characteristics of the estimation errors once the transient effects have diminished
and the error dynamics have stabilized. The steady-state analysis offers a quantitative
measure of the best possible accuracy achievable by the filter and is based on sensor
parameters, process, and measurement noise characteristics. Consequently, it serves as
a valuable tool in sensor design and parameter tuning. In interferometric sensing, the
design and modeling of mechanical elements, signal processing, and estimation filters can
be tailored for accuracy and reliability using steady-state covariance analysis.

Furthermore, in the context of quantized Kalman filtering, the Mahalanobis distance
is chosen as a metric to quantify the impact of quantization noise on the consistency of
estimation errors. The Mahalanobis distance (d) between the quantized observation (yk)
and its prediction (HkX̂−

k )) reflects the variance between them, scaled by the inverse of the
associated covariance matrix (P−1

zz,k). That is,

d =
√

zT
k P−1

zz,kzk (60)

where, from Algorithm 1,

zk = yk − HkX̂−
k (61)

Pzz,k = HkP−
k HT

k + HkΣX,kHT
k + Rk + Σy,k (62)

Figure 5 illustrates the Mahalanobis distance of the estimates from the QDKF method
for observations with varying fractional lengths over time. The Mahalanobis distance quan-
tifies the dissimilarity between the estimated and true states, considering the covariance
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of the estimation errors. A smaller Mahalanobis distance indicates better filter perfor-
mance, as the estimated states are closer to the true states. To visualize the trend, a moving
average of 10,000 Mahalanobis distance samples is computed. The results demonstrate
that higher quantization noise in the observations leads to greater disparities between the
observed and predicted measurements. While sequential filtering helps the filter learn the
quantization noise statistics over time, it cannot fully match the lower bound achieved
in double-precision simulations. Notably, this metric indicates that 16-bit measurements
closely track the lower bound, suggesting an optimal word length for sensor data transmis-
sions in this application.

0 10 20 30 40 50 60
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 5. Mahalanobis distance moving average of 10,000 estimated samples.

4.2. Square Root Kalman Filter Simulations

For 12-bit measurements, the variances from the quantized DKF were observed to
take negative values, which is theoretically nonviable. The SRKF, by construction, avoids
loss of positive definiteness of the error covariance matrices and thereby offers resistance to
numerical overflows and underflows. For covariance matrices that are appropriately scaled
and quantized to avoid numerical degeneracy for this application, the performance of the
QSRKF proposed in Algorithm 2 is comparable to that of the QDKF (Algorithm 1). Figure 6
compares the estimation errors and the corresponding 3σ bounds from QDKF and the
QSRKF filters. Although this result indicates that the errors are not significantly reduced
using the QSRKF version, the loss of positive definiteness in QDKF is a weakness of the
standard implementation. Therefore, the square-root filters are preferable for onboard
implementation even though they are computationally burdensome.

At the same time, it is evidently important to model quantization noise sources into the
standard SRKF algorithm for reliable filter performance. Figure 7 compares the performance
of the square-root filters with the quantization noise modeled into the filter structure
(QSRKF in Algorithm 2) versus a standard SRKF implementation that does account for the
round-off error statistics. In this comparison, the measurements are quantized to 12-bits in
both the QSRKF and the SRKF runs.
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Figure 6. Acceleration state estimation errors (E) and the corresponding 3σ bounds from the QDKF
and the QSRKF methods. Measurements are quantized to fractional length of 12-bits.
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Figure 7. Acceleration estimation errors (E) and the corresponding 3σ bounds from the SRKF and the
QSRKF. Measurements are quantized to fractional length of 12-bits.

Table 2 presents the time-averaged Mahalanobis distance for each filter (DKF, QDKF,
SRKF, and QSRKF) as a function of measurement resolutions. The results show that the
quantized filters (QDKF and QSRKF) proposed in this work outperform filter implemen-
tations that do not account for round-off errors (DKF and SRKF). The quantized filters
maintain a lower average Mahalanobis distance, indicating better estimation accuracy
and robustness to the effects of measurement quantization. Furthermore, the average
Mahalanobis distance decreases as the fractional length increases for all filters. This trend
suggests that higher measurement resolutions lead to improved filter performance, as more
precise measurements provide better information for state estimation. The last column in
the table (DP) represents the average Mahalanobis distance for the ideal filter implementa-
tions using double-precision measurements. These values serve as a benchmark for the
best achievable performance without quantization effects. The quantized filters (QDKF and
QSRKF) approach the performance of the ideal filters, demonstrating their effectiveness in
mitigating the impact of measurement quantization.
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Table 2. Average Mahalanobis distance for different filters and measurement fractional lengths (FLs).
DP represents the ideal filter performance with double-precision measurements.

Filter FL = 8 FL = 10 FL = 12 FL = 16 DP

DKF 36.3042 9.2255 2.4355 0.4855 0.4018
QDKF 0.9839 0.8647 0.6923 0.4584

SRKF 36.3031 9.1854 2.4278 0.4827 0.4016
QSRKF 0.9839 0.8647 0.6923 0.4588

Numerical simulations show that the Kalman filters appear to be under-confident
because of the uncertainty in the evolution of the acceleration state. The least squares filter,
however, does not require handling process noise associated with the acceleration state
and is therefore much more confident about the estimation errors. Moreover, the process
noise of the acceleration input is well studied to have low uncertainty [28]. Therefore, a
least-squares based moving average filter is considered for hardware implementation.

