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Abstract: Recently, 6DoF object pose estimation has become increasingly important for a broad
range of applications in the fields of virtual reality, augmented reality, autonomous driving, and
robotic operations. This task involves extracting the target area from the input data and subsequently
determining the position and orientation of the objects. In recent years, many new advances have been
made in pose estimation. However, existing reviews have the problem of only summarizing category-
level or instance-level methods, and not comprehensively summarizing deep learning methods. This
paper will provide a comprehensive review of the latest progress in 6D pose estimation to help
researchers better understanding this area. In this study, the current methods about 6DoF object
pose estimation are mainly categorized into two groups: instance-level and category-level groups,
based on whether it is necessary to acquire the CAD model of the object. Recent advancements
about learning-based 6DoF pose estimation methods are comprehensively reviewed. The study
systematically explores the innovations and applicable scenarios of various methods. It provides an
overview of widely used datasets, task metrics, and diverse application scenarios. Furthermore, state-
of-the-art methods are compared across publicly accessible datasets, taking into account differences
in input data types. Finally, we summarize the challenges of current tasks, methods for different
applications, and future development directions.

Keywords: object pose estimation; deep learning; 6DoF pose; computer vision

1. Introduction

Object pose estimation is a key task in the field of computer vision, whose main
goal is to accurately obtain a 6DoF (6 degrees of freedom) representation of the object
pose in real-life scenes. This representation plays a key role in providing comprehensive
information beyond two-dimensional understanding. Specifically, it encompasses three-
degree-of-freedom rotation and three-degree-of-freedom translation. The significance of
this task is that it can provide the precise spatial position of objects, so 6DoF object pose
estimation is increasingly important for various applications of computer vision, such as
virtual reality, augmented reality [1,2], automated driving [3], and robotic operation [4]. The
continuous advancement of computer vision theory and the rapid development of related
fields have prompted extensive and insightful research on 6DoF object pose estimation.
Existing reviews make it difficult to summarize the latest research in this field, and this
article will fill this gap by summarizing different approaches from recent years.

In robotics, the ability to perform complex tasks such as precise manipulations in
dynamic or unpredictable environments is crucial. Many tasks require scene understanding
or object operations; 6DoF pose estimation provides comprehensive information regarding
both position and orientation, enabling robots to execute tasks like recognition, localization,
and grasping with heightened precision and accuracy [5]. To accomplish its grasping tasks
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effectively, the robot needs to rely on information such as the position, contact, and occlusion
captured by the camera. As the role of robots becomes increasingly more important for
improving productivity and securing safety, 6DoF pose estimation has become a key
technology. Beyond the grasping operations of robots, 6DoF pose estimation also plays a
vital role in reducing environmental uncertainty. It works in two ways, including reducing
the probability of robot collision and providing support for robot transportation or other
activities [6,7].

Augmented reality (AR) and virtual reality (VR) technologies play an important role in
the military, aerospace, education, entertainment and gaming, as well as many other fields.
AR/VR systems can accurately track targets based on their poses, which is the foundation
of immersive effects. One crucial aspect of this technique is 6DoF pose estimation, which
enables the construction of a spatial mapping of the environment and provides information
for the proper integration of AR/VR content. By estimating the precise 6DoF pose of the
target, virtual objects can be rendered from different viewpoints, resulting in realistic visual
effects in AR/VR experiences. In addition, precise alignment and interaction between
virtual objects and the real world can be realized [8].

6DoF pose estimation plays an important role in many parts of autonomous driving
tasks, including environment perception, obstacle detection, traffic condition prediction,
and decision planning. It provides valuable information for trajectory planning and ob-
stacle avoidance. With the rapid development of autonomous driving technology, the
requirements for pose estimation precision are becoming increasingly high [9–11].

Ideally, the pose estimation method should be able to handle objects with different
shapes and textures and show robustness to large occlusions, noise, and changes in light.
Figure 1 shows two possible situations. Furthermore, it should balance accuracy and
efficiency, especially in real-time navigation tasks.

Figure 1. Different shapes (left) [12] and large occlusions (right) images [13].

In the field of computer vision, the traditional approach involves extracting target
features such as points, edges, and lines directly from input images or point clouds. These
features are then matched with a reference image or model to perform pose estimation.
The positional relationship can be solved by measuring the coordinates of multiple points
under two spatial coordinate systems and utilizing the positional relationship between
marker points as constraints. However, traditional methods rely on manually designed
feature extraction, and their performance may be affected by noise, data quality, or other
factors [14].

Over the past few years, advances in technology have made data collection easier, and
deep learning methods have performed well in many areas of computer vision. With the
rapid development of deep learning technology, 6DoF pose estimation based on deep learn-
ing [15–17] has significantly improved in terms of accuracy, robustness, and adaptability
to different scenes. In various daily life scenarios, as well as industrial robotics tasks, the
estimation of 6DoF object poses is of great significance and can bring great convenience to
production and daily life.
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Figure 2 illustrates the sections of this paper where the existing methods can be
coarsely categorized into two main groups based on whether the object model is necessary
for the training stage: instance-level pose estimation and category-level pose estimation.

Several reviews of this task already exist [4,6,14,18], but unlike these methods, here,
we focus on methods based on deep learning, organize the paper according to different
input data types or method types, and summarize commonly used public datasets in the
field. We summarize the application scenarios of different methods, organize commonly
used datasets in the field, and provide a comprehensive summary of methodologies. Addi-
tionally, the paper discusses future expectations based on different application scenarios,
which can provide a valuable reference for subsequent research work.

Figure 2. General Structure of the Survey.

2. Instance-Level 6DoF Object Pose Estimation

There has been significant research conducted on instance-level 6DoF object pose
estimation. Depending on the input data, we classified these methods into three categories:
RGB-based methods, point cloud or depth-based methods, and RGB-D-based methods.
Then, we summarized the refinement methods.

2.1. RGB-Based Methods

With the advancement of deep learning, RGB-based 6DoF pose estimation methods
have made significant progress in both theoretical and practical aspects. Figure 3 shows
an overview of the typical RGB-based pose estimation methods; RGB images provide rich
visual information and scene texture features that enable deep learning networks to extract
effective representations of object poses. Furthermore, the widespread use and affordability
of RGB cameras contribute to their cost advantage.

Figure 3. Schematic of a typical method for RGB-based pose estimation.
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The task of pose estimation from RGB images faces several challenges, such as occlu-
sion and lack of texture information. In this section, following the common classification,
RGB-based methods can be divided into three classes: regression-based methods, template-
based methods, and feature-based methods.

2.1.1. Regression-Based Methods

One of the straightforward approaches is that the 6DoF object pose estimation is
considered as a regression task, which directly predicts the poses from the input RGB
images without intermediate keypoint representations. A typical simplified flow of the
regression-based approach is shown in Figure 4.

Figure 4. A typical flow of regression-based pose estimation methods.

PoseNet [19] is one of the first works to propose an end-to-end approach that in-
troduces an end-to-end 6DoF pose estimation model using convolutional neural net-
works(CNNs). The model demonstrates the feasibility of deep learning for pose estimation
by directly regressing the orientation and position of RGB images. However, this method is
only used for human pose estimation.

PoseCNN [20] pioneers a direct learning approach for regression object 6D pose
representation. The method treats rotations and translations separately, incorporates 2D
centroid prediction based on hough voting, integrates additional prior knowledge for
translation processing, and proposes a symmetric loss function for shape matching. It is
worth mentioning that PoseCNN introduces the highly influential YCB-V dataset. However,
the ICP algorithm [21] needs to be optimized for better accuracy, and the networks are
specific and may have poor generalization. Overall, this is a classical work.

