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Abstract: The ability to sense propagating electromagnetic plane waves based on their directions
of arrival (DOAs) is fundamental to a range of radio frequency (RF) sensing, communications, and
imaging applications. This paper introduces an algorithm for the wideband true time delay digital
delay Vandermonde matrix (DVM), utilizing Thiran fractional delays that are useful for realizing
RF sensors having multiple look DOA support. The digital DVM algorithm leverages sparse matrix
factorization to yield multiple simultaneous RF beams for low-complexity sensing applications.
Consequently, the proposed algorithm offers a reduction in circuit complexity for multi-beam digital
wideband beamforming systems employing Thiran fractional delays. Unlike finite impulse response
filter-based approaches which are wideband but of a high filter order, the Thiran filters trade usable
bandwidth in favor of low-complexity circuits. The phase and group delay responses of Thiran filters
with delays of a fractional sampling period will be demonstrated. Thiran filters show favorable
results for sample delay blocks with a temporal oversampling factor of three. Thiran fractional
delays of orders three and four are mapped to Xilinx FPGA RF-SoC technologies for evaluation. The
preliminary results of the APF-based Thiran fractional delays on FPGA can potentially be used to
realize DVM factorizations using application-specific integrated circuit (ASIC) technology.

Keywords: complexity and performance of algorithm; structured matrices; signal processing and anal-
ysis; TTD wideband multi-beam beamforming; Thiran fractional delays; array processing; wireless
communication

1. Introduction

The directional enhancement of propagating RF plane waves is a key requirement for
electromagnetic sensing using antenna array processors. Linear arrays of uniformly spaced
wideband antenna elements receive far-field propagating electromagnetic plane waves,
which must be directionally enhanced along the desired look direction using a beamformer.
A TTD beamformer enhances a wideband plane-wave signal along a particular DOA. To
wit, as the instantaneous bandwidth of modern antenna apertures increases, it leads to
wideband systems. The underlying beamforming schemes for such an aperture must be
realized with support for squint-free operation across the bands of interest [1]. The TTD
beamformer is the optimal beamformer when the signals of interest are contaminated
by wide sense stationary AWGN [2–5]; the case of the sensing of RF plane waves along
multiple directions is a crucially important application for antenna array-based RF sensing
and direction-of-arrival estimation [6] with use cases in RF imaging, RF communications,
and RF location.

For an aperture with N elements, an N-th order TTD beamformer can be realized
using analog, mixed-signal, or direct-digital methods for realizing such a TTD aperture
beam. A TTD beamformer can be steered by the appropriate selection of the progressive
time delay from one element to the next in a uniform aperture configuration. In cases where
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a large number of wideband beams are required, a dedicated TTD beam must be created
through its own TTD beamsteering network [5]. Typically, for N elements, N-independent
beams can be realized by considering a short duration time delay τ0 = T/N, where T is
the time taken for the radio signal to propagate between two neighboring elements in the
aperture. The parallel realization of N beams using a network of TTDs with durations
set to integer multiples of τ0 leads to an N-beam TTD multi-beam beamformer with an
underlying mathematical framework given by the DVM [7–11]. The DVM is similar in
concept to a spatial DFT; however, unlike the case of the DFT which uses a fixed complex
coefficient in the matrix–vector operation, the DVM uses frequency-dependent weights
defined as integer multiples of the smallest TTD component τ0.

1.1. Review: Fractional Delay Filters

Although FFT-type algorithms utilizing Thiran fractional delays are presently not
available, one could observe other methods based on fractional delay filters. The authors
in [12] proposed different methodologies and parameters for designing allpass fractional
delay filters. The authors claimed that the employment of Lagrange FIR and Thiran frac-
tional delay filters are the best choices for achieving desirable phase delay responses. The
paper [13] evaluated designs for FIR fractional filters, including sinc, frequency sampling,
polynomial interpolation, and least integral-square error. In designing fractional delay
filters, the paper [14] addressed the utilization of Taylor series expansions of e−jωτ when
τ represents a combination of integer delay and a fractional delay within the interval of
[−0.5, 0.5]. This approach was utilized to design fractional delay filters and gauge the
efficacy of their structure in relation to the Farrow structure, primarily in terms of the
storage of filter coefficients in [14]. The realization of allpass fractional delay filters was also
addressed through the truncation of the power series expansion based on the denominator
of the transfer function of the variable z at z−1 = 1 [15]. The paper [16] addressed the
reconstruction techniques for nonuniformly sampled band-limited signals using digital
fractional delay filters using a Vandermonde structured matrix followed by a diagonal
scaling. One can also find the factorization of the transfer function of the infinite impulse
response (IIR) Simpson integrator for designing fractional delay filters in [17]. On the other
hand, authors in [18] presented the introduction of the Hilbert transform operator, which
was developed using a half-sample delay operator created through the B-spline transform
interpolation and decimation. However, there is a lack of computationally efficient algo-
rithms in the literature, despite the fact that the methods for designing Thiran fractional
delay filters have been established.