5. Architecture for FPGA Implementation

In this section, an FPGA-based embedded architecture designed for estimating input
acceleration force for a dual-oscillator system is described. The estimation algorithm
consumes simulated measurements from two distinct oscillator models and delivers a
covariance-weighted average of the estimated accelerations as illustrated in Figure 8.

Processor FIFO

FIFO

IP core

Least squares 
module

Covariance 
weighted estimate

AXI4-Lite

Figure 8. Block diagram for FPGA implementation of least squares-based covariance-weighted
acceleration estimation method.

5.1. Implementation Overview

The system architecture comprises an FPGA accelerator designed to estimate the
forcing accelerations from each of the oscillators within an FPGA sensor node and then
to compute a covariance-weighted average of these estimates, as detailed in Section 3.4.
The proposed architecture is a hardware-software co-design illustrated in Figure 8. Xilinx
Zynq 7020 SoC is targeted for hardware evaluation of the proposed system. This SoC
integrates a host processor, also known as the processing system (PS), featuring ARM
Cortex-A9 MPCore. The PS performs the filter-specific operations that involve discrete-
time state propagation and measurement model evaluation (Equations (27) and (40)). For
a linear time-invariant system like the one under consideration, the state propagation
from time-step tk to tk+1 involves a constant state transition matrix and consequently a
constant measurement model matrix (Equation (27)). Additionally, the processor manages
the flow of simulated observations to be transmitted to the programmable logic (PL) via
the memory-mapped register space indicated in Figure 9.
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667 MHz
dual-core
Cortex-A9

Processing
System (PS)

Programmable
Logic (PL)

State Estimator

HDL logic

Memory mapped 
registers

IP core

Peripherals

Memory 
controller

AXI4-Lite
Interface

DDR3 memory

ZYNQ-7020 SoC

Figure 9. HW/SW codesign for Xilinx Zynq 7020 FPGA SoC-based acceleration state estimation:
Filter-specific computations are implemented on the processing system (PS), and the filter-generic
estimation algorithm is packaged as an intellectual property (IP) core and implemented on the
programmable logic (PL). The 32-bit PS-PL on-chip communication bus is supported by the Advanced
eXtensible Interface (AXI) protocol.

5.2. State Machine

The matrix operations in the intellectual property (IP) core are managed by a state ma-
chine shown in Figure 10. Initially, the IP core waits in an IDLE state, awaiting initialization
by the processor. Upon receiving the initialization signal through a control register in the
memory-mapped register space, the core transitions to the INIT state. Here, the processor
initializes the internal memory (FIFO) of the IP core with values of the measurement model
matrix augmented with the measurement noise covariance matrix. Once initialization is
complete, signified by an init_done signal, the core progresses to the LS_OPS state, where
least squares operations are executed. Upon completion of these operations, the core re-
turns to the IDLE state, ready for the next batch of least squares operations, triggered by
the arrival of another set of measurement model parameters relayed by the processor (for
the second oscillator model in this case). This state machine governs the matrix operations
within this pipelined least squares filter, with the hardware modules instantiated once and
reused between different oscillator models.

In the subsequent stages of the implementation illustrated in Figure 8, the processor
writes the simulated vector measurements into a data register, and the core performs the
least squares estimation. Once estimates and corresponding variances from two such
computations are available, the core calculates the covariance-weighted average of these
estimates (Equation (38)). This result is then written by the core to a FIFO, ultimately to be
read by the processor through another memory-mapped register.
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IDLE INIT LS_OPS
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init init_done

ls_ops_done

~ls_ops_done

Figure 10. State machine for least squares operation.

5.3. Least Squares Module

This module implements a moving average filter that computes the normal equations
using the direct expression for the least squares solution [23]. Operationally, three measure-
ments are accumulated in a measurement vector ỹi to compute the acceleration estimate.
This implies that the dimension of matrix operations is three, with the estimates having a
time delay equivalent to two measurement samples.

The estimation process involves a series of fixed-point matrix operations, including
matrix transpose, inversion, matrix-matrix, and matrix-vector multiplications, to arrive
at the least squares solution. Matrix-matrix multiplications are performed using systolic
array architecture (SAA) [39], which is a pipelined two-dimensional network of multiply
and accumulate (MAC) units, effective for low-latency matrix multiply operations. Matrix-
vector multiplications also utilize MAC units to operate on the time-aligned input streams
of matrix and measurement vector channels. The matrix inverse is computed using direct
inversion expressions for the involved 3 × 3 matrices. The model and measurement data
required for the computation are stored in the memory buffer of the IP core.

While the least squares solution in this example is tractable because the measurement
model matrices are scaled to be well-conditioned, this approach can be computationally
expensive. If HTH is ill-conditioned, the solution can be numerically unstable [40]. In
practice, Cholesky (or) QR factorization [41], singular value decomposition, and, to a
reasonable extent, LU decomposition [42] are efficient and accurate methods for solving
normal equations.

The least squares module is instantiated only once, and the operations are pipelined
to reuse the same module for estimating accelerations from two oscillators. This ensures
effective resource management on the Zynq 7020 FPGA SoC.

5.4. Covariance Weighted Average Module

This module reads the buffered estimates and their corresponding variances to com-
pute a weighted average of the acceleration estimate from two oscillator units, as described
in Equation (38). Fixed-point division is performed using Xilinx’s Divider Generator
LogiCORE IP employing the radix-2 non-restoring integer division algorithm.