Deep-6DPose [22] extends the instance segmentation network Mask R-CNN [23]
to pose estimation. It directly introduces a pose prediction branch into the framework,
thus realizing an end-to-end regression-based pose estimation method. Different from
PoseCNN [20], Deep-6Dpose does not require subsequent refinement steps, thus simplify-
ing the process and improving efficiency. However, its performance decreases significantly
when the pose changes significantly, and its accuracy still needs to be improved.

Hu et al. [24] proposes a segmentation-driven simple pose estimation network, which
enables handling multiple objects occluding each other, even in the absence of texture. This
method avoids the need for post-processing, but the estimation of small objects needs to be
improved. Additionally, there is room for improvement in the network architecture and
fusion strategies.

Another noteworthy contribution is YOLO-6D [25], which leverages the YOLO fam-
ily [26–29]. YOLO-6D [25]converts the pose estimation problem into a nine keypoints
regression task and utilizes the real-time framework of YOLO-V2 [30]. This approach has
had a significant impact on subsequent research. As the YOLO family continues to evolve,
using new YOLO frameworks may produce better results, but application in complex
environments may be limited. NeRF [31] introduces a method for generating rendered
images without relying on mesh models. Inspired by this, iNeRF [32] predicts the pose
from a single RGB image, specifically targeting scenarios where object mesh models are
not available during training or testing. iNeRF can be extended to category-level pose
estimation, but it is susceptible to lighting and occlusion, and its real-time performance
needs to be improved.
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DeepIM [33] introduces iterative improvements by regressing the pose difference
between the rendered pose assumptions and the input image. Building on DeepIM, Cosy-
Pose [34] improves by incorporating rotational continuity representation, symmetry-aware
display processing, and network architecture updates. These improvements make it pos-
sible to recover a consistent scene across multiple views, thus facilitating 6D attitude
estimation for multiple classes of objects. CosyPose obtained the best results on multiple
datasets in the 2020 Benchmark for 6D Object Pose Estimation (BOP) Challenge [35] and
many subsequent studies built upon it.

To better solve the occlusion problem, ZebraPose [36] proposes a method that uses a
dense representation of the object surface with discrete descriptors. The method uses an
encoder–decoder architecture for feature extraction and direct regression of pose without
post-processing procedures. However, the method has limited generalization to instances
with significant appearance differences, although it has also been shown that the dense
correspondence method is more effective at solving problems related to occlusion.

Hai et al. [37] address the limitations of existing self-supervised methods, which often
require additional depth [38,39] or segmentation mask information [40]. They propose a
self-supervised pose optimization framework that employs a synthetic dataset generated
from the 3D mesh of the target object. The network is trained solely on this dataset to
obtain the initial pose, followed by rendering multiple synthetic images from different
viewpoints. To bridge the domain gap between synthetic and real data, a pseudo-label-
based optimization strategy is employed for refinement. However, this approach heavily
relies on synthetic data for training initial poses, and there is room for improving the
generalization of current methods.

To address the problem of the increasing runtime when performing multi-object tasks,
EfficientPose [41] proposes an efficient end-to-end pose estimation method that utilizes
two additional sub-networks for predicting translations and rotations, thereby reducing
computational cost and eliminating post-processing steps. The method also proposes a
data enhancement technique involving random rotation and scaling of images to improve
generalization to small datasets. However, as EfficientPose relies on overall detection, it
may be less effective in heavily occluded scenes.

GDR-Net [15] proposes a simple and effective method for geometrically guided pose
estimation. It dynamically scales up the detection results of other methods as the inputs
and utilizes intermediate representations of dense correspondences. A modified version of
this method utilizes a more robust backbone network and was successful in the BOP2022
challenge [42], demonstrating impressive accuracy and speed.

These regression-based methods have made significant progress in RGB-based pose
estimation. However, there are still some challenges, such as dealing with occlusion,
coping with illumination variations, improving real-time performance, and enhancing
generalization to different scenes and object appearances.

2.1.2. Template-Based Methods

Template-based methods typically require finding the most similar template of the
target, this search is conducted among many templates labeled with true poses, and then
performing 6D pose estimation. Template matching is also a broad class of direct methods
used for pose estimation. A typical simplified flow of the template-based approach is
shown in Figure 5.

SSD-6D [43] is an approach that extends the 2D target detection network to handle the
pose estimation task. It introduces a pose estimation branch during the detection process
and decomposes the pose space of the model, using the multiple detection results obtained,
performing a series of pose estimations as templates, and selecting an optimal hypothesis.
Additionally, it treats rotational regression as a classification task, which improves the
training and learning of symmetric objects. However, an inherent limitation of the method
is its reliance on regressing the 2D bounding box corners. This reliance can result in
decreased accuracy, particularly for heavily occluded objects. Furthermore, methods such
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as data augmentation need to be used to minimize the differences between synthetic images
and real data.

Figure 5. Typical flow of template-based pose estimation methods.

LatentFusion [44] introduces a novel framework for the 6D pose estimation of unseen
targets by leveraging learned 3D representations. The network is capable of rendering
the target from any viewpoint and directly optimizing the pose of the input image. The
method achieves this by training the network on a large dataset of 3D shapes, enabling it
to reconstruct and render objects accurately. Moreover, the use of multiple views during
modeling allows for robust observations, and the consistency across these views enables the
construction of a canonical representation, resulting in improved generalization to unseen
targets. However, it’s worth noting that LatentFusion’s iterative optimization process
during inference can be computationally expensive. Additionally, the method is sensitive
to occlusions in the input data, which can lead to significant performance degradation
when occlusions are present.

DPOD [45] is a pose estimation method that combines detection and matching using
a dense matching-based approach. In the first stage, a detector predicts 2D frames. The
second stage refers to the voting-based PVNet [46] method for template matching. DPOD
can estimate poses from a single RGB image without requiring perfect segmentation. It
demonstrates robustness in handling occlusion and lighting changes. However, it may be
less effective for objects that lack distinctive color features.

PoseRBPF [47] utilizes a Rao-Blackwellized particle filter that samples object poses and
estimates the discretized distribution of each particle’s rotations using a pre-computed code-
book. This method is effective at tracking object poses and is less susceptible to motion blur
and occlusion. However, it may encounter difficulties when objects are heavily occluded or
measurements deviate significantly from the synthetic training data. Furthermore, there is
room for improvement in the discretized rotation representation in PoseRBPF.

OSOP [48] utilizes semantic segmentation to predict the mask of the visible parts,
and renders 2D templates from various viewpoints, using the templates to first locate
the approximate viewpoints, and then obtain the final pose after dense matching, which
can be generalized to train unseen novel objects. It is applicable for tasks that need to be
performed on new objects, although the domain gap between synthetic and real data needs
to be handled.

Template-based methods have many advantages, including simplicity, speed, adapt-
ability to changes in appearance, and better handling of weakly textured objects. It is a
straightforward and intuitive method that can quickly detect and localize objects. However,
template matching may face challenges in complex scenarios with occlusions, lighting
variations, or objects lacking distinctive features. Incorporating local representations and
addressing these challenges is crucial for robust template matching. Additionally, global
matching in template matching can be influenced by the background and may perform
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poorly when matching real images of unseen objects [49,50]. Therefore, the use of local
representations becomes necessary for template matching of unseen objects.

2.1.3. Feature-Based Methods

The feature-based pose estimation method is widely used in the field of 6DoF pose
estimation. The standard procedure involves extracting features from the input image,
matching them with corresponding features in an existing 3D model, and then establishing
the correspondence of 2D–3D coordinates using the Perspective-n-Point (PnP) algorithm.
PnP is the corresponding method for solving 3D to 2D points. It describes how to estimate
the pose of a camera when 3D space points and their positions are known. By leveraging
the features extracted from the image and matching them with the features of the 3D
model, this feature-based method establishes the 2D–3D relationship and enables accurate
estimation of the target object’s 6D position. A typical simplified flow of the feature-based
approach is shown in Figure 6.

