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Abstract: Robust visual place recognition (VPR) enables mobile robots to identify previously visited
locations. For this purpose, the extracted visual information and place matching method plays a
significant role. In this paper, we critically review the existing VPR methods and group them into
three major categories based on visual information used, i.e., handcrafted features, deep features,
and semantics. Focusing the benefits of convolutional neural networks (CNNs) and semantics, and
limitations of existing research, we propose a robust appearance-based place recognition method,
termed SVS-VPR, which is implemented as a hierarchical model consisting of two major components:
global scene-based and local feature-based matching. The global scene semantics are extracted and
compared with pre-visited images to filter the match candidates while reducing the search space
and computational cost. The local feature-based matching involves the extraction of robust local
features from CNN possessing invariant properties against environmental conditions and a place
matching method utilizing semantic, visual, and spatial information. SVS-VPR is evaluated on
publicly available benchmark datasets using true positive detection rate, recall at 100% precision, and
area under the curve. Experimental findings demonstrate that SVS-VPR surpasses several state-of-
the-art deep learning-based methods, boosting robustness against significant changes in viewpoint
and appearance while maintaining efficient matching time performance.

Keywords: convolution features; visual place recognition; semantic segmentation; neural networks

1. Introduction

Visual place recognition (VPR) serves as a crucial component in mobile robot naviga-
tion and localization, essentially functioning as a task akin to content-based image retrieval.
The primary objective of VPR is to ascertain whether the visual data currently captured by
the robot correspond to a place it has visited before, and if so, to precisely identify which
place it is [1].

However, visual place recognition poses formidable challenges due to the expecta-
tion that intelligent robots should function autonomously in dynamic environments over
extended durations. On one hand, images captured at a specific location can undergo
substantial changes over time due to variations in conditions like lighting from day to night,
weather, seasonal variations across the year, and shifts in perspective. On the other hand,
various distinct places within an environment may exhibit significant visual similarities,
giving rise to the issue commonly referred to as perceptual aliasing [2]. A robust VPR
system should meet three essential criteria: condition invariance, viewpoint invariance,
and generality, without the need for environment-specific VPR training [3]. Nevertheless,
achieving both viewpoint and condition invariance simultaneously is a challenging en-
deavor.
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The conventional handcrafted feature-based methods achieve good place matching
performance in environments with slight viewpoint variations and illumination changes.
Also, they are resource-efficient solutions in terms of computational cost. However, their
performance degrades in extreme seasonal variations and highly dynamic environments.

In previous research [4], it has been demonstrated that holistic mid-layer features
extracted from convolutional neural networks (CNNs) exhibit significant robustness against
appearance variations (i.e., changes in conditions). However, they struggle to handle
substantial changes in viewpoint. In contrast, some VPR approaches leverage techniques
like bag-of-words [5,6] or VLAD [7–9] to aggregate local or regional features. These methods
yield compact image representations and demonstrate considerable resistance to viewpoint
variations. Yet, they overlook the spatial relationships between local features, making them
prone to perceptual aliasing.

Conversely, the semantic information contained within images tends to remain rela-
tively consistent. As a result, numerous studies have turned to leveraging semantic data to
develop more resilient VPR methods. For instance, methods presented in [10,11] employ
semantic segmentation boundaries for encoding images. However, it is important to note
that the quality of segmentation can significantly affect the detection performance. On the
other hand, a random walk approach is utilized in [12,13] to integrate semantic information
into a three-dimensional graph. Although this approach captures comprehensive semantic
information in images, it does come with the drawback of higher resource consumption.
In practical applications, VPR methods must not only contend with a wide array of po-
tential scene changes, including alterations in appearance and perspective, but also must
meet the real-time demands of simultaneous localization and mapping (SLAM) systems.
Therefore, it becomes crucial to design an efficient VPR method that can effectively handle
the challenges.

In this research, we address the shortcomings of the existing literature and propose a
place recognition method that leverages semantics-based global scene information along
with the local visual information, shown in Figure 1, to handle the variations in both
viewpoint and appearance and achieve robustness in such extremely dynamic environ-
ments. To achieve this, we harness semantics obtained from a state-of-the-art pixel-wise
semantic segmentation network [14], alongside visual information extracted using convo-
lution neural networks (CNNs). Our proposed method executes VPR through a stepwise,
hierarchical matching approach. Initially, we conduct coarse matching that utilizes global
scene semantics to compute the global semantic descriptors and perform matching, which
condenses the search space and provides a list of potential match candidates. Then, in the
fine matching phase, we identify the distinctive local features, extracted from CNN, and
perform visual–semantic and spatial matching to pinpoint the true place match among
the preselected candidates. Our approach demonstrates its effectiveness by achieving a
meaningful recall at 100% precision. Moreover, our rationale for adopting this approach is
rooted in the potential for a semantically aided system to enhance human communication
and interaction with robots and vehicles.