5.5. Implementation Results

The FPGA implementation of the estimation logic is validated using simulated inputs
corresponding to the measurement models and the measurements themselves. To ensure
accurate representation of values and avoid bit overflows and underflows, the inputs are
scaled appropriately to maintain a consistent dynamic range. A MATLAB implementation
of the same algorithm serves as a golden reference for comparison. The estimation results
from the fixed-point FPGA implementation closely align with MATLAB’s double-precision
estimates and the ground truth, as depicted in Figure 11a. Although fewer, finite-precision
numerical errors as high as 10% (up to 1 µg) are observed in the FPGA output. This
is illustrated in Figure 11b. These round-off errors appear to propagate through the
numerous matrix operations involved, resulting in a few outlier estimates. Adaptive
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scaling, a higher number of fractional bits for data representation, and mixed-point (fixed
and floating point) implementations are some techniques that could help reduce these
errors. Additionally, solving normal equations through numerically robust methods such
as Cholesky decomposition should further enhance estimation accuracy and potentially
minimize the numerical errors.

5.6. Latency and Resource Utilization

The implementation results are shown in Table 3. This represents the implementation
of state estimation logic deployed using SoC technology, where covariance-weighted accel-
eration estimation is implemented on an FPGA coupled to an ARM processor controlling
the data flow. The hardware-software co-design required 188 digital signal processing
(DSP) elements of the Zynq 7020 FPGA, running at 100 MHz. The low-latency co-design fits
within 19% of the available FPGA look-up tables (LUTs), leaving the remaining resources
for other potential application requirements such as sensor data processing. DSP usage can
be reduced by further pipelining the operations or by strategically using LUTs for multipli-
cations. The hardware-accelerated execution of pipelined acceleration estimation logic has
an approximate latency of 3.62 µs for an estimation epoch from a dual-oscillator setup.
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Figure 11. Implementation results comparing fixed-point (FxP) FPGA output with floating-point
MATLAB estimates. Acceleration estimation algorithm is the covariance-weighted average from
dual-oscillator system (Section 3.4). (a) FxP FPGA output vs. double-precision MATLAB output.
(b) Differences between FPGA and MATLAB estimates.

Table 3. Post-implementation FPGA resource utilization results.

Resource Available Utilization

LUTs 53,200 19%
LUTRAM 17,400 5%
Flip-Flops 106,400 14.78%

BRAM 140 0.71%
DSP 220 85.45%

6. Conclusions

In aerospace applications, system states are filtered on onboard embedded compute
elements using measurements from a sensor network. The sensors and embedded flight
computing systems are resource-constrained, limiting the precision of stored or transmitted
data and consequently impacting the signal-to-noise ratio of the filter output. Accurate
state estimation in finite-precision embedded implementations depends on the precision
of the measurements and the word lengths of the state and input variables stored on the
embedded computer.
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This work presents an optomechanical sensor model for estimating forcing accelera-
tions from simulated displacement measurements of a proof mass. The state estimation
algorithms are reformulated to incorporate rounding errors into classical estimator frame-
works. A least squares estimator, a discrete-time Kalman filter, and a square-root Kalman
filter are developed for optimal state estimation with quantized measurement, state, and
input variables. Numerical simulations demonstrate that the modified filter frameworks
account for finite-precision effects, ensuring proper management of errors and uncertainties
in the acceleration estimates. This approach maximizes the performance of filters imple-
mented on fixed-point hardware architectures. Steady-state performance analysis shows
that the best possible accuracy achievable by the filter is tightly coupled with the numerical
precision of the internal variables. Metrics such as Mahalanobis distance give concrete
insights into the word-length versus performance trade-offs.

Additionally, a dual-oscillator system for estimating acceleration states from indepen-
dent measurements belonging to two oscillator models is proposed for hardware implemen-
tation. A covariance-weighted average of independent acceleration estimates is realized
on an FPGA-SoC using a finite-precision implementation of the least squares method. The
pipelined FPGA realization with simulated model and measurements reasonably tracks a
double-precision MATLAB implementation of the same least squares-based estimation. In
summary, this article addresses the realization of state estimation on embedded architec-
tures, emphasizing the importance of managing finite word-length implementation errors
to design and implement high-performance, resource-efficient estimation algorithms on
memory-constrained computing systems.

It is worth noting that while this work thoroughly addresses quantization effects, the
potential impacts of bit overflows are neglected. Scaling digital filter realizations to prevent
overflow errors remains an avenue for future investigation.
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Abbreviations
The following abbreviations are used in this manuscript:

DSP Digital Signal Processing
DoF Degree of Freedom
FPGA Field Programmable Gate Array
SoC System on Chip
COTS Commercial Off-The-Shelf
QDKF Quantized Discrete-time Kalman Filter
QSRKF Quantized Square-Root Kalman Filter
PS Processing System
PL Programmable Logic
IP Intellectual Property
AXI Advanced eXtensible Interface
SAA Systolic Array Architecture
LUT Lookup Table
BRAM Block Random Access Memory
HDL Hardware Description Language

Appendix A. Least Squares Estimation with Quantized States and Measurements

In this section, the minimum variance estimation problem under the influence of
quantization noise in states and measurements of a system is formulated. Following the
state variable description developed by Mullis [26], Williamson and Kadiman [33], Liu and
Skelton [10], and the least squares derivation by Crassidis and Junkins [35], the round-off
errors are incorporated for minimum variance state estimation.

Appendix A.1. The Minimum Variance State Estimation Problem

Consider a discrete-time dynamical system:

xi = Φ(ti, tk)xk (A1)

and the observational system given by:

zi = H̃ixi + νi (A2)

where E{νi} = 0 ∀ i and E{νiν
T
j } = Rij.