Figure 6. Typical flow of feature-based pose estimation methods.

The feature-based matching method has been extensively studied over time. Tradi-
tionally, feature points are extracted from two images, and then these feature points are
compared to determine their correspondence. Global matching methods [51,52] perform
well, with low computing power requirements, but they are sensitive to occlusion and
noise, limiting their practical application. On the other hand, localized features are more
robust when dealing with occlusion. Local feature extraction relies on feature detection and
descriptors that should possess distinctiveness and invariance to certain transformations.

Traditional descriptors [53–57], such as SIFT [53], are manually designed and have
certain limitations. They may not capture sufficient information, primarily describing
geometric relationships, and can be less effective when the texture is not rich or the envi-
ronment undergoes significant changes. In contrast, local feature detection and matching
methods [58] based on deep learning have shown a better performance compared with
traditional methods that rely on hand-crafted local features. These methods typically
involve two steps: the first stage utilizes neural networks for feature extraction and ob-
taining 2D–3D correspondences, while the second stage solves the PnP problem. The
differences between these methods mainly lie in how they establish the correspondence.
These methods effectively leverage the advantages of CNN network structures, combining
them with traditional computer vision techniques, and resulting in improved accuracy in
pose estimation.

Pavlakos et al. [59] proposes a method that utilizes detected semantic keypoints to
regress and compute the 6DoF pose in an end-to-end training fashion. This approach
avoids the laborious process of point-by-point matching. However, it may be less effective
when dealing with small objects and severe occlusion.

BB8 [60] utilizes segmentation methods to predict 3D boundary points based on 2D
bounding boxes. It avoids the need for feature extraction and matching. Pose estimation
is achieved by regressing the 2D coordinates of the inflection points of the projected 3D
bounding box corners. BB8 demonstrates that the accurate and stable 3D pose estimation
can be accomplished using only RGB information. The approach is extensible to new
object categories without the need for predefined models. The estimation of symmetric
objects has always been difficult. To solve this problem, BB8 explicitly handles it by range
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transformation and constraining object-labeled poses during training. This approach to
handling symmetry has become more widely used in subsequent works [37,61]. However,
it may be less effective for untextured objects.

To address the challenges posed by severe occlusion, PVNet [46] builds upon the
symmetry handling approach introduced in [60]. The proposed pose estimation framework
in PVNet [46] regresses pixel-level vectors that point to the keypoints. These vectors are then
used for voting on the keypoints locations, resulting in a spatial probability distribution
of the keypoints. Additionally, the network predicts pixel orientations, which allows it
to focus more on the local features of the object and mitigate the effects of background
clutter. PVNet [46] effectively solves the problem of occlusion and has laid the foundation
for much of the subsequent work in the field.

EPOS [62] is a pose estimation method that takes into account the symmetry of objects.
It decomposes the pose space into symmetry-invariant and symmetry-related parts. The
method discretizes the object’s surface into fragments and predicts a probability distribution
for each fragment, classifies pixels based on the associated object segments, and regresses
coordinates. This approach is adaptable to various types of symmetrical objects, including
those with reflective surface symmetry or rotational symmetry.

Pix2Pose [63] uses an untextured 3D model to regress pixel-level 3D coordinates from
RGB images. It introduces a transformer loss function specifically designed for symmetric
objects and trains a self-coding network with a Generative Adversarial Network (GAN) [64]
to denoise the model and recover occluded parts. The method has been evaluated on the
T-LESS dataset [12]. It uses the visible surface deviation as a metric, which measures only
the distance error of the visible parts; this metric is independent of symmetry and occlusion,
and the results of Pix2Pose outperform previous methods significantly. This method has
good applicability in industrial-related scenarios.

RNNPose [65] proposes a pose refinement method based on Recurrent Neural Network
(RNN) [66] design, using CAD models for rendering. It optimizes the error between
the rendered image and the observed image using nonlinear least squares. RNNPose
introduces a hybrid network trained with contrast to handle occlusion, making it more
robust against errors and occlusion introduced by the initial poses. The method shows
substantial improvements over the initial poses obtained from PoseCNN [20]. However,
one limitation is that the training model is object-specific, and still needs to be improved if
it is to meet the generalization requirements for unseen objects.

Onepose [8] presents a novel approach for 2D–3D feature matching using a graph
attention network [67]. This method effectively preserves the graph structure information
of feature tracking, resulting in more reliable and faster matching. It achieves a higher
accuracy compared to PVNet [46], without requiring instance-specific training on the
validation set. Hybridpose [68] proposes a network architecture based on PVNet [46],
leveraging a prediction network with three intermediate representations using ResNet [69].
By fusing the features of keypoints, edges, and symmetry points, this approach expresses
geometric knowledge with multiple intermediate representations, providing additional
constraints on the object. The introduction of edge and symmetry point features improves
the stability of position estimation. However, it is worth noting that training the network
requires careful design.

CRT-6D [70] employs a sparse set of features based on key points on the object’s
surface, significantly reducing the impact of noise and computational cost. This method
incorporates a fast refinement technique for better real-time performance, utilizing a de-
formable attention mechanism to handle occlusion robustly. However, it should be ac-
knowledged that the accuracy of CRT-6D is lower compared with the approach proposed
in Zebrapose [36].

Among the feature-based methods, pose estimation using the PnP algorithm is widely
adopted, and exploring ways to improve the PnP algorithm is also a direction. Previous ap-
proaches [25] have employed various techniques such as direct usage of the PnP algorithm,
the EPnP [71] method [46], or combining PnP with RANSAC [45].
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However, the non-differentiability of the PnP problem at some points poses challenges
for convergence during training. To address this issue, the CVPR2022 Student Best Paper,
EPro-PnP [72], tackles the problem of solving the camera pose by transforming it into a
probability density prediction task. By learning the 2D–3D correlation based on the ground
truth pose, EPro-PnP achieves end-to-end training of a network that predicts the probability
density of the pose. This approach not only solves the PnP pose optimization problem,
but also provides insights for optimizing other networks. It enables stable and flexible
training of pose estimation networks based on PnP geometry optimization, surpassing the
state-of-the-art performance of the outdated CDPN [73] method.

EPro-PnP [72] essentially applies the multi-class softmax concept to the continuous
domain, which can be extended not only to other geometric optimization-based 3D vision
problems [40], but also theoretically generalized to train general models with nested
optimization layers.

In general, the method based on global feature matching offers advantages in terms
of speed, while the method based on local feature matching better fulfills the accuracy
requirements. Global features rely heavily on semantic information, providing stronger
discriminative capabilities, while local features rely more on texture information, making
them more robust to image variations. The sparse counterpart of feature-based methods
requires less computational resources and can perform better in some real-time applications.
It offers an overall satisfactory performance. In contrast, the dense counterpart utilizes
richer information and is particularly effective at handling occlusion problems. However,
it demands higher computational resources. Feature-based methods, in general, are fast
and robust, especially when dealing with texture-rich objects. However, they may be less
effective when applied to weakly textured objects, where the distinction between objects
and the background is weak, and detecting keypoints becomes challenging.

2.1.4. Refinement Methods

Refinement methods play a crucial role in improving the performance of pose esti-
mation by refining the initial coarse pose. RGB-based methods often require subsequent
optimization, and several popular approaches have been proposed [33,34,65,74]. Figure 7
shows a simplified flow of the refinement method using the renderer.

Figure 7. General flow of the refinement method.