The core contributions are as follows:

• A visual place recognition pipeline combining global scene semantics with appearance-
based local correspondences.

• A robust feature extraction method is presented that extracts visually distinctive local
features across all the feature maps obtained from the higher layer of CNNs. Such
features possess scale- and viewpoint-invariant properties.

• A novel semantic visual and spatial information-based place matching method that
utilizes distinctive local key correspondences between the image pairs for robust
visual place recognition in extreme seasonal, light, and viewpoint variations.

• The SVS-VPR successfully attains a significant recall rate at 100% precision against
state-of-the-art methods on challenging benchmark datasets.
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Figure 1. Working pipeline of the proposed semantic, visual, and spatial (SVS) information-aided
hierarchical visual place recognition method.

The rest of the paper is structured as follows. In Section 2, we conduct a literature
review to examine related work and establish the background for the problem. Section 3
outlines our proposed pipeline, while Section 4 details the experimental setup and results.
Finally, in Section 5, we draw conclusions based on our findings and identify potential
areas for future research.

2. Related Works

In the past decade, extensive research has been presented in the field of robot percep-
tion, primarily using camera sensors, in order to achieve autonomous navigation. This
section presents a thorough taxonomy of the existing visual place recognition methods
grouped into three major categories, i.e., appearance-based, deep learning-based, and
semantics-based visual place recognition methods. Each of these categories is summarized
along with its limitations in the subsequent sections.

2.1. Appearance-Based Methods

The conventional research on visual place matching predominantly relies on appearance-
based handcrafted descriptors [15,16]. Notably, FAB-MAP [6] represents scenes using visual
words and incorporates SURF [15] for detecting interest points. Nevertheless, a shared
limitation of these handcrafted feature-based methods is the computational demands of
the matching process. DBoW [17] addresses this issue by clustering feature descriptors
using k-means, effectively reducing the complexity of matching and enhancing accuracy.
However, it demands a considerable amount of time for dictionary training. Moreover, it
suffers from performance degradation when the visual appearance of a place significantly
differs in training and test images. To tackle these challenges, IBoW-LCD [18] aims to
mitigate the problem by incrementally building the dictionary. Yet, in outdoor scenarios,
substantial changes in appearance frequently result in the inadequacy of these methods.

Zaffar et al. [19] introduced an enhanced appearance-based technique, known as
CoHOG, which utilizes a computationally efficient histogram of oriented gradients (HOG)
image descriptor. CoHOG incorporates image entropy-based region of interest (ROI)
extraction and region convolution matching methods, which help maintain performance in
dynamic urban environments and conditional variations. However, along with the image
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representations, robust feature correspondence selection and matching play a significant
role in correct place detection.

Recently, one such feature matching method has been presented in [20], where along
with the appearance matching, spatial consistency is ensured for point features, ensuring
the correct alignment of the match correspondences. Although the method successfully
achieves improvement in place matching performance, it suffers from the non-detection of
features in extreme seasonal variations and occlusion caused by the dynamic objects. Such
limitations can be overcome by introducing semantics.

2.2. Deep Learning-Based Methods

With the advancement of deep learning networks across a wide spectrum of computer
vision tasks, VPR has transitioned its emphasis towards the utilization of convolution
neural networks to extract more comprehensive and versatile deep features.

Initially, Chen et al. [21] explored the use of convolutional neural networks in the
context of VPR. Subsequently, CNNs have been applied in a range of studies, referenced
as [22–27], all aiming to enhance the performance of VPR methods. For instance, Hou [24]
applied the AlexNet [28] model to extract features and observed improved robustness in
environments with notable illumination changes. In NetVLAD [7], a novel VLAD layer
was integrated into the CNN architecture, leading to an end-to-end VPR approach that
achieved impressive results. PatchNetVLAD [25,26] went a step further by optimizing
NetVLAD and focusing on extracting local features. Meanwhile, RegionVLAD [9] extracted
regional features from intermediate layers of pre-trained CNNs, offering computational
efficiency as long as the environment remained unchanged. Nonetheless, it is important to
note that CNNs necessitate extensive model training, and their accuracy is closely tied to
factors like dataset size, variance within the dataset, and the nature of the training data.