The above systems assume ideal i.e., infinite precision in states and measurements.
However, in finite word length digital compute elements, the system states xi and the
measurements zi will be quantized. A fixed-point finite word-length realization of the
ideal systems in which quantization is implemented after accumulation of products is
described by:

xi = Φ(ti, tk)Q[xk]

zi = H̃iQ[xi] + νi
(A3)

where Q[.] represents the quantization operator and Q[xi],Q[zi] represent the quantized
values of the system state and observation vectors, xi, zi, respectively.

Assuming the additive property of round-off errors, the quantization process affects
the states and measurements as:

Q[xi] = xi + ϵx,i

Q[zi] = zi + ϵz,i
(A4)
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The round-off errors, ϵx,i and ϵz,i, can be modeled as zero-mean, uncorrelated white
noise sequences [34] with the error statistics described as:

E{ϵx,i} = 0 ∀ i and E{ϵx,iϵ
T
x,j} = qIx; q =

2−2Bx

12

E{ϵz,i} = 0 ∀ i and E{ϵz,iϵ
T
z,j} = qIz; q =

2−2Bz

12
E{ϵx,iϵ

T
z,i} = 0

(A5)

The components Q[xi] and Q[zi] are assumed to be quantized to have Bx-bit and Bz-bit
fractional representations, respectively. This assumption arises from the need to quantize
the states to a desired finite-length (Bx bits) on the compute element and store them for
subsequent calculations, while the measurements are quantized by an A/D converter. The
model coefficients also have finite length but this implementation assumes rounding-off of
the product of model coefficients and the state variables. For example, if H̃i is quantized to
Bc bits, the product H̃iQ[xi] results in a Bx + Bc bit fraction, and the result is quantized to
Bx bits for subsequent operations. In essence, this approach does not directly optimize on
the model coefficient errors but can only provide evaluation of the filter performance with
respect to coefficient errors [10].

Substituting Equation (A4) into Equation (A3) and incorporating quantization in
measurements to obtain the quantized state and observation systems as:

xi = Φ(ti, tk)xk + Φ(ti, tk)ϵx,k

zi = H̃ixi + H̃iϵx,i + νi + ϵz,i
(A6)

Here, processing a collection of measurements to estimate xk through the use of state
transition matrix amounts to:

z = Hxk + Hϵx + ν + ϵz (A7)

where

z =

z1
z2
...

, H =

H̃1Φ(t1, tk)
H̃2Φ(t2, tk)

...

, ϵx =

ϵx,1
ϵx,2

...

, ν =

ν1
ν2
...

, ϵz =

ϵz,1
ϵz,2

...


A shorthand representation of Equation (A7) is:

z = Hxk + µ (A8)

where all the noise-related terms are combined into a new variable µ such that

µ = Hϵx + ν + ϵz (A9)

Before deriving the estimator, let’s define the statistics of measurement and quantiza-
tion noises in Equation (A9). For the collection of measurements, the first and the second
central moments are described as:

E{ν} = [0 0 . . . ]T and E{ννT} = Pνν (A10)

The central moments of the quantization noise in states and the measurements are
described in Equation (A5) and noted here as:

E{ϵx} = [0 0 . . . ]T and E{ϵxϵT
x } = Σx (A11)

E{ϵz} = [0 0 . . . ]T and E{ϵzϵT
z } = Σz (A12)
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Finally, the mean and covariance of the combined noise model µ is:

E{µ} = E{Hϵx + ν + ϵz}
= HE{ϵx}+E{ν}+E{ϵz}
= H.0 + 0 + 0 = 0

(A13)

Pµµ = E{µµT}

= E{
[
Hϵx + ν + ϵz

][
Hϵx + ν + ϵz

]T}
(A14)

wherein identifying that the errors are mutually uncorrelated and the definitions of indi-
vidual covariances follows that

Pµµ = HE{ϵxϵT
x }HT +E{ννT}+E{ϵzϵT

z }
= HΣxHT + Pνν + Σz

(A15)

Appendix A.2. Linear, Unbiased, Minimum Variance Estimation

The objective of the estimator is to seek a linear, unbiased, minimum variance estimate,
x̂k of the state xk.

Linear. To begin with, the desired estimate, x̂k, is a linear combination of measure-
ments. That is

x̂k = Mz + n (A16)

where, for n number of states and m number of measurements, an optimal choice of
M ∈ Rn×m and n ∈ Rn×1 is to be determined.

Additionally, for a perfect set of measurements i.e., νi = 0 ∀ i, and a perfect measure-
ment model z = Hx(k), the measurement system in Equation (A7) should result in the true
state x(k) such that

x̂k = xk = Mz + n

xk = MHxk + n
(A17)

Unbiased. Next, for an unbiased estimate, the expected value of the estimated state should
be the true state. This, combined with the linear model assumption in Equation (A16), gives:

E{x̂k} = xk (A18)

E{Mz + n} = xk (A19)

Then, from the assumed measurement model, it follows that

E{M[Hxk + µ] + n} = E{MHxk + Mµ + n} = xk (A20)

Since, the matrices M, H and the vector n are deterministic and the noise is a zero-mean
process (Equation (A13)), it follows that

MHE{xk}+ ME{µ}+ n = xk

MHxk + n = xk
(A21)

where M and n satisfy the constraints:

MH = In and n = 0 (A22)

Minimum Variance. As a final condition, an optimal minimum variance estimator is the
one that has the smallest variance of all possible estimators. The objective is to minimize
the state covariance to find an optimal choice of M.
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If exk defines the state estimation error such as exk = xk − x̂k, the error mean and
covariances are identified as:

E{ex,k} = E{xk − x̂k} = E{xk} −E{x̂k} = 0 (A23)

Pxx,k = E{
[
xk − x̂k

][
xk − x̂k

]T} (A24)

Using the quantized observational system (Equation (A7)) and the linear estimation
model (Equation (A16)) in the above expression for covariance gives:

Pxx,k = E{
[
xk − Mz

][
xk − Mz

]T}

= E{
[
xk − M(Hxk + µ)

][
xk − M(Hxk + µ)

]T}
= MPµµMT (A25)

where the constraint MH = In is used to eliminate xk’s in the second step while the fact
that M is deterministic is used in the second last step.