PoseCNN [20,75] utilizes the Iterative Closest Point (ICP) algorithm to align known
models with the depth map for pose refinement. DeepIM [33] takes an iterative approach,
using a pose refinement network to minimize the difference between the observed image
in the current pose and the rendered image. Another method [76] introduces a novel visual
loss for pose updating, which aligns contours to refine the pose. HybridPose [68] proposes
a pose refinement method that utilizes a robust norm optimization of the reprojection error,
termed GM robust norm optimization.
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DPOD [45] presents a pose refinement network that includes modules for independent
regression of rotations and translations. It optimizes the estimation results based on
the difference between the image rendered by the predicted pose and the real input.
CosyPose [34] draws inspiration from bundle adjustment and globally refines all objects and
camera poses by minimizing multi-viewpoint reprojection errors. Repose [74] introduces a
faster refinement approach by extracting the image features using U-Net [77]. RNNPose [65]
formulates pose optimization as a nonlinear least squares problem.

Some of the RGB-based methods are uniformly compared in Table 1, employing met-
rics including Average Distance of Detected points (ADD) and Symmetric ADD (ADD-S)
on both the LineMod (LM) [78] dataset and LineMod-Occlusion (LM-O) [79] dataset, as
well as the area under the curve (AUC) of ADD-S on the YCB-Video (YCB-V) dataset [20].

Table 1. RGB-based pose estimation methods and results.

Methods Years Input Types LM LM-O YCB-V

PoseCNN [20] 2017 RGB Regression - 24.9 61.3
SSD-6D [43] 2017 RGB Refinement 79 - -

YOLO-6D [25] 2018 RGB Regression 55.95 - -
DeepIM [33] 2018 RGB Refinement 88.6 55.5 81.9

Deep-6DPose [22] 2018 RGB Regression 65.2 - -
BB8 [60] 2018 RGB Refinement 43.6 - -

PVNet [46] 2018 RGB Feature 86.27 40.77 73.4
Hu et al. [24] 2019 RGB Regression - 27.0 -
CDPN [40] 2019 RGB Feature 89.86 - -
DPOD [45] 2019 RGB Template 95.2 47.3 -

Pix2Pose [63] 2019 RGB Feature 72.4 32.0 -
Efficientpose [41] 2020 RGB Regression 97.35 83.98 -

CosyPose [34] 2020 RGB Regression - - 84.5
LatentFusion [44] 2020 RGB Template 87.1 - -
Hybridpose [68] 2020 RGB Feature 91.3 47.5 -

GDR-Net [15] 2021 RGB Regression 93.7 62.2 84.4
SO-Pose [80] 2021 RGB Feature 94.0 62.3 83.9
RePose [74] 2021 RGB Refinement 96.1 51.6 82.0

PoseRBPF [47] 2021 RGB Template 79.76 - -
Zebrapose [36] 2022 RGB Regression - 76.9 85.3
RNNPose [65] 2022 RGB Refinement 97.37 60.65 83.1
DPOD-v2 [81] 2022 RGB Feature 93.59 - -

EPro-PnP-v2 [72] 2023 RGB Feature 96.36 - -
Hai et al. [37] 2023 RGB Regression 92.2 65.4 -
CRT-6D [70] 2023 RGB Feature - 66.3 87.5

2.2. Point Cloud or Depth-Based Methods

In some situations of object pose estimation, such as in industrial environments,
the limitations of RGB-based methods are evident due to the lack of color and texture
information [82]. In contrast, methods based on point clouds or depth maps may offer
unexpected advantages, while RGB images lack geometric data. Depth information or
point cloud information contains rich shape geometry information, which is significant for
inferring the pose of objects [83,84].

Methods based on depth maps or point clouds may have advantages in training
data. Methods based on real images usually require expensive manual labeling. The
annotation cost can be reduced when using synthetic images, but the domain gap becomes
an important issue. Methods based on depth information or point clouds have smaller
domain gaps with more robust results [85]. Figure 8 shows a typical approach using point
clouds as inputs.
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Figure 8. Point cloud-based typical approach flow.

Research on point cloud or depth maps aims to achieve a balance between accuracy and
computational speed by combining global and local features, and is therefore particularly
suitable for objects with different surface textures [86]. Colored point-pair features have
been introduced in traditional methods [87] to improve discrimination and accuracy by
exploiting the color information. There are also some works where the point cloud is used
directly as an input to achieve the desired results through deep learning.

2.2.1. Point Cloud-Based Methods

Liu et al. [88] proposed a new downsampling method that combines edge and geo-
metric information to estimate complex shapes, oriented to the requirements of medicine,
and a pose estimation method based on edge-enhanced point-pair features for the charac-
teristics of the spine structure. This method showed competitiveness when dealing with
complex shapes and symmetric objects and is applicable in automated surgery. However,
this method may not perform as expected when dealing with tiny objects or asymmetric
cylindrical objects.

Previously, 3D data faced inherent challenges when represented using 3D voxel meshes
or multi-view projections, including high computational requirements and loss of geo-
metric information. To address this problem, Pointnet [89] proposed a solution based on
point cloud data. At the same time, to address the problem of disorganization of the point
cloud, the method employs a simple symmetric function to aggregate the vertex informa-
tion, starting with global feature extraction, and then performs point cloud segmentation
or classification.

Based on Pointnet [89], the Pointnet++ algorithm [90] further improves the acquisition
and processing of localized information in point clouds. Both networks play an important
role in various point cloud-based tasks. Another innovative approach is Pointvotenet [91],
which employs a 3D segmentation method, based on Pointnet [89], to estimate the pose
directly from a disordered 3D point cloud, unlike traditional projection-based methods.
However, Pointvotenet minimizes the keypoints of symmetry in the process, and there is
still space to improve the performance, while in real-time demanding scenarios this may
not be applicable. The RandLA-Net algorithm [92] introduces stochastic downsampling to
point cloud processing, simplifying network complexity while preserving local features
through a feature aggregation module.

The PointPoseNet [93] method performs segmentation and vector prediction of point
clouds obtained from RGB-D images, which in turn results in optimal pose estimation. It
works well for scenes in the presence of occlusions, but the runtime increases when faced
with the need to process multiple instances.

Point pair features (PPF) [86] is a method of global modeling and local matching, and
PPF-based methods are known for their potential to achieve a high accuracy, while they
often come with the drawback of a high computational complexity. In response to this
challenge, PPFNet [94] combines PPF with deep learning techniques to enhance 3D point
matching and point cloud feature extraction. The experimental results demonstrate that
the learned features outperform traditional methods significantly in tasks like 3D shape
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retrieval and matching. The deep-learning-based 3D target recognition methods show a
superior generalization performance compared with traditional methods.

In real-world applications, such as the task of robot bin-picking applications, where
objects are randomly stacked and occlusions in the scene are common, the Point-Wise Pose
Regression Network (PPR-Net) [82] is a straightforward and effective solution. This net-
work utilizes input point cloud data to simultaneously process instance segmentation and
pose estimation, which can effectively identify occlusion relations and handle symmetric
objects, thus achieving favorable results in practical applications.

Hoang et al. [95] introduced a detection method in pose estimation that relies on a
voting mechanism designed for point cloud inputs without segmentation. Their method
incorporates an attention module for learning rich associations between object parts and in-
stances to improve the pose estimation performance. This method works well when dealing
with datasets containing industrial parts, and it may be suitable for industrial scenarios.

CloudAAE [85] proposed a new method for reconstructing point clouds by regressing
6D poses using desired viewpoints and synthetic data based on 3D models, with temporary
point locations. By augmenting the autoencoder to generate a noiseless, occlusion-free
point cloud, the online approach offers advantages in terms of time efficiency and hardware
storage over rendering methods. However, the method relies on the iterative closest
point (ICP) algorithm [21] for optimization, which may not be optimized in the case of
severe occlusions.