Additionally, deep-learned representations of places often rely on global image de-
scriptors for robust matching but tend to overlook the crucial spatial layout of images,
which is vital for addressing perceptual aliasing. In order to handle this issue, distinc-
tive landmarks have been extracted from images in [29], but encoding these landmark
regions necessitates a visual vocabulary. Research presented in [30,31] trains a CNN to
establish correspondences between images through geometric matching. Similarly, in [32],
a Hypercolumn-based pixel-wise representation is employed for the precise localization of
key points and object parts. Feng et al. [33] proposed a spatial and temporal information-
based CNN feature-matching method that detects a place by first aligning them based
on their spatio-temporal information. The STA-VPR performs well in environments with
conditional variations. However, a common limitation in most of these methods is the
lack of utilization of the pre-encoded semantic correspondence information embedded in
convolutional neural networks, which leads to performance degradation in highly dynamic
environments where most of the features are occluded due to dynamic objects and high
viewpoint variations.

2.3. Semantics-Based Methods

The rapid evolution of dense pixel-wise semantic segmentation methods [14,34],
driven by deep convolutional neural networks, has paved the way for the incorporation of
semantic scene data into various facets of computer vision research. Likewise, semantic
scene information holds significant importance in the domain of visual place recognition
and localization, especially when it comes to matching images with extreme viewpoint
variations. Recently, with the use of semantics, significant improvement in overall per-
formance of place recognition has been reported. In [35], for instance, authors employ
semantic masking to highlight categories with consistent appearances, like buildings, and
generate an aggregated convolutional feature descriptor. However, this method requires
environment-specific training. Similarly, in [36], semantic place categorization is used to
enhance the performance of place recognition, particularly in diverse environments, but the
focus is mainly on environment-related visual semantics. In [37], authors utilize geometric
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pairs of semantic landmarks designed for roadways to address environmental variations.
While many of these methods primarily rely on semantic information to handle changes
in appearance, in [12], a multi-view place localization system called X-view is introduced
to deal with extreme viewpoint variations. Nevertheless, this approach relies solely on
semantic labels and does not leverage appearance cues.

A different approach has been introduced in [38] that combines a visual feature
graph extracted by a CNN with the semantic labels extracted from semantic segmentation,
resulting in a powerful global descriptor that greatly improves VPR performance. This
approach is particularly effective in matching locations under extreme variations in lighting
and viewpoint, such as a 180-degree shift. In a similar vein, TNNVLAD uses two nearest
neighbor local semantic tensors rather than relying solely on a single nearest neighbor
match [39]. This algorithm enhances overall accuracy by comparing it with the descriptor
of the second nearest neighbor.

Recently, several approaches have been developed that leverage semantic graph mod-
els to represent scenes using semantic segmentation outcomes, leading to more robust
visual place recognition [40–43]. Authors of [40] use the Local Semantic Tensor in conjunc-
tion with semantic edge features extracted from semantic segmentation masks to detect
correct place matches, while [41–43] generates topological connectivity graphs using pixel-
wise semantic labels in the scene to match the spatial information. Though such techniques
have shown improved performance compared to previous ones, it is important to note
that the reported recall rate still falls short of achieving the desired performance, especially
when dealing with extreme variations in environmental conditions.

Focusing on the limitations of the existing research and recognizing the role of deep
features and semantics in handling challenges of visual place recognition, especially across
varying environmental conditions and viewpoint changes, this research proposes the inte-
gration of pixel-wise semantic information with the deep feature-based visual information
to improve the overall visual place matching performance, aiming for higher recall rate at
100% precision. We introduce a novel visual place matching method that can be generically
applied to challenging environmental conditions, as presented in the following section.

3. Proposed Method

This section details the proposed semantics-aided hierarchical visual place recognition
method, SVS-VPR. The overall pipeline is divided into two major steps, as depicted in
Figure 1. Firstly, the global scene matching is performed using the scene semantics, which
provides the match candidates while reducing the search space for the current image. Later,
instead of using each CNN feature map as one feature, a robust feature extraction method
is presented that extracts visually distinctive local point features across all the feature
maps obtained from the higher layer of CNNs. Such features possess scale- and viewpoint-
invariant properties. Further, a novel semantic–visual and spatial information-based
place matching method is presented that utilizes distinctive local key correspondences
between the image pairs for robust visual place recognition in extreme seasonal, light, and
viewpoint variations.

3.1. Global Semantics-Based Scene Matching
3.1.1. Semantics Extraction

For semantic information extraction, this research implements a Resnet-101-based
RefineNet [14], a state-of-the-art multi-path refinement network for semantic segmentation
of high-resolution images exploiting all the available information along the down-sampling
process, which enables high-resolution prediction with long-range residual connections.
It provides generic means to fuse coarse high-level semantic features with finer-grained
low-level features to generate high-resolution semantic feature maps. The RefineNet is pre-
trained on the Cityscapes dataset consisting of a sequence of images including indoor and
outdoor environments. The dataset also exhibits seasonal, weather, light, and viewpoint
variations, and dynamic objects. This research addresses the problem of visual place
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recognition in outdoor dynamic environments; thus, we extract only 20 semantic class
labels belonging to the static and dynamic objects, as given in Table 1.