1.2. Wideband Beamformer Structure

Figure 1 shows a single narrow-beam phased-array beamforming structure, a DFT-
based multi-beam phased-array structure, a single TTD wideband beamformer structure,
and an N-beam TTD wideband multi-beam structure, respectively. We first define the
DVM by

[AN ]kl := AN = [αkl ]N,N−1
k=1,l=0,

where α = e−jωτ0 . The term α accounts for the phase rotation associated with the smallest
fractional delay τ0 (necessary for realizing the DVM N-beam system) at frequency f , where
the temporal frequency ω = 2π f . Unlike the DFT-based N-beam phased array, which can
be realized using self-contained factorization of the DFT followed by the FFT algorithm, the
corresponding N-beam TTD structure has no direct equivalent of the FFT. We address this
problem using sparse factorization followed by a DVM algorithm while replacing complex
coefficients with frequency-dependent weights realized through linear filters.
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Figure 1. (a) Narrowband phased-array single-beam beamforming structure; (b) narrowband DFT-
based multi-beam phased-array beamforming structure corresponding to a matrix–vector operation
using the DFT matrix, in turn achieved via FFT based on the self-contained factorization of DFT
matrix; (c) wideband single-beam TTD beamformer structure; (d) unsimplified wideband N-beam
multi-beam TTD beamforming structure corresponding to a matrix–vector operation using the
DVM. The proposed work shows how the above-mentioned architecture corresponds to a sparse
factorization of DVM followed by a DVM algorithm that is realized as butterfly-like signal flow
graphs (SFGs), where twiddle factors are realized in the discrete-time domain by the proposed
twiddle filters based on a Thiran filter building block.

The analog realization of low-complexity and/or radix-2 DVM algorithms was pre-
viously discussed in references [7–11]. The structure of the DVM offers a framework for
analyzing TTD-based wideband multi-beam beamforming [1]. The DVM overcomes the
limitations associated with employing the DFT matrix. For example, wideband signals
applied to DFT-based multi-beams lead to an undesirable “beam squint” effect. The DVM
entries, referred to as AN in [7–11], serve as the foundation for a TTD-based beamformer.
It is important to note that the DFT matrix equals the matrix AN at a single temporal
frequency because the DVM covers a wide range of multiple temporal frequencies. Thus,
the DVM is a superclass of the DFT matrix. However, unlike the DFT matrix, the DVM
matrix lacks both properties of unitary and periodicity. Therefore, unlike the case of the
DFT that can be self-factored to obtain FFT algorithms [19–21], we are generally unable
to factorize the DVM to obtain a self-contained and radix-2 factorization, leading to an
FFT-like algorithm.

1.3. Contribution of the Paper

To develop an efficient digital DVM algorithm that incorporates fractional delays,
we will utilize the bidiagonal factorization technique in [7]. By implementing an array
representation of the DVM factorization by a vector, we present a DVM algorithm that
efficiently reduces the complexity associated with the matrix–matrix multiplication step
of the DVM algorithm described in [7]. Furthermore, we provide SFGs specifically for
small-array elements, i.e., N = 4, 8 incorporating Thiran fractional delays. Specifically, the
fractional part associated with each node in the SFGs is implemented using Thiran fractional
delay filters. Additionally, the integer part is realized using FIFO buffers implemented using
D-flop pipelines and/or realized as the integer delay component of a Thiran filter. This
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approach allows for a precise and efficient representation of the SFGs, facilitating enhanced
performance and accuracy in TTD-based wideband multi-beam digital beamforming.

1.4. Organization of the Paper

We provide an overview of the analog DVM algorithms proposed for TTD wide-
band multibeam beamforms in Section 2. In Section 3, we give an overview of digital
DVM beamfomers using Thiran filters. Next, in Section 4, we recall the DVM factoriza-
tion in [7] and present an array implementation of the factorization using a novel DVM
algorithm. The proposed algorithm is more reliable for large N than that for the matrix–
matrix multiplication-based DVM algorithm in [7,8]. Section 4.1 shows the arithmetic
complexity (quantified using the number of necessary adders and gain–delay blocks) and
numerical results for the DVM algorithm, and compares the arithmetic complexity with
the matrix–vector product with the previous work. Computing the DVM–vector product
with fractional delays has low arithmetic complexity compared to the brute force calcula-
tion. Section 5 presents a brief overview of analog and digital DVM beamforming using
APFs. Section 6 shows the simulation for the linear phase response of Thiran filters. Next,
Section 7 demonstrates Thiran filters for realizing each fractional sample delay based on
the proposed DVM algorithm followed by the SFGs. Section 8 discusses future work on
utilizing the APF-based Thiran fractional delay units to realize the full DVM factorization.
Finally, Section 9 concludes the paper.