Point cloud-based pose estimation has important applications in robotic 6DoF grasp-
ing, and with the co-development of complete and local point cloud methods, the ro-
bustness of industrial grasping, as well as its adaptability to the environment, has im-
proved greatly.

2.2.2. Depth-Based Methods

A common method for 6D pose estimation from depth images is to convert the
depth image into a point cloud, and then perform pose estimation through the obtained
segmentation mask, as shown in Figure 9.

Figure 9. Depth-based typical approach flow.

A brand new framework, SwinDePose, was proposed in [96], which extends the Swin
Transformer [97] to pose estimation using depth information. The combination of the Swin
Transformer and pose estimation achieves a high accuracy by fully leveraging point cloud
information and vector data from the depth map. It also handles occlusion well, but the
performance depends on the quality of the annotations.

OVE6D [98] is trained using purely synthetic data, estimated from a single depth map
and segmentation mask, and decomposes the pose estimation task into viewpoint, in-plane
rotation, and translation. It can be easily generalized without parameter optimization in
new objects. It works well on the T-LESS dataset [12], but only applies to the model of the
object and to cases where instance segmentation masks are readily available.
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Methods based on point clouds or depth maps may encounter challenges when
dealing with reflected light on the surface of objects. This reflection problem can hamper
the accurate capture of the actual point cloud data of objects, thus affecting the quality of
subsequent works and tasks. In addition, there are relatively few methods dedicated to
point cloud or depth map-based position estimation. In current industrial applications,
most of the point cloud methods are still adapted to cope with the challenges by improving
the traditional methods. It is notable, however, that these networks also help support other
methods. A typical example is PVNet [46], which utilizes the principles of PointNet [89].
This approach stands out for its efficient location estimation capabilities and has had a
significant impact in the field.

Table 2 presents a systematic comparison of point cloud-based or depth-based methods.
Evaluation metrics are consistently applied across all three datasets [20,78,79], utilizing the
ADD(-S) metric for the assessment of the pose estimation performance.

Table 2. Point cloud or depth-based pose estimation methods and results.

Methods Years Input LM LM-O YCB-V

Gao et al. [99] 2020 D - - 94.7
Pointvotenet [91] 2020 Point Cloud 96.3 75.1 -

CloudAAE [85] + ICP 2021 Point Cloud 95.5 66.1 94.0
OVE6D [98] 2022 D 96.4 70.9 -

Depth-Based [96] 2023 D 97.5 77.1 -

2.3. RGB-D-Based Methods

Methods that rely solely on RGB images may be susceptible to challenges such as
cluttered backgrounds, lighting changes, and texture differences, while methods based
solely on point clouds face the problem of difficult data processing. Combining RGB images
with depth information can enhance the ability to extract target geometric data, thereby
improving the pose estimation performance in complex environments. Figure 10 shows a
simplified flow of a typical approach using RGB-D as the input.

Figure 10. RGB-D-based typical approach flow.

The main challenge in RGB-D-based methods lies in fully utilizing the appearance
information from RGB images and the geometric information from depth images. Early
RGB-D estimation approaches often required the extraction of information from RGB and
depth images separately. For instance, in [100], pose estimation was achieved by clustering
3D feature points in the object model, allowing for the extraction of features in the object
shape that are independent of perspective changes and enabling cross-view matching.
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However, although cross-view methods can provide richer information, they may
require a large amount of storage space [101] or require complex post-processing [20],
limiting their availability for complex scenes and real-time applications. In the case of
symmetric objects, it is common to restrict the range of viewpoints, necessitating additional
processing steps, such as in BB8 [60] for view classification and PoseCNN [20] for average
distance computation between transformed models and estimated poses. Nonetheless, the
process of finding the nearest 3D point can be time consuming.

On a different note, Li et al. [102] introduced a method to incorporate depth informa-
tion as an additional channel. The network was designed by combining RGB and depth
data in feature channel dimensions. This method has proven to be effective for multi-object
instances and handling occlusions, but it may not perform optimally in single-view scenar-
ios. The complexity of the network structure can also result in higher time costs. In this
section, RGBD-based methods are classified into three categories: fusion-based methods,
keypoints-based methods, and other methods.

2.3.1. Fusion-Based Methods

To tackle challenges related to occlusion and poor lighting conditions, DenseFu-
sion [103] employs separate feature extraction and dense fusion of color and depth infor-
mation. A pose estimate is generated for each pixel and the final result is obtained by
voting. This approach considers the structural information of the depth channel, lead-
ing to accurate object pose estimation. Remarkably, it is nearly 200 times faster than the
PoseCNN [20] with the ICP combination method. However, DenseFusion is limited to esti-
mating the 6D pose of known objects and demands high-quality depth data and substantial
computational resources.

MoreFusion [5] is tailored to scenarios where objects are known in robotics applications,
focusing on solving pose estimation problems in the contact and occlusion of different
objects. It achieves this by fusing segmentation masks into volumetric maps to represent
occupied and free space. This approach enables pose estimation with awareness of the
peripheral information, initial rough voxel reconstruction, and multi-object pose estimation,
even in cases of occluded contact. Differentiable collision refinement and CAD model
alignment support robot planning for grasping tasks in complex scenarios. When compared
with DenseFusion [103], MoreFusion [5] also performs well in severe occlusion situation,
and integrates more physics knowledge into the optimization framework.

FFB6D [104] enhances DenseFusion [103] with an improved fusion module. Fusion
is applied at each coding and decoding layer to maximize the utilization of local and
global information from another network. This simplifies keypoint localization and yields
accurate pose estimation, resulting in a high accuracy. However, it is important to note
that the effectiveness of deep fusion is highly dependent on data quality, with data noise
significantly impacting performance. Furthermore, post-processing operations account for
over half of the time cost.

From the above, it can be seen that the fusion-based method can utilize the two types
of data more elegantly and is more robust to occlusion environments.

2.3.2. Keypoints-Based Methods

Keypoints-based methods are also an influential class of methods, which achieve
position prediction by finding keypoints in an object through correspondences. A typical
approach to the brief flow is shown in Figure 11.

PointNet [89] serves as a solid foundation for methods like PointFusion [11]. However,
it has certain limitations in effectively extracting local point cloud features. To address
this, PVN3D [105] introduces a two-stage approach, encompassing a feature extraction
module, a keypoint detection module, a semantic segmentation module, and a centroid
voting module. These modules work together to identify key points of objects through
voting and clustering. Subsequently, after detecting the 3D key points of the target, the
least squares method is used to fit the pose. Notably, the combination of 3D keypoints
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and semantic segmentation enhances the overall performance, making the approach more
robust, especially in the presence of natural occlusion.

Figure 11. Keypoint-based typical approach flow.

Lin et al. [106] propose an end-to-end regression-based pose estimation method rooted
in geometric information. This method supervises the decomposition of keypoint offsets
into unit vectors and lengths and introduces an improved keypoint sampling strategy to
ensure an adequate number of sampling points for small objects. However, it encounters
challenges when addressing symmetric cases due to the lack of clear keypoint definitions
for symmetric objects.

Zhou et al. [107] employ Deep Fusion Transformer (DFTr) blocks to elevate pose esti-
mation by aggregating globally enhanced features across different modalities, facilitated by
semantic similarity. They introduce a globally optimized voting algorithm to obtain accu-
rate keypoints and exhibit robustness in dealing with various occlusions and symmetries
while maintaining real-time performance. But improper selection of DFTr blocks can lead
to overfitting, and the computational demands are relatively high.