Table 1. Semantic class labels extracted from semantic segmentation network.

Category Semantic Classes Labels

Static Objects

Road, Building, Vegetation,
Pole, Traffic_Light,

Traffic_Sign, Terrain, Wall,
Fence, and Sidewalk

0, 1, ..., 9

Dynamic Objects
Sky, Person, Rider, Car, Truck,

Bus, Train, Motorcycle,
Bicycle, and Void

10, 11, ..., 18, 255

The semantic segmentation network outputs the semantic segmentation mask, includ-
ing semantic class labels, at each pixel and probability score map containing probability
scores for each class label within the map. The semantic segmentation mask has the same
dimensions as the original image, while the probability score map is of size W × H × D.

The width (W) and height (H) of each score map is 1
4

th
of the original image I and depth (D)

is equal to the number of semantic class labels.
In the semantic score map with N locations, each location i stores a D-dimensional

descriptor xi containing probability scores corresponding to each semantic class, s where
D = 20. Thus, using maximum probability score p in xi, the semantic class label can be
assigned at each location i, as depicted in Equation (1)

labeli = argmax
s

pis s = 1, ..., 20 (1)

3.1.2. Global Scene Descriptor Computation and Matching

After the semantic label association with each pixel location, we compute the mean
probability score µ for each class label using Equation (2).

µs =
∑N

i {xi|labeli = s}
∑N

i {i|labeli = s}
(2)

Here, N is the total pixel locations in a semantic score map. Aggregating the residual
distribution from each semantic class s and the associated noise from the other class labels,
the semantic descriptor Xs is computed using Equation (3).

Xs =
N

∑
i

pis |xi − µs| (3)

Dynamic objects include the non-overlapping regions between the image pairs. Using
those regions for place matching results in a high false detection rate. In order to avoid
this, we generate the semantic aggregated semantic descriptors for semantic classes in the
static objects category, as listed in Table 1, while excluding the dynamic objects. Finally, the
semantically aggregated descriptors are concatenated to generate a global scene descriptor
X for image I, as given in Equation (4).

X = X0 + X1 + ... + X9 (4)

The global scene descriptor of each query image Qi is compared with n database
images D1,..,n using the cosine function. The similarity between global semantic descriptor
vectors XQi and XDj from query Qi and database image Dj is computed using Equation (5).

S
(

XQi , XDj

)
= 1 −

XQi · XDj

∥XQi∥ · ∥XDj∥
(5)
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The obtained global scene similarity scores S are further normalized to [0,1] using
Equation (6).

S′
Qi

=
SQi − mean(SQi )

st.dev(SQi )
(6)

For each query image Qi, the database images D1. . . n with the normalized global scene
similarity score S′

1...m higher than the threshold α are given as global place match candidates
C1...m to the local appearance-based place matching model, where m ≤ n.

3.2. Local Feature-Based Appearance Matching

Conventional image matching approaches that rely on handcrafted local features [44]
initially identify distinctive keypoints within images and then apply robust descriptors for
image representation [20]. Those descriptors are then matched through techniques such
as RANSAC.

In contrast, image representations learned through deep neural networks for place
recognition are typically global image descriptors. These descriptors inherently contain
information about the entire visual content within the image, including distinctive local
visual landmarks. Nevertheless, the specific local saliency information can be extracted
from the neural network in various ways by utilizing the highly active regions within the
convolutional feature maps. These active regions are commonly harnessed to create a more
durable and dependable image representation [29,45].

Other than the existing methods, conventional methods extracting handcrafted point
features, and CNN methods using feature maps or regions within feature maps as features,
in this research, we present a unique method to extract the distinctive point features from
the CNN feature maps and match those features in order to enhance the robustness of the
place recognition against extreme environmental variations.

3.2.1. Distinctive CNN Point Feature Extraction

For local feature-based appearance matching, the CNN feature maps are extracted
from the fifth convolutional layer of the RefineNet. The tensor width and height are 1/32th
of the original image size, while the depth is 2048. Each feature map embeds activations
representing the semantic landmarks in the image, as shown in Figure 2. Figure 2a illus-
trates feature maps extracted from the original query and reference images. The total 2048
feature maps extracted from an image contain the activations which correspond to any of
the semantic landmarks among 20 classes.

These feature maps from perceptually similar images exhibit correspondence with
each other. Thus, instead of matching the whole feature map of image pairs, we extract the
maximal activations from each feature map as distinctive keypoints, which results in N
number of keypoint features, where N = 2048. It is important to notice that the number of
keypoints N is considerably higher than the size (W × H) of the feature map, i.e., for Berlin
A100, the feature maps extracted from the fifth layer of ResNet101-based RefineNet have
size 24 × 18. Thus, we further reduce the number of extracted features by selecting only
the highest activations at each pixel location, resulting in a maximum of features equal to
the number of pixel locations in one feature map. Figure 2b illustrates a frequency map of
maximally activated regions within an image I counted across all the 2048 feature maps. It
is evident that only a few pixel locations have the tendency to stimulate activations across
a wide array of feature maps.