2. Review: Analog DVM Beamformers

In prior work, we proposed a sparse factorization of the N-beam DVM leading to
60% reduction in integrated circuit complexity [7]. This low-complexity N-beam DVM
algorithm is based on the product of complex 1-band upper and lower matrices. In this
paper, we expand on the algorithmic results in [22–24] by utilizing complex nodes instead
of real nodes. The 1-band upper and lower matrix factorization of AN in [7] is expressed
without utilizing quasi separability, displacement equations, and the factorization of Han-
kel/Toeplitz matrices [25–31]. Moreover, the paper addressed error bounds and stability
by filling the gaps in [22–24] to compute DVM by a vector.

The paper [10] proposed an exact, efficient (i.e., more efficient than brute force multipli-
cation of the DVM by a vector but not radix-2), and self-recursive DVM algorithm by using
a matrix factorization of the DVM and a polynomial evaluation associated with its nodes
to analyze multi-beam antenna arrays. The exact calculation of the DVM vector product
via the DVM algorithm in [10] can be used to reduce the complexity of RF N-beam analog
beamforming systems. Although the algorithms proposed in [8,10] are much more efficient
than brute-force calculation, their order of arithmetic complexity is not O(N log N). We
recall here that the stable (well conditioned) and O(N log N) algorithms for Vandermonde
matrices proposed in [9] can be used for the narrowband communication system. Deriva-
tions have been established for radix-2 and split-radix FFT algorithms in [19–21,32–36].
Despite the derivation of size-N DFT into two size- N

2 DFTs being quite straightforward, its
extension to the DVM is cumbersome because useful DFT matrix properties (periodicity
and unitary) are not present in the DVM.

To overcome the above challenge, we proposed an O(N log N) DVM algorithm
having sparse factors to achieve multi-directional TTD wideband beamforming to solve
the longstanding beam squint problem in [11]. In [11], the “multiplication counts” in the
frequency domain—albeit in the analog domain—are a combined result of analog gains
(amplifiers) and time delays in the SFG when realized in a time-domain circuit.

3. Digital DVM Beamfomers Using Thiran Filters

Figure 2 shows a TTD multi-beam beamforming aperture for receive (left) and transmit
(right) applications. In both cases, the beamformers are realized in the digital signal
processing (DSP) unit that implements the DVM–vector operation once every sampling
period. The TTD digital beamformers can be realized as the DVM–vector product s.t. ANx,
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where x is the N− point vector of input signals obtained from N receivers (or feeding
N transmitters after digital-to-analog conversion). In the DVM AN , the kth-row and lth-
column element is of the form e−jωτ0kl , and hence the corresponding delays take the form
T(l) = τ0kl, where τ0 is the smallest fractional delay necessary for realizing the DVM
N-beam system, and ω is the temporal frequency. Typically, τ0 = Ts/N. We note here that
the factorization of the N-beam DVM leads to a range of delays Ti = τ0Pi, where i is the
index to the ith−node of the signal flow graph (which is, in fact, the butterfly diagram for
the radix case) corresponding to the factored version of AN and Pi ∈ Z+, and Pi ≤ (N − 1)2

are the different time delays across the nodes of the signal flow graph (butterfly for the
radix case) pertaining to the proposed fast algorithm for y = ANx. It is important to note
that at node i, the delay can be decomposed to the form τ0Pi = niTs + τi, where τi < Ts
and where ni ∈ Z+ is an integer delay realized through FIFO register buffers located at
point i of the signal flow graph (butterfly for the radix case). Each delay operation at node i
consists of an integer component and a fractional component. The fractional delays τi ≤ Ts
will be realized as fast interpolation filters based on finite impulse response (FIR) and/or
all-pass IIR Thiran filters. We start with the ni

th-order Thiran fractional delay filter of the
form [12]:

Hi(z) = z−ni
pi(z)

pi(z−1)
, (1)

where pi(z) = 1 + a1z + · · ·+ ani z
ni−1, ak = (−1)k(ni−1

k )∏ni−1
l=0

Di−ni+l
Di−ni+k+l , Di =

τi
Ts

, frac-
tional sample delay τi, temporal sample period Ts, and k = 1, 2, · · · , ni. Here, each set of
coefficients ak is unique to node i; however, we dropped the dependence on i for readability.
We obtain an approximated transfer function for the digital all-pass Thiran fractional delay
filter. Thus, with this and from the prior work on DVM [7–11], we propose a low-complexity
wideband TTD digital DVM algorithm using Thiran fractional delays.

1
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Figure 2. Overview architecture. RF antenna array used for optimal electromagnetic sensing of
wideband plane waves based on their DOAs. (Left) N-beam TTD receiver aperture using DVM
beamforming, and, (right) N-beam TTD transmit aperture using DVM beamforming.
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4. A Fast DVM Algorithm for Thiran Fractional Delays

We begin this section by recalling the sparse factorization of the DVM in [7]. Subse-
quently, an algorithm is presented based on the array implementation as opposed to the
matrix–matrix implementation associated with the phase rotation α = e−jωτ0 followed by
the smallest fractional delay τ0. We note that the primary objective of this study is to
propose a low-complexity DVM algorithm yielding to compute DVM–vector multiplication
using the Thiran fractional delays. Our work builds upon the studies [7–11]. It is impor-
tant to note that this paper does not address related issues, such as the computation of
Vandermonde structured matrices by a vector, inverse Vandermonde structured matrices
(leading to inversion formulas or inversion algorithms), or the solution of the linear systems
associated with Vandermonde structured matrices as the coefficient matrices as in [37–47].