The keypoints-based approach is more robust to noise and has a relatively good estima-
tion, which makes it more practical, but it requires the determination of suitable keypoints.

2.3.3. Other Methods

In addition to the two methods mentioned above, there are many other studies based
on RGB-D. Addressing the issue of previous methods employing separate networks for
RGB and depth information extraction, Uni6D [108] introduces a unified CNN framework
based on Mask R-CNN [23]. This framework incorporates additional UV data as an input
to resolve the projection decomposition problem. Uni6D stands out for its efficiency in
terms of time and cost, and achieves approximate accuracy on the YCB-V [20] dataset. It is
exciting that it is 7.2 times faster than the FFB6D [104] method. Nevertheless, it has to be
recognized that the simplification process may lead to accuracy degradation and further
research is necessary, especially when denoising RoI features.

G2L-Net [109] takes a global-to-local approach, focusing on extracting point clouds
from RGB-D data through 2D detection. The network performs 3D segmentation and
translation prediction based on the coarse point cloud. It also captures viewpoint perception
information using point-based features. G2L-Net estimates the initial rotation in the
coordinate system transformed from the fine point cloud and further enhances the accuracy
by considering rotation residuals between the predicted and true values. Impressively,
G2L-Net achieves a good real-time performance despite the multi-step process.

More comprehensive utilization of geometric information has been shown to help
mitigate issues related to color and appearance interference, random occlusions, and gener-
alization from unseen instances. Previous methods that leverage geometric information
often exhibit weak explanatory and generalization capabilities. In response to this, Stable-
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Pose [110] introduces the concept of geometric stability to 6DoF pose estimation for the
first time. Operating by the geometric stability principle, Stablepose [110] stands apart
from approaches like EPOS [62], which involve sampling from a template model and
regressing it as the 3D coordinates of image pixels. Instead, Stablepose learns the pose
by focusing on geometrically stabilized portions of the point cloud derived from depth
images, particularly emphasizing planar and cylindrical information. It accomplishes this
by utilizing a minimum of three patches and predicting the pose for each patch through a
sub-network. This approach significantly enhances the robustness of pose estimation in
occluded scenes, as well as in objects that are not fully visible.

Building on the principles of EPOS [62], SurfEmb [16] presents a technique to learn
a continuous dense distribution with the aid of contrast loss. This allows the model
to capture multimodal distributions on an object’s surface, making it more effective at
handling symmetry and representing positional ambiguity. However, it is important to note
that the position optimization process may encounter challenges when surface changes are
subtle, and the approach involves four stages.

MegaPose [111] proposes a method that provides pose estimation of novel objects
from RGB or RGB-D images. Rough pose estimation is performed first by classification and
then refined by rendering synthetic views, which is simple to couple with other detection
methods. The method is tested for its performance on multiple datasets and is suitable for
real robots operating on unknown objects, but the runtime needs to be considered and not
all rough initial poses can be successfully refined.

Lipson et al. [112] propose an end-to-end network that utilizes geometric knowledge
to refine the pose and correspondence through coupled iterations and dynamically reject
outliers. This method uses a novel bidirectional PnP algorithm, where the entire network
can learn to optimize and perform pose updates. The refinement method may result in a
less effective local optimal solution when the initial pose rotation error turns out to be large.
This method also works well when only RGB images are used as the input.

Numerous pose estimation methods, including those referenced in [16,33,36,103],
require object detection methods. However, in complex scenes with a poor detection
performance, the estimation results of these methods will be greatly affected. To address
this issue, Hai et al. [113] introduce a rigidity-aware detection method. This innovative
approach capitalizes on the inherent rigidity property of the task object and formulates
bounding boxes by sampling from the visible region rather than including the occluded
part. The robustness of the target detection is enhanced, and the detection results can
further improve the pose estimation effect.

The methods with RGB-D input offer several advantages and disadvantages. On the
positive side, the combination of color information and depth information allows for more
accurate and robust pose estimation, particularly in challenging scenarios with occlusion
or poor lighting conditions. The depth data provide valuable geometric information,
enhancing the recognition and localization of objects. Additionally, this approach can be
instrumental in real-world applications such as robotics, where precise pose estimation is
crucial. However, there are some drawbacks to consider, including increased computational
demands due to processing both RGB and depth data.

In summary, RGBD-based methods provide a unique advantage by harnessing the syn-
ergy of RGB and depth information, resulting in a substantial improvement in estimation
accuracy. How to effectively utilize different data is the key to these methods.

Table 3 presents a comparison of some RGBD-based methods. Evaluation metrics are
consistently applied across all three datasets: LM, LM-O, and YCB-V [20,78,79], utilizing
the ADD(-S) metric for the assessment of pose estimation performance.
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Table 3. RGB-D-based pose estimation methods and results.

Methods Years Input LM LM-O YCB-V

Li et al. [102] 2018 RGB-D - - 94.3
DenseFusion [103] 2019 RGB-D 94.3 - 91.2

Morefusion [5] 2020 RGB-D - - 91.0
PVN3D [105] 2020 RGB-D 99.4 70.2 91.8
G2L-Net [109] 2020 RGB-D 98.7 - 92.4
PR-GCN [114] 2020 RGB-D 99.6 65.0 95.8
FFB6D [104] 2021 RGB-D 99.7 66.2 92.7
Uni6d [108] 2022 RGB-D - - 88.8
E2EK [106] 2022 RGB-D 99.8 75.3 94.4

RCVPose [115] 2022 RGB-D 99.4 70.2 95.2
Deepfusion [107] 2023 RGB-D 99.8 77.7 94.4

3. Category-Level 6DoF Object Pose Estimation

Category-level 6D object pose estimation is designed to predict the complete pose of
rotations, translations, and dimensions of object instances observed in a single arbitrary
view of a cluttered scene. Estimating the pose and shape of daily objects is also an essential
task, the majority of the previously discussed instance-level methods rely on accurate
CAD models, but in daily life environments, it is hard to obtain CAD models of objects
in advance, whereas category-level pose estimation methods aim to estimate the poses of
arbitrary shapes in the same category without a priori assumptions of known CAD models,
and it is starting to attract more attention by dealing with multiple instances of real-life
scenarios [116–118].

3.1. Regression-Based Methods

The regression-based approach is a single-stage approach—one of the most straight-
forward. A simplified flow diagram of a typical process for such methods is illustrated
in Figure 12.

Figure 12. Typical flow of regression-based category-level pose estimation methods.

Category-level pose estimation faces challenges due to the unavailability of ground
truth data. NOCS [116] addresses this by introducing a context-aware mixed reality ap-
proach, and it can be considered a pioneering work. To handle different and unseen object
instances within a category, NOCS proposes a Normalized Object Coordinate Space (NOCS)
and a dataset frequently used in category-level pose estimation tasks. Additionally, to cope
with the symmetry of real-life objects, an axis of symmetry is defined for each category
in the training data, ensuring that predefined rotations result in consistent loss values.
While this approach enables robust pose and size estimation for unseen objects in real
environments through direct regression, forming a uniform within-category representation
remains challenging.
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DualPoseNet [119] introduces a novel approach by stacking both an implicit and an
explicit pose decoder on a shared pose encoder. This architecture allows for complemen-
tary supervision during training, ensuring the consistency of the predicted pose between
the two decoders through an adaptive loss term. To further enhance its capabilities, Du-
alPoseNet incorporates a spherical fusion module designed to facilitate more efficient
learning from the input appearance and shape features. This method predicts a more
compact bounding box, achieves more accurate pose estimation results, and performs well
on instance-level tasks.