Thus, we obtain the distinctive CNN point features F from each query image and
database images for local appearance-based place matching, which is explained in the next
subsection.

3.2.2. Semantic–Visual–Spatial Matching

After the high-activation keypoint extraction, this module performs semantic, visual,
and spatial information-based matching of each query image Qi with the list of candi-
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date database images C1...m obtained as a result of global scene matching, explained in
Section 3.1.2.

Figure 2. For an image pair, query image and reference image, (a) feature maps extracted from the
neural network representing semantic landmarks and (b) high-activation regions computed across
all the feature maps.

While matching the ith query image Qi and jth database image Cj, the semantic labels
are first associated with the point features FQi and FCj extracted from each of these images.
This operation is performed to filter out the key activations from the dynamic objects while
retaining only robust features from the static objects. It is essential to remove the dynamic
features, as they include the non-overlapping regions from the image pairs, and matching
scores computed based on such features result in high false detection rates. Moreover,
filtering the dynamic features reduces the computation overhead that can be caused by
directly matching all the features of image pairs.

For this purpose, we utilize the pixel-wise semantic segmentation mask obtained from
the semantic segmentation network and resize them equal to the resolution of the feature
map W × H, i.e., 24 × 18 in the case of Berlin A100. Using the (x, y) coordinate location
of each keypoint in the feature map, its semantic label can be extracted from the semantic
segmentation mask. Let a be the point feature in FQi with (x, y) coordinates in feature
map M. Its semantic label la from the semantic segmentation mask SemMask of Qi can be
extracted using the (x, y) coordinates, as demonstrated in Equation (7)

la = Qi(SemMask[x][y]) (7)

Using the above equation, the semantic labels for all the keypoints in FQi and FCj are
extracted, represented as LQi = l1...a...n and LCj = l1...b...n, where LQi and LCj are the set of
semantic labels for the keypoint correspondences in Qi and Cj. The semantic labels are
the integer values, listed in Table 1. Here, we keep the features only from the static object
category, while discarding those from the dynamic objects. This step effectively eliminates
a large number of activations, particularly those linked with random activations triggered
by the convolutional filters detecting features that are not present in the specific regions,
and provides a set of robust features to be matched between image pairs.

In the next step, we perform the visual and spatial matching of these point features.
As explained in Section 3.2.1, each point feature is the maximal activation, at a specific
pixel location, across all the feature maps extracted from an image. Thus, each feature is
a D-dimensional feature vector, where D is the depth of the tensor, i.e., 2048. The feature
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vectors of the query image are matched with those of the database image. Let a be the
D-dimensional feature vector from the query image Qi and b be the D-dimensional feature
vector from the candidate database image Cj. The visual matching between both of these
vectors is performed by using the cosine distance function [46], as depicted in Equation (8).

V(a, b) = 1 − ∑D
k=1(ak · bk)

∥a∥ · ∥b∥ (8)

The match correspondences between the image pair are then spatially verified. For this
purpose, a neighborhood window N of size w × h is used to limit the spatial displacement
of the features. Thus, for a feature vector a with x, y location in the feature map of Qi, the
feature vector b with x′, y′ location in the feature map of Cj is considered as a true spatial
correspondence if b(x′, y′) lies within the neighborhood window where a(x, y) is the center
of the window. In this paper, we have used the window size of 3 × 3. This spatial matching
facilitates the avoidance of false positives caused by perceptual aliasing while facilitating
the match correspondences in large viewpoint changes.

After filtering the spatially consistent match pairs, semantic label verification is per-
formed to further refine the matching performance. The semantic labels, computed using
Equation (7), of each feature match pair are compared. The visually and spatially consistent
feature match correspondences with the same semantic label are retained, while feature
pairs that are semantically inconsistent are discarded. Equation (9) illustrates the semantic
label matching for the visually and spatially consistent match pair (a, b) among a list of all
feature match pairs P, where a and b are the key features from Qi and Cj.

P(a, b) =
{

1, i f la = lb
0, otherwise

(9)

We normalize the cosine distance, obtained using Equation (8), for the remaining
feature match pairs using L1-normalization and subtract the maximum distance value from
each of them for normalization across all the match pairs, as shown in Equation (10).

Distance[k] = Max(normDistance)− normDistance[k] (10)

Here, normDistance[k] is the L1-normalized distance between kth match pair, while
Distance is a vector storing the distance values between feature pairs of Qi and Cj across
the visually, spatially, and semantically consistent feature pairs.