Proposition 1 (Recalling from [7]). Let the DVM, denoted by AN , be defined via the nodes
{α, α2, . . . , αN} ∈ C for integers N s.t. N ≥ 4. Then, the DVM can be factored into the product of
bidiagonal matrices s.t.

AN = L(1)L(2) · · · L(N−1)U(N−1) · · ·U(2)U(1), (2)

where
L(m) =

IN−m−1
1
1 αN−m(α − 1)

1
. . .
. . .

. . .
1 αN−m(αm − 1)


,

U(m) =



IN−m−1
1 α

1 α2

. . . . . .
. . . αm

1


,

m = 1, 2, · · · , N − 1, and Ik is the k × k identity matrix.

Remark 1. We note here that the above factorization can be used to propose the ddvm algorithm
(Algorithm 1) based on Thiran fractional delays when the nodes of the DVM (i.e., αk) are associated
with the phase rotation α = e−jωτ0 followed by the smallest fractional delay τ0. Additionally, in
Section 5, we utilize the above factorization to present the signal flow graphs for y = ANx, where
the (k, l) element of the matrix AN is determined by the fractional delay component associated with
e−jωτ0kl .

4.1. Arithmetic Complexity of the DVM Algorithm

We show that the arithmetic complexity of the proposed DVM algorithm is less than
the standard quadratic complexity. Furthermore, when the algorithm executes, it uses array
implementation to avoid matrix–matrix multiplication in [7]. The number of additions and
multiplications used to execute the DVM algorithm correspond to the adders and gain
delay blocks, respectively.

The digital DVM using Thiran fractional delays describes a DSP system where each
fractional true time delay is realized using an IIR all-pass fractional delay filter. The Thiran
filter is one type of digital all-pass filter that maintains nearly constant group delay in the
frequency domain −π/2 ≤ ω ≤ π/2. The Thiran filters in this work will be realized using
the direct-form type-II SFG so that the amount of D-flop FIFO memory is minimized.
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Algorithm 1 ddvm

Input: Integer N s.t. N ≥ 4, α = e−jωτ0 ∈ C having the smallest fractional delay τ0, and
x ∈ RN or CN

Output: y = AN · x
Function: y = ddvm(x, N, α)
Steps:

1. Set s = 2N, u =
[
α α2 · · · αN]T , and A =

[
x 0N×(s−1)

]
.

2. for l = 1, 2, · · · , N − 1,
for k = 1, 2, · · · , N,
if ((k < (N − l)) or (k = N))
A(k, l + 1) = A(k, l),
else
A(k, l + 1) = A(k, l)

+A(k + 1, l) · u(k − N + l + 1),
end if.
end for,
end for.

3. for l = N, N + 1, · · · , s − 1,
for k = 1, 2, · · · , N,

if (k ≤ (l − N + 1))
A(k, l + 1) = A(k, l),
else
A(k, l + 1) = A(k − 1, l)

+A(k, l) · (u(k)− u(l − N + 1)),
end if.
end for,
end for.

4. return A(:, s), and Set y = A(:, s).

The number of complex additions (say #a) and the number of complex multiplications
(say #m), i.e., adders and gain–delay blocks, respectively, are required to compute the DVM
algorithm, i.e., ddvm, stated next.

Lemma 1. Let N ≥ 4 be a given integer and x ∈ CN . The DVM algorithm, i.e., ddvm, can be
computed with the following arithmetic complexities (respectively, adders and gain–delay blocks):

#a(ddvm, N) =
3
2

N(N − 1),

#m(ddvm, N) = (N − 1)2. (3)

Proof. To pre-calculate the vector u in Step 1 of the algorithm, one has to use N(N+1)
2 gain–

delay blocks but no adders. These counts are based on pre-computation and correlated
with the design time computations. Also, the aim of Step 1 is to compute the output of the
algorithm effectively. In Step 2 of the algorithm, there are no adders or gain–delay counts
involved in the if part. For the else part, when (N − k) ≤ i ≤ (N − 1), we have one adder
and gain–delay for each k, so in total, we have N(N−1)

2 adders and also gain–delay blocks
in Step 2. In Step 3 of the algorithm, there are no adders or gain–delay involved in the if
part. For the else part, when (k − N + 1) < i ≤ N, we have two adders and one gain–delay
for each k, so in total we have N(N − 1) adders and N(N−1)

2 gain–delay blocks in Step 3.
In Step 4 of the algorithm, we extract the last column of A and assign it to the vector y;
hence, no cost is involved. Hence, the proposed algorithm requires 3

2 N(N − 1) adders
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(respectively, complex additions) and (N − 1)2 gain–delay blocks (respectively, complex
multiplications).