For addressing intra-class object variations, FS-Net [17] introduces a novel data aug-
mentation method designed to enhance efficient feature extraction. In the context of
category-level pose estimation, this approach proves valuable for handling objects with
diverse shapes. This method uses only a limited amount of real data for training, demon-
strating its proficiency in efficiently extracting category-level features from a small dataset.
It proves effective for tasks characterized by a limited number of samples, but its success
relies on the use of a high-performance and robust detector.

Centersnap [120] adopts a unique perspective by considering objects as spatial centers,
where each center encapsulates a complete representation of an object’s shape and pose.
Notably, objects within the same category consistently retain the same semantics, even when
their shapes are different. This approach is less demanding on computational resources
and is better suited for tasks with real-time requirements.

Networks of direct regression methods are easier to deploy, although somewhat
less able to cope with change. The subsequent emergence of methods that utilize prior
knowledge can significantly improve the overall performance.

3.2. Prior-Based Methods

Exploiting the prior knowledge in category-level pose estimation tasks can be an
effective method. By incorporating the prior knowledge learned in the provided instances,
more accurate estimates can be obtained. SPD [121] has introduced a prior-based framework
to tackle intra-class variation, which has become one of the mainstream approaches. The
simplified flow of the method based on prior knowledge is shown in Figure 13.

Figure 13. Typical flow of prior-based category-level pose estimation methods.

Subsequent work, ACR-Pose [122], emphasizes the importance of reconstructing
canonical NOCS representations. ACR-Pose employs an adversarial training scheme
consisting of a reconstructor and a discriminator to improve the network’s ability to
reconstruct high-quality canonical representations, enhancing the estimation accuracy,
especially in challenging intra-class scenarios. The use of adversarial reconstruction loss
has influenced subsequent category-level pose estimation methods, seeking to overcome
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inherent intra-class variation. It is perhaps less applicable for scenarios where occlusion is
common, as this method may fail in cases of occlusion or truncation.

SGPA [123] introduces a canonical prior model with shape deformation for pose esti-
mation, further enhancing the correlation using structural similarity dynamics adaptation.
However, the prediction based on the prior model may be less accurate when dealing with
significant shape differences between categories.

To minimize the effect of domain gaps caused by the use of synthetic data, DPDN [124]
proposes a method based on a deep prior deformation network, which introduces a self-
supervised objective through a type of coherent learning to improve the sensitivity to pose
changes. The method is suitable for situations where synthetic images are used for training.

RGB features are sensitive to color variations. In contrast, the introduction of additional
shape prior features makes the results more robust, and methods based on prior knowledge
are becoming popular.

3.3. Other Methods

In addition to the above main methods, there have been many other methods [8,125–127]
for category-level pose estimation in recent years. To address the potentially high compu-
tational costs of complex multi-stage methods, Li et al. [125] leverage RGB-D images for
single-stage object pose and shape estimation. Their method utilizes semantic primitives
within a generative model to allow semantic features to model diverse shapes and estab-
lish connections between the observed point cloud and implicitly generated shapes. The
optimization of an object’s shape in arbitrary poses is achieved by using a novel SIM(3)
invariant descriptor, delivering superior optimization results. However, it is important
to note that this method may not account for occlusion and could result in ambiguous
single-view estimations. Furthermore, utilizing implicit representations for shape inference
is more complex than direct regression of shape parameters.

Chen et al. [126] introduce a method that leverages category information without
relying on CAD models. Their approach involves synthesizing object images from various
viewpoints using a generative adversarial network, combining a gradient-based fitting
process with a parametric neural image synthesis module. This module can implicitly
represent the appearance, shape, and pose of an entire object class, which eliminates the
need for explicit CAD models for individual object instances. Notably, using only RGB
images as inputs, this method can accurately recover the orientation information. However,
achieving full 6DoF poses necessitates the incorporation of additional depth information to
overcome scale ambiguity.

OnePose [8] adopts the concept of visual localization, exclusively using RGB images
without reliance on CAD models. It can construct representations of specific objects from
simple video scans using only a few samples. This unique approach allows it to handle
objects from any class without the necessity for instance- or class-specific network training.
OnePose excels in delivering fast and accurate position estimation, all without the need
for prior knowledge. However, it is worth noting that the method relies on local feature
matching and may encounter challenges when dealing with untextured objects.

Lin et al. [127] propose a keypoint-based single-stage method for category-level pose
estimation only using a single RGB image as the input. Few studies have been conducted for
this task only through RGB images before this approach. This method detects the target ob-
ject from the input image and then performs pose estimation by predicting the 3D bounding
box projection in conjunction with PnP, and finds that accurate bounding box size prediction
is critical for category-level tasks. It has notable potential for robotics applications.

Tables 4 and 5 show performance comparison results of the category-level position
estimation methods on the NOCS dataset [116].
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Table 4. Performance of category level methods on REAL275 dataset.

Methods Years Input 5◦5 cm 10◦5 cm IoU50 IoU75

NOCS [116] 2019 RGB-D 10.0 25.2 78.0 30.1
SPD [121] 2020 RGB-D 21.4 54.1 77.3 53.2

6-PACK [128] 2020 RGB-D 33.3 - - -
DualPoseNet [119] 2021 RGB-D 35.9 66.8 79.8 62.2

FS-Net [17] 2021 RGB-D 28.2 60.8 92.2 63.5
ACR-Pose [122] 2021 RGB-D 36.9 65.9 82.8 66.0

SGPA [123] 2021 RGB-D 39.6 70.0 80.1 61.9
CAPTRA [129] 2021 D 62.16 - - -

DPDN [124] 2022 RGB-D 50.7 78.4 83.4 76.0
CATRE [130] + SPD 2022 RGB-D 54.4 73.1 - 43.6

CR-Net [131] 2021 RGB-D 34.3 47.2 79.3 55.9
RBP-Pose [132] 2022 RGB-D 48.1 79.2 - -
SSP-Pose [133] 2022 RGB-D 44.6 77.8 82.3 66.3
GenPose [134] 2023 D 60.9 84.0 - -

Table 5. Performance of category level methods on CAMERA25 dataset.

Methods Years Input 5◦5 cm 10◦5 cm IoU50 IoU75

NOCS [116] 2019 RGB-D 40.9 64.6 83.9 69.5
SPD [121] 2020 RGB-D 59.0 81.5 93.2 83.1

DualPoseNet [119] 2021 RGB-D 70.7 84.7 92.4 86.4
ACR-Pose [122] 2021 RGB-D 74.1 87.8 93.8 89.9

SGPA [123] 2021 RGB-D 74.5 88.4 93.2 88.1
CATRE [130] + SPD 2022 RGB-D 80.3 89.3 - 76.1

CR-Net [131] 2021 RGB-D 76.4 87.7 93.8 88.0
RBP-Pose [132] 2022 RGB-D 79.6 89.5 93.1 89.0
SSP-Pose [133] 2022 RGB-D 75.5 87.4 - 86.8
GenPose [134] 2023 D 84.4 89.6 - -

4. Datasets and Metrics
4.1. Datasets

Deep-learning-based methods greatly benefit from access to extensive and high-quality
training data. In this section, we provide an overview of some of the most commonly used
and representative datasets in object position estimation tasks, categorize them according to
whether they belong to the instance level or the category level, and describe the application
scenarios for which each dataset is suitable. The BOP Challenge [35] serves as a pivotal
initiative that organizes multiple 6DoF pose estimation datasets into a standardized format.
It is also classified according to whether the dataset belongs to the instance level or the
category level, and the application scenarios suitable for each dataset are described. This
unification not only simplifies the evaluation of various pose estimation methods, but
also fosters significant advancements in the development of deep learning-based pose
estimation techniques. The part of the used datasets shown in this paper comes from the
BOP website at https://bop.felk.cvut.cz/datasets/ (accessed on 1 February 2024). For a
detailed comparison of these datasets and their applicable scenarios, please refer to Table 6.
The sample presentations of some of the datasets are shown in Figure 14.