Constrained Optimization

The goal is to minimize the covariance matrix Pxx,k to determine M while respecting
the constraint on it. The covariance to minimize becomes:

Pxx,k = MPµµMT + ΛT [In − MH]T + [In − MH]Λ (A26)

wherein the constraint on M is accounted using a matrix of Lagrange multipliers, Λ, and
the fact that Pxx,k is symmetric is respected by adding the transpose of the constraint term.

Setting the first variation of Pxx,k in the above equation to zero i.e., δPxx,k = 0, gives
two simultaneous conditions:

MPµµ − ΛTHT = 0 and (A27)

In − MH = 0 (A28)

Here Pµµ is a positive definite matrix, therefore from the above equation M is deter-
mined as:

M = ΛTHTP−1
µµ (A29)

substituting M in Equation (A28) gives an expression for the Lagrange multiplier matrix as:

ΛT = [HTP−1
µµ H]−1 (A30)

Using the Equation (A30) in Equation (A29), the optimal choice of M that minimizes
the covariance Pxx(k), is obtained as:

M = [HTP−1
µµ H]−1HTP−1

µµ (A31)

Finally, the unbiased estimate x̂(k) that is linear in measurements z is given as:

x̂k = Mz

x̂k = [HTP−1
µµ H]−1HTP−1

µµ z (A32)

Also, the covariance matrix can be derived by substituting M in Pxx(k) = MPµµMT

as:

Pxx,k = [HTP−1
µµ H]−1 (A33)
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This derivation is similar to the classical minimum variance estimator with measure-
ment errors. However, from re-deriving the estimator in the presence of round-off errors in
states and measurements, the unbiased estimates and estimation covariance are observed to
be interestingly impacted. Firstly, while the least squares filter structure appears to remain
unaffected by round-off errors, it necessitates careful attention to the elements involved in
the structure. Notably, the covariance matrix is now influenced by the state quantization
noise that is propagated through the system dynamics. The measurement quantization
errors further expand the covariance matrix. The resulting least squares filter serves as an
optimal estimator of state nodes quantized after each accumulation epoch, derived from
quantized measurements. The filter expressions are summarized in Table A1.

Table A1. Quantized minimum variance estimator.

State estimate x̂k = [HTP−1
µµ H]−1HTP−1

µµ z

State error covariance Pxx,k = [HTP−1
µµ H]−1

Measurement error covariance Pµµ = HΣxHT + Pνν + Σz

Appendix A.3. Estimation with a Priori Information

In the least squares formulation of Equation (A32), the a priori knowledge of the model
dynamics can be rigorously incorporated to obtain an updated state estimate based on
the recently seen information. The same formulation as that of the least squares filter can
be extended to incorporate prior information about the state [35]. Thereby, a maximum a
posteriori estimate under the presence of a priori state information x̂a and an a priori error
covariance matrix Qa can be written as:

x̂(k) = [HTP−1
µµ H + Q−1

a ]−1[HTP−1
µµ z + Q−1

a x̂a,k] (A34)

Pxx,k = [HTP−1
µµ H + Q−1

a ]−1 (A35)

Appendix B. Quantized Discrete-Time Kalman Filter (QDKF)

Practical implementation of the Kalman filter often encounters numerous challenges.
One frequent issue is due to filter divergence when actual estimation errors statistically
deviate from computed estimation errors [43]. This discrepancy can lead to estimation
errors exceeding the confidence intervals defined by the computed error covariance, which
may approach infinity. Consequently, the filter fails to reach a steady state, especially as the
measurement interval tends to infinity. Such anomalies may stem from errors in the system
model upon which the filter relies or inaccuracies in modeling the error statistics [44].

This work introduces a theoretical framework for modeling errors in Kalman filter
implementation on finite-precision hardware. The derivation involves incorporating quan-
tization noises into the filter design. It will be demonstrated that integrating quantization
errors into the model renders the resulting filter sensitive to the embedded architecture on
which it is implemented. Moreover, embedding such errors enhances the filter’s ability to
recover from otherwise unmodeled errors.

Appendix B.1. Kalman Filter Derivation

Following the assumptions on quantization noise properties that are put forth in the
least squares formulation (Appendix A.1), this derivation considers a linear, discrete-time
dynamical system defined by the difference equation as:

xk+1 = Φkxk + Γkuk + γkwk (A36)
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where, at time k, xk is the system state, uk is the control input, wk is additive process noise,
Φk is the state transition matrix, Γk is the input transition matrix, and γk is a deterministic
matrix that maps process noise into the state dynamics.

Further, the measurements are linearly related to the states and are available in discrete-
time form as:

yk = Hkxk + vk (A37)

where yk is the measurement obtained at time k, Hk is the observation matrix, and vk
represents the additive noise that corrupts the measurements. Note that wk and vk are
assumed to be uncorrelated zero-mean Gaussian white-noise processes with variances
defined as:

E{wkwT
l } = Qkδkl

E{vkvT
l } = Rkδkl

δkl =

{
1, if k = l.
0, if k ̸= l.