Remark 2. We recall here that an array implementation of a DVM algorithm was used to solve the
DVM system for the phased array digital receivers in [45], and hence were able to reduce the cost of
solving the DVM system from O(N3) to O(N2). Unlike in [45], we do not solve the systems of
equations but rather compute the DVM–vector product.

4.2. Comparison Results for the Arithmetic Complexities of DVM Algorithms

In this section, we compare the arithmetic complexity of the proposed DVM algorithm
with the related work of DVM algorithms.

The gain–delay blocks of the proposed DVM algorithm (i.e., (N − 1)2) show favorable
results in comparison to [7] (i.e., N(3N−1)

2 ). This advantage is gained based on the pre-
computation of nodes followed by the array implementation of the proposed algorithm.
If we consider the gain–delay blocks in the pre-computation stage of the ddvm algorithm
(step 1), the number of gain–delay blocks in the proposed algorithm and the algorithm
in [7] is the same, i.e., 3

2 N2 +O(N). Furthermore, the number of adders remains consistent
between the ddvm algorithm and the algorithm in [7]. The ddvm algorithm exhibits a higher
count of adders and gain–delay blocks compared to the algorithms presented in [10,11]. This
is because the algorithms in those papers have adders and gain–delay block counts of the
order O(N log N), whereas the ddvm algorithm maintains these counts of less than O(N2).
But, on the other hand, it is important to note that the paper [10] introduces additional
criteria for the arrangement of nodes. Specifically, the nodes are evenly distributed on a
circle centered at the origin with a radius r, where r ≥ 1. This criterion is not imposed in
this paper. Despite the fact that the algorithms presented in [11] exhibit a complexity of
O(N log N), this algorithm does not yield favorable outcomes when applied to antenna
arrays with a small number of elements, specifically 4 and 8. However, the DVM algorithm
in [11] shows significant efficiency, surpassing 90%, for DVM sizes of N ≥ 256. On the other
hand, the gain–delay blocks of the ddvm algorithm consistently exhibit better performance
compared to those in [9] for both N = 4 and N = 8 configurations.

However, the objective of this paper is to utilize the DVM factorization, as outlined
in Proposition 1 from [7], for the implementation of multi-beam digital wideband beam-
forming systems that employ Thiran fractional delays. Thus, we will utilize the proposed
algorithm to realize the signal flow graphs as shown in the next section.

5. Thiran Fractional Delays for Twiddle Filter Realization

In this section, we will provide a brief overview and formulation of how analog and
digital DVM beamforming can be realized using APFs.

5.1. Analog RC Lattice APFs

The linear phase shift associated with analog DVM beamforming is e−jωτ , where
τ > τ0. The factor e−jωτ is associated with the factorization of the AN and can be efficiently
approximated on chip by CMOS APFs [7–11,48,49].

5.2. Digital Fractional Delay APFs

Upon digitization, the time domain becomes discrete due to the sampling operation
in the ADCs. Hence, the linear phase fractional sample delay blocks corresponding to the
(k, l) element of AN , i.e., e−jωτ0kl where τ0 is the smallest fractional delay necessary for
realizing the DVM N-beam DSP system. The matrix factorization of AN for digital DVM
can be realized using discrete-domain Thiran fractional delay filters while approximating
the fractional time delay, i.e., τi < Ts where Ts = τ0N.
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5.3. Thiran IIR Filter Blocks

Unlike the analog DVM case, which uses the fact that e−jωτi ≈
(

1−jωτi/2M
1+jωτi/2M

)M
, M ∈ Z+

and ω is the frequency variable in general, the digital DVM requires Thiran fractional delay
approximations given by the digital infinite impulse response (IIR) filter function Hi(z),
having a filter order ni ∈ Z+. The purely fractional delay component ψ(z) is related to the
Thiran filter via Hi(z) = z−ni (ψ(z))ni , and ψ(z) is the fractional delay associated with τ0.

5.4. Higher-Order Thiran APFs

We note that the fractional delay (ψ(z))p can be realized either by cascading p units of
first-order (or low-order) digital ψ(z) all-pass filters or by designing a single APF with the
desired level of fractional delay so that it fits the model of Hi(z). The former approach leads
to p-times replicated computational hardware structures of a Thiran filter when realized
as a VLSI implementation. We adopt the latter approach, where a unique Thiran filter of
order ni is realized as a hardware core for the implementation of ψ(z)p.