Finally, a weighted distance value is computed between the feature pairs in P of query
Qi and candidate image Cj using Equation (11).

ScoreCj =
cosine_distance(PQi ∗ Distance, PCj ∗ Distance)

∥Distance∥ (11)

PQi ∗ Distance and PCj ∗ Distance represent element-wise multiplication of the vectors
PQi and PCj with the Distance. The cosine distance is computed between the two resulting
vectors and is divided by the Euclidean norm of the Distance vector. The ScoreCj is the
place matching score obtained for the jth candidate image. The candidate image with the
lowest score value is considered the final place match.

4. Experimental Results
4.1. Implementation Setup

The proposed method is implemented and evaluated on an Intel(R) Core (TM) i-10900X
CPU running at 3.70 GHz. The semantic segmentation is performed on an RTX 3090 GPU.
The feature extraction and matching are performed using Python 3.

4.2. Datasets

This research aims to develop a visual place recognition method while handling the
challenging environmental variations. For this purpose, the proposed algorithm is evalu-
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ated on three publicly available benchmark datasets: Oxford Robotcar [47], Mapillary [29],
and Synthia [48]. Collectively, these datasets exhibit strong seasonal, weather, illumination,
and viewpoint changes in dynamic environments. Moreover, the data acquisition method
also varies significantly, thus making these datasets even more challenging for achieving
place recognition. The key information of these datasets is mentioned in Table 2. Further
details are as follows:

Table 2. True place detection rate (%) obtained for Sem-VPR in comparison to other SOTA methods
on benchmark datasets.

Methods

Mapillary Oxford RobotCar Synthia

Berlin
A100

Berlin
Kudamm

Summer-
Autumn

Summer-
Winter

Autumn-
Winter

Day-
Night

Spring-
Summer

Spring-
Winter

Dawn-
Night

NetVLAD 0.74 0.35 0.65 0.75 0.71 0.33 0.31 0.72 0.86

LoSTX 0.78 0.27 0.73 0.78 0.73 0.34 0.29 0.79 0.87

STA-VPR 0.53 0.16 0.69 0.81 0.72 0.37 0.36 0.88 0.89

Sem-VPR (ours) 0.84 0.49 0.76 0.82 0.77 0.41 0.40 0.92 0.91

4.2.1. Mapillary

It is a crowd-sourcing platform providing several datasets. From Mapillary, we have
used the Berlin A100 and Berli Kudamm datasets. Both of these datasets were acquired
in an urban environment. Each comprises two image sequences captured along the same
route by different users exhibiting very large viewpoint changes and highly dynamic
environments. A large number of dynamic objects causing occlusion to the static features
results in a lack of essential feature detection and matching. To establish ground truth,
we utilized the geotagged data from the dataset, with a frame tolerance in the range of
±3 frames.

4.2.2. Oxford Robotcar

It is a large dataset recorded in Oxford City and consists of a number of traverses
across the year exhibiting seasonal, illumination, and viewpoint variations. For evaluation
of the proposed method in terms of seasonal variations, Summer (2015-05-19-14-06-38),
Winter (2015-02-03-08-45-10), and Autumn (2014-12-09-13-21-02) traverses have been used,
while Day (2014-12-16-09-14-09) and Night (2014-12-10-18-10-50) traverses are used for per-
formance analysis during light changes. Along with conditional and viewpoint variations,
this dataset also has the characteristics of motion blur and overexposure, making the pace
recognition an even more challenging problem. Each traverse is sampled selecting one
frame every 2 m using GPS data. Ground truth information is established based on GPS
data, with a match considered a true positive if it falls within a 10 m range, following a
thresholding approach similar to [49,50].

4.2.3. Synthia

SYNTHIA provides a synthetic dataset of urban scenes. In this research, we have used
the image traverses from Sequence 2 where Spring, Summer, and Winter image sequences
are used to evaluate the robustness of the proposed method against seasonal variations,
while Dawn and Night traverses are used for evaluation in extreme light changes. All of
these traverses are approximately 1.5 km in length. Ground truth is computed using GPS
data, where a match is considered a true positive if it falls within a 10 m range.

4.3. Ablation Study
Global Scene Similarity-Based Candidate Selection

To analyze the influence of the candidates selected based on the scene similarity score
on the whole method, F1-score and matching time have been adopted as the performance
indicators. Note that matching time here refers to the time of local CNN feature-based
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place matching performed after the selection of candidates based on different values of α.
We select the number of candidates based on the global similarity score threshold set to 0.9,
0.85, 0.8, 0.75, and 0.7, respectively. The results of matching time and F1-Score are shown in
Figures 3 and 4.

Figure 3. F1-score obtained using global semantics-based scene matching when different values of
candidate selection threshold (α) are used.