(A38)

Furthermore, it is supposed that the initial system state has a known mean and
covariance, x̂0 and P0 respectively defined as:

x̂0 = E[x0] and P0 = E[(x̂0 − x0)(x̂0 − x0)
T ] (A39)

Appendix B.1.1. Quantization Assumptions

In the finite-precision implementation of the Kalman filter, the round-off errors are to
be modeled in the filter derivation. Assuming that quantization (Q[.]) is implemented at
state nodes after double-length accumulation, and that measurements from A/D conversion
as well as input resulting from D/A conversion are independently quantized, the additional
quantization errors effect the states, measurements and inputs as follows:

Q[xk] = xk + ϵx,k (A40)

Q[yk] = yk + ϵy,k (A41)

Q[uk] = uk + ϵu,k (A42)

Following the description in Equation (A5), the round-off errors ϵx,k, ϵy,k, and ϵu,k,
can be modeled as zero-mean, uncorrelated white noise process with the error statistics
defined as:

E{ϵx,k} = 0 ∀ i and Σx,k = E{ϵx,kϵT
x,l} = qIx; q =

2−2Bx

12

E{ϵy,k} = 0 ∀ i and Σy,k = E{ϵy,kϵT
y,l} = qIy; q =

2−2By

12

E{ϵu,k} = 0 ∀ i and Σu,k = E{ϵu,kϵT
u,l} = qIu; q =

2−2Bu

12

(A43)

These additional errors for finite-precision implementation can be modeled into the
filter description in Equations (A36) and (A37) as:

xk+1 = Φk(xk + ϵx,k) + Γk(uk + ϵu,k) + γkwk (A44)

yk = Hk(xk + ϵx,k) + vk + ϵy,k (A45)

Appendix B.1.2. Derivation

Given the above assumptions, the objective is to determine an optimal estimate of
the state at (k + 1)th instance i.e., x̂k+1 based upon a set of k + 1 sets of measurements and
the current state estimate at k. The Kalman filter comprises of propagation and update
stages for states and covariances. The propagation stage predicts a priori mean and error
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covariance of the state while the update stage uses new measurements to update the
prediction to yield a posteriori mean and error covariance.

The propagation of the state is attained by taking an expected value of the difference
equation in Equation (A44). The mean and covariances are obtained as follows:

x̂k+1 = E[Φkxk + Φkϵx,k + Γkuk + Γkϵu,k + γkwk]

= ΦkE[xk] + ΓkE[uk]

x̂k+1 = Φk x̂k + Γkuk (A46)

In arriving at this result, deterministic nature of the transition matrices and the input
vector as well as zero-mean properties of the process and quantization noises is utilized.
The covariance propagation stems from the state estimation errors at discrete instances
k + 1 and k determined as:

ex,k+1 = xk+1 − x̂k+1

= [Φk(xk + ϵx,k) + Γk(uk + ϵu,k) + γkwk]− [Φk x̂k + Γkuk]

= Φk(ex,k + ϵx,k) + Γkϵu,k + γkwk (A47)

where ex,k = xk − x̂k.
Now the estimation error covariance at (k + 1)th instance, Pk+1, is determined using

the above error propagation equation as:

Pk+1 = E{ex,k+1eT
x,k+1}

= E{[Φk(ex,k + ϵx,k) + Γkϵu,k + γkwk] + [Φk(ex,k + ϵx,k) + Γkϵu,k + γkwk]
T}

= ΦkE{(ex,k + ϵx,k)(ex,k + ϵx,k)
T}ΦT

k + ΓkE{ϵu,kϵT
u,k}ΓT

k + γkE{wkwT
k }γT

k

Pk+1 = Φk(Pk + Σx,k)Φ
T
k + ΓkΣu,kΓT

k + γkQkγT
k (A48)

wherein the above expression is obtained from the information that Φk, Γk and γk are deter-
ministic., the noise terms are uncorrelated as defined in the Equations (A38) and (A43).

Completing the propagation step gives prior mean and error covariance of the state
which from now on be called as x̂−k and P−

k , respectively. After the propagation step,
the new measurement information updates the estimated state and the confidence in
that estimate. In the step it is desired to update the prior estimate of the state and error
covariance {x̂−k , P−

k } to produce a posteriori mean and covariance, {x̂+k , P+
k }. A linear

update equation for the new estimate combines the prior estimate with measurement data
and can be expressed as:

x̂+k = x̂−k + Kk(yk − Hk x̂−k ) (A49)

x̂+k = [I − KkHk]x̂
−
k + Kkyk (A50)

where Kk is the Kalman gain which multiplies innovation and adds it to the previous best
estimate of the state. The difference between the actual measurement and its prediction
i.e., (yk − Hk x̂−k ), is known as the innovation, zk. The expression for the covariance of the
innovation, Pzz,k, will be derived shortly.