6. Simulation of Thiran Fractional Delays

We demonstrate the approximately linear phase response of Thiran filters. We show
two examples with fractional delays of Di = 0.1–0.9 fractions of the temporal sampling
period. We used Thiran IIR APFs of order ni = 3 and ni = 4, respectively, with correspond-
ing integer delay components of three and four clock periods, and the desired fractional
delay components. Both filters are usable as approximately linear-phase fractional sample
delay blocks better than the first 50% of the Nyquist period corresponding to a temporal
oversampling factor of about two. All plots of the phase and group delay vs. frequency are
in the domain −π/3 ≤ ω ≤ π/3. In Figure 3, we show the phase response of the Thiran
all-pass filter with ni = 3 and Di = 0.1–0.9. The negative linear phase behavior of the filter
within the first half of the Nyquist period is clearly apparent from the simulation. The
approximately linear phase response results in approximately constant group delays as
shown in Figure 4. The experiments are repeated for ni = 4 in Figure 5 for phase responses
and Figure 6 for group delay, respectively.

Phase Responses and Group Delay Profiles of Thiran Filters

Figures 3 and 5 illustrate phase responses for order ni = 3 and order ni = 4 for delay
variations Di = 0.1–0.9, where Di = τi/Ts respectively. Figures 4 and 6 illustrate the group
delay profiles for order ni = 3 and order ni = 4 for delay variations Di = 0.1–0.9, where
Di = τi/Ts respectively.

The TTD beam shapes of the multi-beam beamformer remain unchanged regardless
of the method used to achieve the TTDs. The main requirement is to have a constant group
delay that matches the desired TTD value and a response with a unit magnitude. These
conditions are satisfied within the usable frequency range. The group delay of the Thiran
filters enables the desired TTD value to be achieved within the operating band, assuming
temporal over-sampling up to 3×. If the group delay of the TTD at a specific frequency
matches the desired TTD, the aperture will produce the same beam. When there is an
insufficient amount of temporal oversampling, the Thiran filters may not perform at their
best, making a strong case for deviation. In practice, we can disregard this due to the use of
significant over-sampling. Our paper concludes that the Thiran filter-based approach is
exclusively suitable for temporal over-sampling factors greater than approximately 3× and
summarizes this using Figure 7.
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Figure 3. Phase responses for order ni = 3 and delay variations Di = 0.1–0.9, where Di = τi/Ts. With
temporal over-sampling of 3×, the usable range of the Thiran filter response is contained within the
normalized −0.33 to 0.33 frequency band. The linear phase response establishes the role of Thiran
filters in realizing fractional sample delays.
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Figure 4. Group delay profiles for order ni = 3 and delay variations Di = 0.1–0.9, where Di = τi/Ts.
Constant group delay can be observed over 50% of the Nyquist interval. With temporal over-sampling
of 3×, the usable range of the Thiran filter response is contained within the normalized −0.33 to 0.33
frequency band. The constant group delay establishes the role of Thiran filters for realizing fractional
sample delays.
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Figure 5. Phase responses for order ni = 4 and delay variations Di = 0.1–0.9, where Di = τi/Ts.
With temporal over-sampling of 3×, the usable range of the Thiran filter response is contained within
the normalized −0.33 to 0.33 frequency band. The linear phase response establishes the role of Thiran
filters in realizing fractional sample delays.
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Figure 6. Group delay profiles for order ni = 4 and delay variations Di = 0.1–0.9. Constant
group delay can be observed over 50% of the Nyquist interval. With temporal over-sampling of
3×, the usable range of the Thiran filter response is contained within the normalized −0.33 to 0.33
frequency band. The constant group delay establishes the role of Thiran filters in realizing fractional
sample delays.
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Figure 7. (a) shows a TTD beam for 3× temporal over-sampling (ω = 0.33π) which is the worst-case
performance under the recommended scheme. The Thiran filter yields a beam that is identical to
the perfect delay case. Furthermore, we show in (b) what would happen when the frequency is out
of the recommended range, i.e., when ω = 0.8π, where there is a significant deviation of the beam
axis. We only show this for information. In practice, by keeping ω < 0.33π by selecting 3× temporal
over-sampling, we can avoid this issue.

7. SFGs for the Fast Digital DVM Algorithm Using Thiran Fractional Delays

In this section, we will utilize SFGs to elaborate on Thiran fractional delays for twiddle
filter realization. Although a direct-form realization of the digital DVM beamformer [50]
can be realized using Thiran filters for realizing each fractional sample delay, we proposed
to reduce the computational complexity of the multi-beam beamformer by exploiting sparse
factorization of the DVM in [7] followed by the fast DVM algorithm, i.e., ddvm. However,
the SFGs in [7] are continuous-time and realized as analog microwave circuits.

In this paper, we are operating in the discrete domain, and the resulting SFGs are
discrete-time and realizable using DSP systems; to wit, the sparse factorization of the DVM
leads to discrete-time SFGs having twiddle filters consisting of digital fractional delay lines
that can be approximated using Thiran filter building blocks.

