Real-Time Radar Classification Based on Software-Defined Radio Platforms: Enhancing Processing Speed and Accuracy with Graphics Processing Unit Acceleration
Abstract
:1. Introduction
- A real-time radar classification system capable of operating at a sampling rate of up to 200 MSps was implemented using an efficient signal processing algorithm to exceed the capabilities of existing systems.
- GPU parallelization for RF parameter extraction was employed to reduce the computational burden that allows for real-time operation with a high sampling rate.
2. Materials and Methods
2.1. Radar Classification in ESM
2.2. SDR Architecture
2.3. Pulse Parameter Extraction
2.4. GPU Accelerated FFT
2.5. Clustering with DBSCAN Algorithm
- if and is density reachable from with respect to ε and , then .
- and must be density connected with respect to ε and .
3. Experimental Evaluation
3.1. Hardware Setup
3.2. Software Design
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Martino, A. Introduction to Modern EW Systems; Artech House: Boston, MA, USA, 2018. [Google Scholar]
- Wiley, R. ELINT: The Interception and Analysis of Radar Signals; Artech: Boston, MA, USA, 2006. [Google Scholar]
- Ortaovalı, H.; Çelebi, M.B.; Akar, B.; Uyar, E.; Kartal, Y.; Kara, A.; Yürekten, Ö.; Tümay, A.; Dinçer, K. Development of Effective Pulse Deinterleaving and Threat Identification Algorithm for Esm Systems. In Proceedings of the 5th Annual Conference Defense Technologies (SAVTEK-2010), Ankara, Turkey, 23–25 June 2010. [Google Scholar]
- Xu, T.; Yuan, S.; Liu, Z.; Guo, F. Radar Emitter Recognition Based on Parameter Set Clustering and Classification. Remote Sens. 2022, 14, 4468. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, X.; Yuan, S.; Liu, Z. Radar Emitter Recognition Based on Spiking Neural Networks. Remote Sens. 2024, 16, 2680. [Google Scholar] [CrossRef]
- Park, D.H.; Seo, D.-H.; Baek, J.-H.; Lee, W.-J.; Chang, D.E. A Novel Batch Streaming Pipeline for Radar Emitter Classification. Appl. Sci. 2023, 13, 12395. [Google Scholar] [CrossRef]
- Mitola, J. The Software Radio Architecture. IEEE Commun. Mag. 1995, 33, 26–38. [Google Scholar] [CrossRef]
- Bagheri, R.; Mirzaei, A.; Heidari, M.E.; Chehrazi, S.; Lee, M.; Mikhemar, M.; Tang, W.K.; Abidi, A.A. Software-Defined Radio Receiver: Dream to Reality. IEEE Commun. Mag. 2006, 44, 111–118. [Google Scholar] [CrossRef]
- Wyglinski, A.M.; Orofino, D.P.; Ettus, M.N.; Rondeau, T.W. Revolutionizing Software Defined Radio: Case Studies in Hardware, Software, and Education. IEEE Commun. Mag. 2016, 54, 68–75. [Google Scholar] [CrossRef]
- Baldini, G.; Sturman, T.; Biswas, A.R.; Leschhorn, R.; Godor, G.; Street, M. Security Aspects in Software Defined Radio and Cognitive Radio Networks: A Survey and a Way Ahead. IEEE Commun. Surv. Tutor. 2011, 14, 355–379. [Google Scholar] [CrossRef]
- Abidi, A.A. The Path to the Software-Defined Radio Receiver. IEEE J. Solid-State Circuits 2007, 42, 954–966. [Google Scholar] [CrossRef]
- Licursi De Mello, R.G.; Rangel De Sousa, F. Non-analytical Direction-finding Method as a Key Step in Pursuing Low Size, Weight, Costs, and Computational Power in the Deinterleaving of Radar Pulses. IET Radar Sonar Navig. 2019, 13, 1876–1882. [Google Scholar] [CrossRef]