From the update equation in Equation (A45) and the measurement model described
in Equation (A49), the posterior estimation error can be computed as:
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e+x,k = xk − x̂+k
= xk − ([I − KkHk]x̂

−
k + Kkyk)

= xk −
(
[I − KkHk]x̂

−
k + Kk[Hk(xk + ϵx,k) + vk + ϵy,k]

)
= [I − KkHk](xk − x̂−k )− Kk[Hkϵx,k + vk + ϵy,k]

e+x,k = [I − KkHk]e
−
x,k − Kk[Hkϵx,k + vk + ϵy,k] (A51)

Now, the posterior estimation error covariance from the posterior state estimation
error is obtained as:

P+
k = E{e+x,ke+x,k

T}

= E
{(

[I − KkHk]e
−
x,k − Kk[Hkϵx,k + vk + ϵy,k]

)
(
[I − KkHk]e

−
x,k − Kk[Hkϵx,k + vk + ϵy,k]

)T}
= [I − KkHk]E{e−x,ke−x,k

T}[I − KkHk]
T+

Kk

[
HkE{ϵx,kϵT

x,k}HT
k +E{vkvT

k }+E{ϵy,kϵT
y,k}

]
KT

k

P+
k = [I − KkHk]P

−
k [I − KkHk]

T + Kk

[
HkΣx,kHT

k + Rk + Σy,k

]
KT

k (A52)

Equation (A52) is the posterior error covariance update that is derived assuming the
Kalman gain Kk to be deterministic.

In order to determine Kk, the mean squared error of state estimation error is minimized
by minimizing the trace of P+

k . In other words, the trace of P+
k is differentiated with respect

to Kk and the result is set to zero in search of the minimizing conditions. That is

∂Tr(P+
k )

∂Kk
= 0 = −2[I − KkHk]P

−
k HT

k + 2Kk[HkΣx,kHT
k + Rk + Σy,k] (A53)

where the following trace identities are used

∂BAC
∂A

= BTCT ∂ABAT

∂A
= A[B + BT ] (A54)

Now, solving for Kk in Equation (A53) gives

Kk = P−
k HT

k [HkP−
k HT

k + HkΣx,kHT
k + Rk + Σy,k]

−1 (A55)

where the matrix term with inverse, [HkP−
k HT

k + HkΣx,kHT
k + Rk + Σy,k], is the covariance

of the innovation filter, Pzz,k.
Finally, substituting Equation (A55) into Equation (A52) yields,

P+
k = P−

k − KkHkP−
k − P−

k HT
k KT

k + Kk[HkP−
k HT

k + HkΣx,kHT
k + Rk + Σy,k]

−1KT
k

= P−
k − KkHkP−

k

P+
k = [I − KkHk]P

−
k (A56)

Equation (A56) is the update equation for error covariance matrix with the optimal
gain obtained in Equation (A55).

Appendix B.1.3. Key Observations

The linear quantized discrete-time Kalman filter (QDKF) closely resembles the stan-
dard Kalman filter equations. The round-off errors caused by state, measurement, and
input quantization do not alter the filter structure. However, the round-off error variances
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become additive to the covariances in the propagation and the gain equations as shown in
Table A2. It can be noticed from Equation (A55), the Kalman gain augments the round-off
error covariances as weighting factors, reducing the applied gain and thereby amplify-
ing covariance updates. This weighting in Kalman gain can be interpreted as optimally
weighing the innovation into the state updates. Another observation is that if the model
is receiving quantized input, these errors percolate into the covariance propagation step
(Equation (A56)) which is a deviation from standard Kalman filter equations where the forc-
ing input is typically assumed to be unaffected by noise. If there is no forcing input in the
model dynamics, this input error covariance is disregarded. The resulting QDKF algorithm
serves as an optimal state estimator, accommodating quantized states, measurements, and
inputs while considering uncertainties in state and measurement evolution.

Table A2. Quantized discrete-time Kalman filter algorithm.

System Model xk+1 = Φk(xk + ϵx,k) + Γk(uk + ϵu,k) + γkwk
Measurement Model yk = Hk(xk + ϵx,k) + vk + ϵy,k

Initialize x̂+0 = E[x0]
P+

0 = E[(x̂0 − x0)(x̂0 − x0)
T ]

State propagation x̂−k+1 = Φk x̂+k + Γkuk
Covariance propagation P−

k+1 = Φk(P
+
k + Σx,k)Φ

T
k + ΓkΣu,kΓT

k + γkQkγT
k

Kalman gain Kk = P−
k HT

k [HkP−
k HT

k + HkΣx,kHT
k + Rk + Σy,k]

−1

State update x̂+k = x̂−k + Kk(yk − Hk x̂−k )
Covariance update P+

k = [I − KkHk]P
−
k

Appendix C. Quantized Square-Root Kalman Filter (QSRKF)

Theoretically, the discrete-time Kalman filter equations are adequate to achieve state
estimates with minimum mean square error. For onboard finite-precision implementation,
the Kalman filter equations are prone to numerical instability. Due to round-off errors,
the propagation and update equations were found to compromise the symmetry and
positive-definiteness of the covariance matrix often leading to negative variances in the
estimation errors [2,4]. This degradation in the Kalman filter performance is addressed
through numerically robust square-root Kalman filters. In fixed-point realization, the
square-root Kalman filter helps reduce the dynamic range and mitigate the round-off errors
by using matrix square-root operations. The square-root Kalman filter (SRKF) operates
by computing the covariance propagation and update expressions in terms of square-root
factors of the a priori and a posteriori covariance matrices. This requires taking matrix
square-root of the state covariance matrix.

Appendix C.1. Square-Root of State Covariance Matrix

The square-root of the state covariance matrix Pk is given by Sk and defined as:

Pk = SkST
k (A57)

where the square-root factor Sk can be computed using Cholesky factorization of the sym-
metric positive-definite Pk. Alternately, the square-root matrix can be efficiently computed
using QR decomposition.

