Photoelectric H2S Sensing Based on Electrospun Hollow CuO-SnO2 Nanotubes at Room Temperature
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural and Morphological Characteristics of Sensitive Materials
3.2. Gas-Sensing Performance
3.3. Sensing Mechanism Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Zhou, Y.; Li, X. Detection strategies for volatile fragrance released from agricultural products: Progress and prospects. Adv. Sens. Res. 2024, 2400044. [Google Scholar] [CrossRef]
- Yuan, H.; Li, N.; Fan, W.; Cai, H.; Zhao, D. Metal-organic framework based gas sensors. Adv. Sci. 2022, 9, 2104374. [Google Scholar] [CrossRef] [PubMed]
- Baur, T.; Amann, J.; Schultealbert, C.; Schütze, A. Field study of metal oxide semiconductor gas sensors in temperature cycled operation for selective VOC monitoring in indoor air. Atmosphere 2021, 12, 647. [Google Scholar] [CrossRef]
- Li, X.; Chang, X.; Liu, X.; Zhang, J. High-entropy oxide (FeCoNiCrMn)3O4 for room-temperature NO2 sensors. Appl. Phys. Lett. 2024, 124, 221901. [Google Scholar] [CrossRef]
- Zhao, H.; Li, J.; She, X.; Chen, Y.; Wang, M.; Wang, Y.; Du, A.; Tang, C.; Zou, C.; Zhou, Y. Oxygen vacancy-rich bimetallic Au@Pt core-shell nanosphere-functionalized electrospun ZnFe2O4 nanofibers for chemiresistive breath acetone detection. ACS Sens. 2024, 9, 2183–2193. [Google Scholar] [CrossRef]
- Yu, C.; Liu, J.; Zhao, H.; Wang, M.; Li, J.; She, X.; Chen, Y.; Wang, Y.; Liu, B.; Zou, C.; et al. Sensitive breath acetone detection based on α-Fe2O3 nanoparticles modified WO3 nanoplate heterojunctions. IEEE T. Instrum. Meas. 2024, 73, 9513908. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, Y.; Xie, G.; Duan, Z.; Yuan, Z.; Zhang, Y.; Zhao, Q.; Cao, Z.; Dong, F.; Tai, H. Lever-inspired triboelectric respiration sensor for respiratory behavioral assessment and exhaled hydrogen sulfide detection. Chem. Eng. J. 2023, 471, 144795. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Jiang, Y.; Duan, Z.; Yuan, Z.; Liu, B.; Huang, Q.; Zhao, Q.; Yang, Y.; Tai, H. Synergistic effect of charge transfer and interlayer swelling in V2CTx/SnS2 driving ultrafast and highly sensitive NO2 detection at room temperature. Sens. Actuators B Chem. 2024, 411, 135788. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Wetchakun, K.; Samerjai, T.; Tamaekong, N.; Liewhiran, C.; Siriwong, C.; Kruefu, V.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B Chem. 2011, 160, 580–591. [Google Scholar] [CrossRef]
- Kaur, M.; Jain, N.; Sharma, K.; Bhattacharya, S.; Roy, M.; Tyagi, A.K.; Gupta, S.K.; Yakhmi, J.V. Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers. Sens. Actuators B Chem. 2008, 133, 456–461. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kim, S.S.; Kim, H.W. Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances. J. Hazard Mater. 2018, 357, 314–331. [Google Scholar] [CrossRef] [PubMed]
- Park, K.R.; Cho, H.B.; Lee, J.; Song, Y.; Kim, W.B.; Choa, Y.H. Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance. Sens. Actuators B Chem. 2020, 302, 127179. [Google Scholar] [CrossRef]
- Song, Z.; Wei, Z.; Wang, B.; Luo, Z.; Xu, S.; Zhang, W.; Yu, H.; Li, M.; Huang, Z.; Zang, J.; et al. Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem. Mater. 2016, 28, 1205–1212. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, W.; Yu, H.; Gao, L.; Song, Z.; Xu, S.; Li, M.; Wang, Y.; Song, H.; Tang, J. Solution-processed gas sensors employing SnO2 quantum dot/MWCNT nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 840–846. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, J.; Yang, Y.; Li, F.; Yu, H.; Dong, X.; Wang, T. SnO2-inserted 2D layered Ti3C2Tx MXene: From heterostructure construction to ultra-high sensitivity for Ppb-level H2S detection. Sens. Actuators B Chem. 2024, 410, 135727. [Google Scholar] [CrossRef]
- Miao, J.; Chen, C.; Lin, Y.S. Metal-oxide nanoparticles with a dopant-segregation-induced core-shell structure: Gas sensing properties. J. Phys. Chem. C 2018, 122, 21322–21329. [Google Scholar] [CrossRef]
- Song, B.Y.; Zhang, M.; Teng, Y.; Zhang, X.F.; Deng, Z.P.; Huo, L.H.; Gao, S. Highly selective ppb-level H2S sensor for spendable detection of exhaled biomarker and pork freshness at low temperature: Mesoporous SnO2 hierarchical architectures derived from waste scallion root. Sens. Actuators B Chem. 2020, 307, 127662. [Google Scholar] [CrossRef]