Figure 4. Matching time comparison for different values of threshold α.

As can be seen from Figure 3, for each dataset, there is little difference in the F1-Score
on each dataset for different threshold values.

The results in Figure 4 show that matching time of the Mapillary dataset is lower than
that of the Oxford robotcar and synthia datasets on the whole. This is because the size of
the two datasets is significantly different.

Moreover, the matching time increases greatly when the number of candidates is
increased due top low threshold values.

Taking account of matching time and F1-score, we find that the effectiveness is better
when the similarity threshold α is set to 0.85. Finally, in the comparison experiment, we
used α = 0.85.

4.4. VPR Performance Analysis

This section presents the experiments conducted to evaluate the performance of the
proposed method in comparison to the state-of-the-art CNN feature-based visual place
recognition methods, namely NetVLAD [7] (VGG-16 + NetVLAD + whitening, Pittsburgh),
LoSTX [38] and STA-VPR [33]. NetVLAD is a viewpoint-robust CNN model providing
end-to-end visual place recognition and is able to achieve great performance on most
datasets. STA-VPR is also a CNN feature-based VPR method using spatial information for
feature alignment and matching. LoSTX is the semantics-enabled place recognition method
providing high robustness with the use of semantics. All of these methods are implemented
by running their open-source code in the default configuration provided by the authors.
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Figure 5a,b illustrate the precision–recall curves computed for Berlin A100 and Berlin
Kudamm datasets acquired from Mapillary. These datasets pose significant challenges,
including drastic changes in viewpoint, moderate variations in illumination, and dynamic
objects causing feature occlusion. In the Berlin A100 dataset, both the reference and query
traverses were recorded from a car, leading to substantial lateral and slight angular view-
point changes. In the Berlin Kudamm dataset, the reference data images were recorded
from the bus deck, and the query traverse was captured from the car dashboard. The
Mapillary dataset is particularly demanding due to the presence of dynamic objects and
non-overlapping regions, making it difficult to identify robust features for effective place
matching. It is worth noting that most other methods struggle to provide practically useful
results in these demanding datasets. In contrast, the proposed method demonstrates a
remarkable performance, achieving the highest recall rate at 100% precision in Figure 5a,b.
Furthermore, the area under the precision–recall curve is also mentioned. SVS-VPR outper-
forms the other methods on the Berlin A100 dataset, as shown in Figure 5a, while on the
Berlin Kudamm dataset, NetVLAD has shown higher AUC than SVS-VPR.

Figure 5. Precision–recall curves obtained for visual place recognition on Mapillary dataset: (a) Berlin
A100; (b) Berlin Kudamm.

Figure 6 demonstrates the comparative performance of the proposed method relative
to the state-of-the-art visual place recognition methods on the Oxford RobotCar dataset.
This dataset presents notable challenges due to substantial seasonal variations, weather
fluctuations, and shifts in illumination. In Figure 6a, it is observed that using the Summer
traverse as a reference dataset results in a higher recall rate and AUC when compared to
the Autumn traverse. This is attributed to the relatively minor environmental changes
during the summer season. However, in Figure 6b, the recall rate decreases when the
Summer traverse is compared with the Winter traverse, mainly due to the extreme seasonal
variations causing significant alterations in the environmental appearance. Additionally,
variations in weather conditions, such as sunny conditions in the Summer traverse versus
overcast weather in the Winter and Autumn traverses, contribute to illumination differences
alongside seasonal changes. Figure 6c highlights that employing the Autumn traverse as a
reference dataset when matched with the Winter traverse leads to improved place matching
results. Despite substantial seasonal variations between the two traverses, the similarity in
weather conditions (e.g., overcast skies) and consistent environmental factors (e.g., few or
no leaves on trees and absence of shadows) enhances matching performance. In Figure 6d,
the VPR performance with the Day traverse as a reference dataset and its comparison
with the Night traverse is showcased. This dataset is particularly demanding due to
extreme illumination variations. The proposed method surpasses other state-of-the-art
techniques, achieving a remarkable recall rate at 100% precision in this challenging scenario.
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In spite of the higher recall rate, the extreme seasonal and illumination variations affect the
performance across the entire dataset, resulting in comparatively lower AUC obtained by
SVS-VPR than other methods.

Figure 6. Precision–recall curves for visual place recognition using different traverses of Oxford Robot-
Car dataset: (a) Summer–Autumn; (b) Summer–Winter; (c) Autumn–Winter; and (d) Day–Night.