The QR algorithm decomposes a matrix A ∈ Rn×m into two factors: an orthogonal
matrix Q ∈ Rn×n, and an upper-triangular matrix R ∈ Rn×m such that A = QR, and
m ≥ n. If R̃ ∈ Rn×n is the upper triangular portion of R, then R̃T is the Cholesky factor
of Pk = AAT , i.e., R̃T = Sk such that R̃TR̃ = AAT [45]. Specifically, if R̃ = qr{AT}T , the
qr{·} operation performs the QR decomposition and returns an upper-triangular portion
of R only, then R̃T is the lower-triangular Cholesky factor of Pk = AAT .
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Appendix C.2. Quantized Square-Root Kalman Filter for State Estimation

Appendix C.2.1. Initialization

As established, the SRKF is concerned with time and measurement update using
square-root of the covariance matrices. As in the QDKF formulation (See Appendix B),
the QSRKF filter is initialized with an initial mean x+0 . However, in place of the state
covariance matrix, the filter is initialized with its square-root S+

0 calculated once using
Cholesky factorization such that:

S+
0 =

√
E[(x̂0 − x0)(x̂0 − x0)T ] (A58)

The filter description includes modeling quantization noise sources in the deriva-
tion along with the measurement and the process noises. The square-roots of the error
covariances that correspond to the state, input, and measurement quantization noises
(Equation (A43)), and the process, measurement noises (Equation (A38)) are calculated via
Cholesky factorization. The square-root covariance matrices defined through the follow-
ing notations:

Λx,k =
√

Σx,k Λy,k =
√

Σy,k Λu,k =
√

Σu,k Sw,k =
√

Qk Sv,k =
√

Rk (A59)

Appendix C.2.2. Filter Propagation

In the propagation step, the time update for the state estimate remains unchanged:

x̂−k+1 = Φk x̂+k + Γkuk (A60)

The state covariance however must use only the matrix square-roots for propagation.
The time-update for square-root of the state estimation error covariance S−

k+1 is derived as

P−
k+1 =ΦkP+

k ΦT
k + ΦkΣx,kΦT

k + ΓkΣu,kΓT
k + γkQkγT

k (A61)

S−
k+1(S

−
k+1)

T =ΦkS+
k (S

+
k )

TΦT
k + ΦkΛx,kΛT

x,kΦT
k + (A62)

ΓkΛu,kΛT
u,kΓT

k + γkSw,kST
w,kγT

k

S−
k+1(S

−
k+1)

T =
[
ΦkS+

k | ΦkΛx,k | ΓkΛu,k | γkSw,k
][

ΦkS+
k | ΦkΛx,k | ΓkΛu,k | γkSw,k

]T (A63)

S−
k+1 =qr{

[
ΦkS+

k | ΦkΛx,k | ΓkΛu,k | γkSw,k
]T}T (A64)

Appendix C.2.3. Kalman Gain

To compute the Kalman gain for the QSRKF, the expressions for the square-root of
the innovation covariance is first developed. The innovation covariance Pzz of the QDKF
algorithm (Equation (A55)) is given as:

Pzz,k = HkP−
k HT

k + HkΣx,kHT
k + Rk + Σy,k (A65)

Similar to the propagation step, the square-root factors for the innovation covariance
is developed as:

Szz,kST
zz,k = HkS−

k (S
−
k )

THT
k + HkΛx,kΛT

x,kHT
k + Sv,kST

v,k + Λy,kΛT
y,k (A66)

Szz,k = qr{
[
HkS−

k | HkΛx,k | Sv,k | Λy,k
]T}T (A67)

The Kalman gain Kk of the QDKF method is known to be P−
k HT

k (Pzz,k)
−1. Using the

calculated square-root innovation covariance factor, the Kalman gain is computed as:

Kk = S−
k (HkS−

k )
T(Szz,kST

zz,k)
−1 (A68)
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Appendix C.2.4. Filter Update

The state and the state covariance update equations are computed using the Kalman
gain presented in Equation (A68). Starting from the symmetric version of the covariance
update equation (Equation (50)), the square-root factored form of the covariance update,
S+

k , is computed as:

P+
k = [I − KkHk]P

−
k [I − KkHk]

T + Kk[HkΣx,kHT
k + Rk + Σy,k]K

T
k (A69)

S+
k (S

+
k )

T = [I − KkHk]S
−
k (S

−
k )

T [I − KkHk]
T+ (A70)

Kk[HkΛx,kΛT
x,kHT

k + Sv,kST
v,k + Λy,kΛT

y,k]K
T
k

S+
k = qr

{[
[I − KkHk]S

−
k | Kk

[
HkΛx,k | Sv,k | Λy,k

]]T}T
(A71)

Table A3. Quantized square-root Kalman filter algorithm.

System Model xk+1 = Φk(xk + ϵx,k) + Γk(uk + ϵu,k) + γkwk
Measurement Model yk = Hk(xk + ϵx,k) + vk + ϵy,k

Initialize x̂+0 = E[x0]

S+
0 =

√
E[(x̂0 − x0)(x̂0 − x0)T ]

State propagation x̂−k+1 = Φk x̂+k + Γkuk

Square-root covariance propagation S−
k+1 = qr{

[
ΦkS+

k | ΦkΛx,k | ΓkΛu,k | γkSw,k
]T}T

Innovation Covariance Szz,k = qr{
[
HkS−

k | HkΛx,k | Sv,k | Λy,k
]T}T

Kalman gain Kk = S−
k (HkS−

k )T(Szz,kST
zz,k)

−1

State update x̂+k = x̂−k + Kk(yk − Hk x̂−k )

Square-root covariance update S+
k = qr

{[
[I − KkHk]S

−
k | Kk

[
HkΛx,k | Sv,k | Λy,k

]]T}T
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