7.1. An N = 4 Point DVM with Thiran Twiddle-Filters

Figure 8 shows the N = 4 point DVM factorization, where fractional true time delays
of the form ψp(z) are realized as a single Thiran filter block, having delay pτ where
τ = 1/N. Figure 9 shows the direct form II SFG of a typical Thiran all-pass filter that
approximates a fractional true time delay within the first 60% of the Nyquist period. A
temporal over-sampling factor of two easily allows the signals of interest to be located
within the usable band of the Thiran filters of the transfer function order ni = 3 and ni = 4,
respectively. The twiddle filter-based DVM factorizations also require several special filters
denoted as ϕk(z), k = 1, 2, ..., 5, where each special filter is realized using ψ(z) Thiran filters
as a building block. Therefore, once the Thiran block ψ(z) is available, it can be re-used to
create the special twiddle filters ϕk(z) as shown in Figure 10.
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Figure 9: Signal flow graph (SFG) for the proposed low-complexity 4-beam wideband beamformer.

Figure 8. SFG for the N = 4–beam wideband beamformer using the DVM factorization followed by
the ddvm algorithm, having the fractional delays ψ(z) associated with τ0.
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Figure 10. ϕk(z) function architectures for the order N = 4 filter. It showcases the reuse of the ψ(z)
Thiran block as a fundamental building block for creating these specialized filters.
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7.2. An N = 8 Point DVM with Thiran Twiddle-Filters

Figure 11 shows the N = 8 point DVM factorization, where fractional true time delays
are of the form ψp(z) as was the case for N = 4. For N = 8, the twiddle filters require
special filters that also use ψ(z) Thiran filters as the primary building block. The twiddle
filters ϕk(z) are realized using ψ(z) Thiran fractional delay filters as the building blocks.
Once a reconfigurable Thiran filter is realized in a hardware design, it can be re-used at scale
for realizing the SFGs consisting of the twiddle filters ϕk(z) using cascade and parallel-form
filter synthesis as shown in the corresponding design equations for ϕk(z). The special filters
ϕk(z) are shown as SFGs in Figure 12, where ψp(z) are direct form II Thiran filter blocks
that implement true-time fractional delays having value pτ, p = 1, 2, 3..., 6.
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Figure 11. SFG for the N = 8−beam wideband beamformer using the DVM factorization followed
by the ddvm algorithm having the fractional delays ψ(z) associated with τ0.
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Figure 12. ϕk(z) function architectures for the order N = 8 filter. The twiddle filters are realized
using the ψ(z) Thiran filter hardware core as a building block.

7.3. Preliminary FPGA Digital Hardware Architectures

The full realization of the DVM architecture on a digital integrated circuit (IC) is a
complex task and is beyond the scope of this paper. Nevertheless, we provide preliminary
results toward the eventual realization of the DVM beamformers on digital IC using
application-specific integrated circuit (ASIC) technology.

7.3.1. FPGA Realization of Thiran Filter Blocks

We prototyped a single software reconfigurable and delay-tunable digital Thiran filter
using field programmable gate array (FPGA) technology. Using Xilinx FPGA design tools,
including System Generator and PlanAhead, we realized a Thiran filter as a direct form II
hardware architecture. The design, shown in Figure 13, assumes that two’s complement
the fixed-point computer arithmetic with a system bus size of 14 bits, and quantization of
type rounding. The design was simulated for unit impulse response and compared with an
ideal unit impulse response obtained from Matlab; the results match the errors associated
with a 14-bit finite precision computer arithmetic core.
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Figure 13. (Left) The direct form II computer architecture for realizing the Thiran filter block realizing
ψ(z) for the order ni = 3. (Right) The direct form II computer architecture for realizing the Thiran
filter block realizing ψ(z) for order ni = 4. The digital FPGA design uses the Xilinx System Generator
FPGA blockset, which is a plug-in to Matlab/Simulink that provides a software interface to the Xilinx
Vivado toolset.
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7.3.2. Synthesis and Mapping to FPGA Fabric

The RF-SoC realization of a Thiran filter for ni = 3, 4 order APFs are given in Table 1.
The designs were ported from Matlab System Generator to Xilinx Vivado for synthesis
and post place-and-route timing analysis. The design for order ni = 3 filter consumes
418 configurable logic block look-up tables (CLB LUTs), 158 CLB registers, and 51 CARRY8
on the Xilinx FPGA reconfigurable logic fabric. The design for the order ni = 4 Thiran
consumes 487 CLB LUTs, 182 CLB registers, and 70 CARRY8 on FPGA logic fabric. The
target FPGA device was an RF System-On-Chip (SoC) ZCU-111.

The hardware consumption data in Table 1 indicate the scalability of the Thiran filter
building blocks for large apertures having many TTD units in the SFG.

Table 1. AMD-Xilinx ZCU-111 RF-SoC realizations of Thiran filters for orders ni = 3 and ni = 4,
respectively.