- Pi, W.; Chen, X.; Humayun, M.; Yuan, Y.; Dong, W.; Zhang, G.; Chen, B.; Fu, Q.; Lu, Z.; Li, H.; et al. Highly sensitive chemiresistive H2S detection at subzero temperature over the Sb-Doped SnO2@g-C3N4 heterojunctions under UV illumination. ACS Appl. Mater. Interfaces 2023, 15, 14979–14989. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Li, J.; Zhao, H.; Zhang, R.; Ou, Y.; Xie, L.; Yang, J.; Zou, C.; Zhou, Y. Black phosphorus nanosheet/tin oxide quantum dot heterostructures for highly sensitive and selective trace hydrogen sulfide sensing. ACS Appl. Nano Mater. 2023, 6, 4034–4045. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, Z.; Zhao, H.; Wang, Y.; Li, J.; Zou, C. Two-dimensional black phosphorus/tin oxide heterojunctions for high-performance chemiresistive H2S sensing. Anal. Chim. Acta 2023, 1245, 340825. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, H.; Wang, Y.; Zhang, R.; Zou, C.; Zhou, Y. Mesoporous WS2-decorated cellulose nanofiber-templated CuO heterostructures for high-performance chemiresistive hydrogen sulfide sensors. Anal. Chem. 2022, 94, 16160–16170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Duan, Z.; Zou, H.; Ma, M. Fabrication of electrospun LaFeO3 nanotubes via annealing technique for fast ethanol detection. Mater. Lett. 2018, 215, 58–61. [Google Scholar] [CrossRef]
- Paul, A.; Schwind, B.; Weinberger, C.; Tiemann, M.; Wagner, T. Gas responsive nanoswitch: Copper oxide composite for highly selective H2S detection. Adv. Funct. Mater. 2019, 29, 1904505. [Google Scholar] [CrossRef]
- Kolhe, P.S.; Kulkarni, S.G.; Maiti, N.; Sonawane, K.M. Effect of Cu doping concentration on H2S gas-sensing properties of Cu-doped SnO2 thin films. Appl. Phys. A 2019, 125, 372. [Google Scholar] [CrossRef]
- Wang, P.; Hui, J.; Yuan, T.; Chen, P.; Su, Y.; Liang, W.; Chen, F.; Zheng, X.; Zhao, Y.; Hu, S. Ultrafine nanoparticles of W-doped SnO2 for durable H2S sensors with fast response and recovery. RSC Adv. 2019, 9, 11046–11053. [Google Scholar] [CrossRef]
- Jang, J.S.; Kim, S.J.; Choi, S.J.; Kim, N.H.; Hakim, M.; Rothschild, A.; Kim, I.D. thin-walled SnO2 nanotubes functionalized with Pt and Au catalysts via the protein templating route and their selective detection of acetone and hydrogen sulfide molecules. Nanoscale 2015, 7, 16417–16426. [Google Scholar] [CrossRef]
- Cho, I.; Kang, K.; Yang, D.; Yun, J.; Park, I. Localized liquid-phase synthesis of porous SnO2 nanotubes on MEMS platform for low-power, high performance gas sensors. ACS Appl. Mater. Interfaces 2017, 9, 27111–27119. [Google Scholar] [CrossRef]
- Ruksana, S.; Kumar, A.; Lakshmy, S.; Kishore, K.R.; Sharma, C.S.; Kumar, M.; Chakraborty, B. Highly efficient CuO-anchored SnO2 nanofiber for low-concentration H2S gas sensors. ACS Appl. Eng. Mater. 2024, 2, 431–442. [Google Scholar] [CrossRef]
- Bulemo, P.M.; Cho, H.J.; Kim, N.H.; Kim, I.D. Mesoporous SnO2 nanotubes via electrospinning-etching route: Highly sensitive and selective detection of H2S molecule. ACS Appl. Mater. Interfaces 2017, 9, 26304–26313. [Google Scholar] [CrossRef]
- Kargar, A.; Jing, Y.; Kim, S.J.; Riley, C.T.; Pan, X.; Wang, D. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 2013, 7, 11112–11120. [Google Scholar] [CrossRef] [PubMed]
- Duoc, V.T.; Hung, C.M.; Nguyen, H.; Duy, N.V.; Hieu, N.V.; Hoa, N.D. Room temperature highly toxic NO2 gas sensors based on rootstock/scion nanowires of SnO2/ZnO, ZnO/SnO2, SnO2/SnO2 and, ZnO/ZnO. Sens. Actuators B Chem. 2021, 348, 130652. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, C.; Peng, C.; She, X.; Wang, M.; Peng, B.; Zhou, Y. Photoelectric H2S Sensing Based on Electrospun Hollow CuO-SnO2 Nanotubes at Room Temperature. Sensors 2024, 24, 6420. https://doi.org/10.3390/s24196420
Zou C, Peng C, She X, Wang M, Peng B, Zhou Y. Photoelectric H2S Sensing Based on Electrospun Hollow CuO-SnO2 Nanotubes at Room Temperature. Sensors. 2024; 24(19):6420. https://doi.org/10.3390/s24196420
Chicago/Turabian StyleZou, Cheng, Cheng Peng, Xiaopeng She, Mengqing Wang, Bo Peng, and Yong Zhou. 2024. "Photoelectric H2S Sensing Based on Electrospun Hollow CuO-SnO2 Nanotubes at Room Temperature" Sensors 24, no. 19: 6420. https://doi.org/10.3390/s24196420