- Licursi De Mello, R.G.; Rangel De Sousa, F. Precise Techniques to Detect Superimposed Radar Pulses on ESM Systems. IET Radar Sonar Navig. 2018, 12, 735–741. [Google Scholar] [CrossRef]
- de Mello, R.G.L.; de Sousa, F.R.; Junqueira, C. SDR-Based Radar-Detectors Embedded on Tablet Devices. In Proceedings of the 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Aguas de Lindoia, Brazil, 27–30 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Revillon, G.; Mohammad-Djafari, A.; Enderli, C. Radar Emitters Classification and Clustering with a Scale Mixture of Normal Distributions. IET Radar Sonar Navig. 2019, 13, 128–138. [Google Scholar] [CrossRef]
- Öncü, S.; Kara, A. A Mini-Review on SDR Based Radar Classification System: Recent Advances and Challenges. J. Sci. Technol. Eng. Res. 2023, 4, 124–129. [Google Scholar] [CrossRef]
- Ata’a, A.W.; Abdullah, S.N. Deinterleaving of Radar Signals and PRF Identification Algorithms. IET Radar Sonar Navig. 2007, 1, 340–347. [Google Scholar] [CrossRef]
- Adamy, D.L. Introduction to Electronic Warfare Modeling and Simulation; SciTech Publishing: Raleigh, NC, USA, 2006; Volume 2. [Google Scholar]
- Gençol, K.; Kara, A.; At, N. New Wavelet-Based Features for the Recognition of Jittered and Stagger PRI Modulation Types. In Proceedings of the 2015 23nd Signal Processing and Communications Applications Conference (SIU), Malatya, Turkey, 16–19 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 2134–2137. [Google Scholar]
- Gençol, K.; Kara, A.; At, N. Improvements on Deinterleaving of Radar Pulses in Dynamically Varying Signal Environments. Digit. Signal Process. 2017, 69, 86–93. [Google Scholar] [CrossRef]
- Sharma, P.; Sarma, K.K.; Mastorakis, N.E. Artificial Intelligence Aided Electronic Warfare Systems-Recent Trends and Evolving Applications. IEEE Access 2020, 8, 224761–224780. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, Q.; Dong, J.; Wang, C.; Liu, X.; Fang, G. An Enhanced Algorithm for Deinterleaving Mixed Radar Signals. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3927–3940. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Huang, Z.; Liu, W. Radar Emitter Classification with Attention-Based Multi-RNNs. IEEE Commun. Lett. 2020, 24, 2000–2004. [Google Scholar] [CrossRef]
- Machado, R.G.; Wyglinski, A.M. Software-Defined Radio: Bridging the Analog–Digital Divide. Proc. IEEE 2015, 103, 409–423. [Google Scholar] [CrossRef]
- Prager, S.; Thrivikraman, T.; Haynes, M.S.; Stang, J.; Hawkins, D.; Moghaddam, M. Ultrawideband Synthesis for High-Range-Resolution Software-Defined Radar. IEEE Trans. Instrum. Meas. 2019, 69, 3789–3803. [Google Scholar] [CrossRef]
- Molla, D.M.; Badis, H.; George, L.; Berbineau, M. Software Defined Radio Platforms for Wireless Technologies. IEEE Access 2022, 10, 26203–26229. [Google Scholar] [CrossRef]
- Hasan, S.H.; Safdar, J. Analyzing EMI-Induced Degradation of HF SDR Receiver Sensitivity and Its Effects. In Proceedings of the 2023 2nd International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE), Lahore, Pakistan, 27–29 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Wyglinski, A.M.; Pu, D. Digital Communication Systems Engineering with Software-Defined Radio; Artech House: Boston, MA, USA, 2013. [Google Scholar]