Order Site Type Used Available Util %

3

CLB LUTs 418 425, 280 0.10
LUT as Logic 410 425,280 0.10
LUT as Memory 8 213,600 <0.01

LUT as Distributed RAM 0
LUT as Shift Register 8

CLB Registers 158 850,560 0.02
Registers as Flip Flop 158 850,560 0.02
Registers as Latch 0 850,560 0.00

CARRY8 51 53,160 0.10

4

CLB LUTs 487 425,280 0.11
LUT as Logic 471 425,280 0.11
LUT as Memory 16 213,600 <0.01

LUT as Distributed RAM 0
LUT as Shift Register 16

CLB Registers 182 850,560 0.02
Registers as Flip Flop 182 850,560 0.02
Registers as Latch 0 850,560 0.00

CARRY8 70 53,160 0.13

7.3.3. Post Place Route Timing

Designs were pipelined to obtain a critical path delay (CPD) of TCPD = niTA/S + TM,
where ni ∈ Z+ is the order, TA/S is the latency for an adder/subtractor, having 14 bits of
precision, and TM is the latency for a multiplier, having a coefficient precision of 14 bits and
requantized output precision of 14 bits, selected to match the precision of the analog-to-
digital converters (ADCs) on the RF-SoC. The maximum clock frequency is FCLK = 1/TCPD.
Post place and route timing analysis on Vivado indicates maximum clock speeds of 220 MHz
and 213 MHz for Thiran filter orders of ni = 3 and ni = 4, respectively.

8. Future Work

We will utilize the APF-based Thiran fractional delay units to realize the full DVM
factorizations provided in the paper. The twiddle filters will be realized using the Thiran
building blocks. Thereafter, the factorized DVMs will be realized following the respective
SFGs. The DVM algorithms will be pipelined using clocked D-flop stages inserted within
the feed-forward parts of the signal flow. The building block Thiran filters are IIR filters
that cannot be pipelined further without specialized computer architecture techniques; for
example, we will explore the scattered/structured look-ahead pipelining [51] for digital
processors, which are based on complex pole-zero cancellations. The computer architectures
arrived at by mapping the SFGs to pipelined parallel processors with Thiran twiddle filters
will be implemented on an AMD-Xilinx RF-SoC platform, such as ZCU-1285/1275/111,



Sensors 2024, 24, 576 17 of 20

and operated with RF front ends realized off chip to evaluate the multi-beam beamforming
performance in a hardware-in-the-loop emulation [52–54].

9. Conclusions

The ability to directionally enhance a propagating wideband RF plane-wave signal is a
crucial requirement for RF sensing applications, as well as RF imaging, RF communications,
and RF-based location systems. The application domains of RF sensing include radar,
radio astronomy, and joint-communication and sensing applications that are emerging
for next-generation wireless systems (e.g., 6G networks). A multi-beam TTD beamformer
allows optimal sensing along a set of pre-determined DOAs for wideband waveforms. We
proposed an algorithm for the efficient computation of wideband true time delay digital
DVM using Thiran fractional delays. By adopting an array implementation of the DVM
algorithm followed by the bidiagonal and diagonal matrices, the complexity of the digital
DVM is significantly reduced. By applying this algorithm, the digital DVM becomes
more efficient and optimized. Consequently, the algorithm yields a reduction in circuit
complexity for multi-beam digital wideband beamforming systems that implement Thiran
fractional delays. We implemented the DVM algorithm to effectively demonstrate the phase
and group delay responses of Thiran filters that possess fractional sampling period delays
of both the third and fourth orders. These filters can be integrated into the Xilinx FPGA
RF-SoC technologies. To validate the feasibility of implementing the DVM algorithm, we
utilized signal flow graphs as the basis for realizing digital application-specific integrated
circuits (ASICs).
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Nomenclature
AN N × N DVM
ADC Analog to digital converter
APF All-pass filter
ASIC Application-specific integrated circuit
AWGN Additive white Gaussian noise
CMOS Complementary metal-oxide semiconductor
Complex Laplace variable s ∈ C
Complex z-variable z ∈ C
Complex polynomial of order ni pi(z)
CLB Configurable logic block
Critical path delay TCPD
DAC Digital to analog converter
Delay (integer and fractional parts) τ
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DFT Discrete Fourier transform
Digital integer delays at node i Pi
Digital fractional delay at node i Di
DSP Digital signal processing
DOA Directions of Arrival
Discrete-time APF ψ(z)
DVM Delay Vandemonde matrix
FFT Fast Fourier transform
FPGA Field programmable gate array
FIFO first in first out
FIR Finite impulse response
IIR Infinite impulse response
Input vector or signals to DVM x
Latency of addition/subtraction core TA/D
Latency of multiplier core TM
LNA Low noise amplifier
LPF Low pass filter
LUT Look-up table
Nodes of DVM αk = e−jωτ0k

Number of APFs in cascade M
Order of i-th APF ni
Order of DVM N × N
Output vectors or beamformed signals y
Phase function at (p, q) αp,q
Phase rotation α = e−jωτ0

RF Radio frequency
RAM Random access memory
Sampling period Ts
SFG Signal flow graph
SNR Signal-to-noise ratio
Smallest fractional delay τ0
SoC System on chip
Temporal frequency ω

The i-th node in the SFG i
Thiran APF at node i Hi(z)
Time delay at node i τi
TTD True time delay
Twiddle Filter at node i ϕi(z)
VLSI Very large scale integration
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