Similarly, when applied to the Synthia dataset, the proposed method consistently
outperforms other approaches, demonstrating a remarkable recall rate, as depicted in
Figure 7. Figure 7a,b present the precision–recall results obtained by using image sequences
from the Spring traverse as the reference database and those from Summer and Winter
for matching. This dataset presents challenges such as frequent turns and the presence of
highly dynamic objects like pedestrians and vehicles, along with a homogenous scene that
leads to perceptual aliasing, making it a demanding dataset. Nevertheless, the proposed
method excels in achieving superior results. Figure 7c showcases the place matching
outcomes from Dawn and Night traverses. Notably, in Figure 7c, the performance of all
place recognition methods is significantly improved. This improvement is attributed to the
fact that both the Dawn and Night traverses exhibit nearly identical illumination conditions,
facilitating more effective matching.

Table 2 demonstrates the quantitative comparison of Sem-VPR and the SOTA methods
in terms of true place detection rate among the total detections (%). Sem-VPR outperforms
the best-performing CNN feature-based methods, NetVLAD and STA-VPR, and semantics-
aided CNN-based VPR method, LoSTX, respectively. The differences are particularly
pronounced in datasets with large appearance variations, i.e., Oxford Robotcar and Synthia
(both seasonal changes and including images captured at night time) and Mapillary (very
large viewpoint variations).



Sensors 2024, 24, 906 14 of 18

Figure 7. Precision–recall curves obtained for visual place recognition on Synthia dataset: (a) Spring–
Summer; (b) Spring–Winter; and (c) Dawn–Night.

4.5. Computational Cost Analysis

Computation time for visual place recognition is of vital importance in real-time robot
applications. Considering the real-time application of the proposed algorithm, the process-
ing pipeline can be divided into the offline and online mode, where semantics and CNN
feature extraction from the database images is performed in the offline mode, while query
image matching is performed in the online step. Table 3 shows the mean processing time (s)
per query for online steps involved in the proposed visual place recognition algorithm
pipeline. The semantic labels extraction, global scene descriptor computation, and matching
are included in the global semantics-based scene matching. The local feature-based appear-
ance matching involves the computation time for distinctive local feature extraction and
robust feature matching using visual, semantic, and spatial information. It can be observed
that the semantic segmentation using RefineNet is computationally expensive. However,
using the high computational power, the computation time can be significantly reduced.
Also, it is not an essential requirement and based on the application, other dense semantic
segmentation networks can also be adopted, giving real-time performance [51]. The pro-
posed SVS-VPR algorithm takes the semantic segmentation output from the semantic visual
SLAM system, which handles the pixel-wise semantic segmentation in a parallel thread,
as input and performs the feature extraction and visual place recognition for the query
image. Collectively, the computation time for global and local information-based visual
place recognition is less than 0.3 milliseconds, which meets the real-time requirements.

Table 3. Mean execution time (ms) per query image for each module of the proposed Sem-VPR on
benchmark datasets.

Components of
Proposed Method Mapillary Oxford Robotcar Synthia

Pixel-wise Semantic
Segmentation 468.9 464.9 620.2

Global
Semantics-based
Scene Matching

0.027 0.029 0.041

Local Feature-based
Appearance Matching 0.107 0.258 0.242
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Table 4 presents the comparison of computation time for SVS-VPR with the state-of-
the-art algorithms. The execution time includes the time required for feature extraction
from the query image and time required for query image matching with the database. The
proposed method succeeds in achieving real-time computational performance for feature
encoding and visual loop closure detection in comparison with the SOTA methods.

Table 4. Mean execution time (s) per query image for benchmark dataset.

Methods Mapillary Oxford Robotcar Synthia

NetVLAD 0.910 1.953 1.42

LoSTX 0.685 1.052 1.491

STA-VPR 0.557 0.702 0.888

SVS-VPR 0.469 0.465 0.620

5. Conclusions

This study introduces a novel method called SVS-VPR for visual place recognition
for visual Simultaneous Localization and Mapping (SLAM) systems. The core concept
is to combine global scene semantics-based place matching with local information based
on visual, spatial, and semantic cues to achieve comprehensive place identification that
incorporates both local and global context. SVS-VPR combines appearance-based matching
with semantics matching to enhance the overall performance of place detection. The
method is evaluated using benchmark datasets that encompass a range of environmental
conditions, including seasonal changes, variations in viewpoint, and shifts in illumination
in dynamic urban settings. The experimental results clearly indicate that SVS-VPR offers
higher detection accuracy and improved robustness when compared to existing approaches.
This research excels in scenarios with extreme seasonal changes and minor viewpoint
variations within highly dynamic urban environments. However, recognizing places in
situations with extreme illumination variations from day to night remains a challenge.
Furthermore, there is limited attention given to place recognition under adverse weather
conditions, such as rain and fog, both during the day and night. As part of our future work,
we intend to expand our research to address the challenges posed by extreme illumination
variations and adverse weather conditions, aiming to further enhance the capabilities of
our approach.
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