- Grimm, M.; Allén, M.; Marttila, J.; Valkama, M.; Thomä, R. Joint Mitigation of Nonlinear RF and Baseband Distortions in Wideband Direct-Conversion Receivers. IEEE Trans. Microw. Theory Tech. 2013, 62, 166–182. [Google Scholar] [CrossRef]
- Kumar, N.; Rawat, M.; Rawat, K. Software-Defined Radio Transceiver Design Using FPGA-Based System-on-Chip Embedded Platform with Adaptive Digital Predistortion. IEEE Access 2020, 8, 214882–214893. [Google Scholar] [CrossRef]
- Anttila, L.; Lampu, V.; Hassani, S.A.; Campo, P.P.; Korpi, D.; Turunen, M.; Pollin, S.; Valkama, M. Full-Duplexing with SDR Devices: Algorithms, FPGA Implementation, and Real-Time Results. IEEE Trans. Wirel. Commun. 2020, 20, 2205–2220. [Google Scholar] [CrossRef]
- Mahafza, B.R. Radar Systems Analysis and Design Using MATLAB; Chapman and Hall/CRC: Boca Raton, FL, USA, 2005. [Google Scholar]
- Robertson, S. Practical ESM Analysis; Artech House: Boston, MA, USA, 2019. [Google Scholar]
- Kim, B.; Jin, Y.; Lee, J.; Kim, S. High-Efficiency Super-Resolution FMCW Radar Algorithm Based on FFT Estimation. Sensors 2021, 21, 4018. [Google Scholar] [CrossRef] [PubMed]
- Keshani, S.; Masoumi, N.; Rahimpour, H.; Safavi-Naeini, S. Digital Processing for Accurate Frequency Extraction in IFM Receivers. IEEE Trans. Instrum. Meas. 2020, 69, 6092–6100. [Google Scholar] [CrossRef]
- Ortatatlı, İ.E.; Orduyılmaz, A.; Serin, M.; Özdil, Ö.; Yıldırım, A.; Gürbüz, A.C. Real-Time Frequency Parameter Extraction for Electronic Support Systems. In Proceedings of the 2016 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, Turkey, 16–19 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 105–108. [Google Scholar]
- Li, W.; Tang, C.; Vishwakarma, S.; Woodbridge, K.; Chetty, K. Design of High-speed Software Defined Radar with GPU Accelerator. IET Radar Sonar Navig. 2022, 16, 1083–1094. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, L.; Li, J.; Wang, Q.; Sun, L.; Wei, Z.; Plaza, J.; Plaza, A. GPU Parallel Implementation of Spatially Adaptive Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 1131–1143. [Google Scholar] [CrossRef]
- cuFFT. Available online: https://developer.nvidia.com/cuFFT (accessed on 13 August 2024).
- Adámek, K.; Novotnỳ, J.; Thiyagalingam, J.; Armour, W. Efficiency near the Edge: Increasing the Energy Efficiency of FFTs on GPUs for Real-Time Edge Computing. IEEE Access 2021, 9, 18167–18182. [Google Scholar] [CrossRef]
- Allevato, G.; Hinrichs, J.; Rutsch, M.; Adler, J.P.; Jäger, A.; Pesavento, M.; Kupnik, M. Real-Time 3-D Imaging Using an Air-Coupled Ultrasonic Phased-Array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 68, 796–806. [Google Scholar] [CrossRef]
- Pirgov, P.; Mullin, L.; Khan, R. Out-of-GPU FFT: A Case Study in GPU Prefetching. In Proceedings of the 2021 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 15–17 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1771–1776. [Google Scholar]
- FFTW Home Page. Available online: http://www.fftw.org/ (accessed on 13 August 2024).
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. kdd 1996, 96, 226–231. [Google Scholar]
- Chen, Y.; Zhou, L.; Pei, S.; Yu, Z.; Chen, Y.; Liu, X.; Du, J.; Xiong, N. KNN-BLOCK DBSCAN: Fast Clustering for Large-Scale Data. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 3939–3953. [Google Scholar] [CrossRef]
- Li, S.-S. An Improved DBSCAN Algorithm Based on the Neighbor Similarity and Fast Nearest Neighbor Query. IEEE Access 2020, 8, 47468–47476. [Google Scholar] [CrossRef]
- Hand, D.J. Data Clustering: Theory, Algorithms, and Applications by Guojun Gan, Chaoqun Ma, Jianhong Wu. Int. Stat. Rev. 2008, 76, 141. [Google Scholar] [CrossRef]
- Chandra, V.; Jyotishi, B.K.; Bajpai, R.C. Some New Algorithms for ESM Data Processing. In Proceedings of the Twentieth Southeastern Symposium on System Theory, Charlotte, NC, USA, 20–22 March 1988; IEEE Computer Society: Piscataway, NJ, USA, 1988; pp. 108–109. [Google Scholar]
- Dadgarnia, A.; Sadeghi, M.T. A Novel Method of Deinterleaving Radar Pulse Sequences Based on a Modified DBSCAN Algorithm. China Commun. 2023, 20, 198–215. [Google Scholar] [CrossRef]
- Brand, E.R. A National Instruments USRP N320. Available online: https://www.ettus.com/all-products/usrp-n320/ (accessed on 13 August 2024).
Sampling Rate | Center Frequency | FFT Size |
---|---|---|
10 MSps | 1502.5 MHz | 1024 |
Number of Pulses | Frequency (MHz) | PW (µs) | Duty Cycle (%) | SNR (dB) |
---|---|---|---|---|
50 | 1500–1505 MHz | 1024 | 10 | 7; 20 |
Sampling Rate | IFM | FFT ( 1024) on CPU | FFT (1024) on GPU |
---|---|---|---|
50 MSps | 0 | 0 | 0 |
100 MSps | 0 | 10 | 0 |
200 MSps | 20 | 50 | 0 |
Sampling Rate (Msps) | Center Frequency (MHz) | FFT Tap Size | Distance (ε) | Data Points () |
---|---|---|---|---|
50 | 4013 | 1024 | 1 | 5 |
Radar No. | Number of Pulses | RF 1 (MHz) | PW (µs) | PRI (µs) | PA (dBm) | PRI Type |
---|---|---|---|---|---|---|
1 | 19 | 4000 | 0.4 | 113–317–419 | −17 | Staggered |
2 | 18 | 4003 | 0.6 | 89–199 | −20.1 | Dwell-Switch (9 pulses) |
3 | 10 | 4006 | 0.8 | 211 | −23 | Constant |
4 | 10 | 4009 | 1 | 271 | −25 | Constant (±%3 jittered) |
5 | 10 | 4012 | 2 | 547 | −22 | Constant |
6 | 20 | 4015 | 0.5 | 73–101–103 | −22 | Staggered |
7 | 20 | 4020 | 0.75 | 337–457 | −19 | Dwell-Switch (5 pulses) |
8 | 20 | 4025 | 0.9 | 991 | −18 | Constant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oncu, S.; Karakaya, M.; Dalveren, Y.; Kara, A.; Derawi, M. Real-Time Radar Classification Based on Software-Defined Radio Platforms: Enhancing Processing Speed and Accuracy with Graphics Processing Unit Acceleration. Sensors 2024, 24, 7776. https://doi.org/10.3390/s24237776
Oncu S, Karakaya M, Dalveren Y, Kara A, Derawi M. Real-Time Radar Classification Based on Software-Defined Radio Platforms: Enhancing Processing Speed and Accuracy with Graphics Processing Unit Acceleration. Sensors. 2024; 24(23):7776. https://doi.org/10.3390/s24237776
Chicago/Turabian StyleOncu, Seckin, Mehmet Karakaya, Yaser Dalveren, Ali Kara, and Mohammad Derawi. 2024. "Real-Time Radar Classification Based on Software-Defined Radio Platforms: Enhancing Processing Speed and Accuracy with Graphics Processing Unit Acceleration" Sensors 24, no. 23: 7776. https://doi.org/10.3390/s24237776
APA StyleOncu, S., Karakaya, M., Dalveren, Y., Kara, A., & Derawi, M. (2024). Real-Time Radar Classification Based on Software-Defined Radio Platforms: Enhancing Processing Speed and Accuracy with Graphics Processing Unit Acceleration. Sensors, 24(23), 7776. https://doi.org/10.3390/s24237776