LineMOD (LM) [78], introduced by Hinterstoisser et al. at the 2012 ACCV conference,
stands as one of the most widely utilized datasets in the field of 6DoF pose estimation tasks.
It also plays a role in object detection tasks. The dataset contains 15 categories of daily
objects and comprises more than 18,000 real images, each accompanied by finely labeled
poses. LineMOD is suitable for pose estimation in cluttered scenes with minor occlusions.

https://bop.felk.cvut.cz/datasets/
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Figure 14. Examples of some datasets. (Left) Examples of LM, LM-O, T-LESS, and ITODD datasets
from BOP. (Right) Examples of YCB-V, TUD-L, NOCS and Objectron datasets from BOP.

Table 6. Comparison of object pose estimation datasets.

Dataset Years Levels Categories Suitable Scenes

LM [78] 2012 Instance-Level 15 Objects are cluttered and untextured with limited
viewpoints.

LM-O [79] 2014 Instance-Level 8 Objects are cluttered and more severely occluded.

Shapenet [135] 2016 Category-Level 16 Point cloud dataset of common objects in life with fine
segmentation.

T-LESS [12] 2017 Instance-Level 30 Industry-related scenes with few object textures, strong
symmetry, and mutual occlusion.

ITODD [13] 2017 Instance-Level 28 Industrial scenes with strong and scarce color
information in the case of random projections.

Siléane [136] 2017 Instance-Level 8 Different symmetry objects.

YCB-V [20] 2018 Instance-Level 21 Daily objects with occlusion in different light situations,
and applicable to the video needs of the object.

TUD-L/TYO-L [35] 2018 Instance-Level 24 Different light conditions.

NOCS [116] 2019 Category-Level 6 Category-level position of common objects, meet real
and synthetic dataset requirements.

Fraunhofer [137] 2019 Instance-Level 10 Industrial large-scale dataset, including different
modalities, is suitable for grasping tasks.

Objectron [138] 2021 Category-Level 9 Meeting generalizability and tracking task
requirements with large-scale multiple views.

Occlusion LineMOD (LM-O) [79], introduced by Brachmann et al. at ECCV 2014, has
been proposed to meet the requirements of severely occluded scenes. This dataset extends
a test set from LineMOD (LM) and involves photographing objects under three different
lighting conditions, introducing significant occlusion across eight object categories.

T-LESS [12], introduced by Hodan et al. at the WACV conference in 2017, is designed
for the challenging task of 6DoF pose estimation, particularly focusing on textureless
objects. This dataset contains 30 industrially relevant objects that lack apparent texture and
color information. These objects share similarities in shape and size, and exhibit symmetry,
which pose significant occlusion challenges when multiple objects are combined. T-LESS
includes 20 scenes of varying complexity and provides texture-free CAD models for each
object. Overall, T-LESS is a very challenging dataset in the 6DoF pose estimation task.

YCB-V [20], introduced in the context of PoseCNN, represents an extension of the
YCB dataset. This dataset comprises 21 objects characterized by adjusting the shapes and
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textures, and it is derived from 92 videos that encompass scenarios with occlusion and
different symmetries. These variations are influenced by image noise and diverse lighting
conditions. YCB-V includes a combination of both real and synthesized images, making it
suitable for application scenarios that involve daily scenes and 6DoF pose estimation based
on video sequences.

ITODD [13], introduced by Drost et al. at ICCVW 2017, is a dataset that contains
28 objects photographed in real industrial environments. This dataset specifically focuses
on mechanical parts within industrial settings, where color information is often limited.
Notably, each scene in ITODD is captured using two industrial sensors and three grayscale
cameras, which results in a high-quality dataset that offers valuable 3D industrial scenes.

TUD-L and TYO-L [35], both introduced in the 2018 BOP Challenge [35], offer dis-
tinctive pose estimation datasets designed for various environments and illumination
conditions. TUD-L comprises datasets featuring three moving objects, subjecting these
objects to eight distinct illumination conditions in the test images. Meanwhile, TYO-L in-
cludes 21 objects captured on four different tablecloths and under five diverse illumination
conditions. A notable feature of these datasets is their applicability to scenes with varying
lighting conditions encountered in daily life.

NOCS [116], which stands for Normalized Object Coordinate Space, was proposed by
He Wang et al. in 2019 for Category-Level 6D Object Pose and Size Estimation. It comprises
six object categories, including bottle, bowl, camera, can, laptop, and mug, along with a
distractor category. The NOCS dataset contains 31 indoor scenes and is divided into two
sub-datasets: the real dataset REAL25 and the virtual dataset CAMERA275. Notably, a
significant portion of current category-level pose estimation research relies on this dataset.

Siléane dataset [14], introduced in 2017, provides RGB-D images alongside corre-
sponding semantic segmentation labels. It serves as a small yet finely labeled semantic
segmentation dataset focused on outdoor scenes, and is provided with different symmetries
in eight object categories.

The Fraunhofer IPA Bin-Picking dataset [137], introduced in 2019, contains 10 cate-
gories of objects and includes depth maps, point clouds, and RGB maps. This dataset offers
large-scale data designed for complex industrial scenarios and multiple parts for industrial
grasping. It extends the scope of the Siléane dataset [136] to cover more diverse scenarios
suitable for deep learning. Additionally, it introduces two new industrial object categories.

Shapenet [135], proposed in 2016, is a point cloud dataset that comprises 16 large
categories and 55 small categories commonly found in daily life. Each large category
includes lots of model data, with multiple models corresponding to each category. Shapenet
provides various semantic annotations for each model, which supports the segmentation
of different instances of parts and is widely utilized in a range of visual tasks based on
point clouds.

Objectron [138], proposed in CVPR 2021 by Ahmadyan et al. Contains nine categories
of objects with 4 million labeled images from 14,819 videos. The dataset is designed for
category-level pose estimation, with each category consisting of hundreds of examples
captured under different lighting conditions. Significantly, these videos showcase stationary
objects from various perspectives, consistently providing bounding boxes, also making
them well-suited for tracking tasks. The data collection took place in the wild environment,
enhancing its real-world generalizability.

4.2. Metrics

Different algorithms can be evaluated more fairly under the same evaluation metrics,
and the following evaluation metrics are commonly used in 6DoF pose estimation:

ADD (Average Distance of Model Points): ADD measures whether the average devia-
tion of the transformed model points is less than a certain value of the diameter of the object.
The commonly used index value is ADD-0.1d, and it is considered that the estimation is
correct when the distance is less than 10% of the size of the model diameter.
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2D Projection Metric: This metric calculates the average distance between the projec-
tions of the 3D model points given the estimated pose and the ground truth pose. If the
distance between projections is less than five pixels, the pose is considered correct. Note
that a CAD model of the target object needs to be known for this metric.

n◦n cm Metric: The effectiveness of the pose estimation is tested by measuring the
rotation angle and translation distance errors. A common metric is 5°5 cm, meaning that
the pose estimation is considered correct if the absolute value of the error of each rotation
angle does not exceed 5°, and the absolute value of the error of the translation position
from the real data does not exceed 5 cm. Additionally, 5°10 cm and 10°10 cm are commonly
used as numerical settings. For symmetric objects, the ADD (-S) metric is used, i.e., the
distance to the closest point is used instead of the average distance calculation.

VSD (Visible Surface Difference): VSD considers only the visible object part and treats
indistinguishable poses as equivalent. It is applicable for symmetric and occlusion cases.
The higher the overlap between the estimated pose and the true value in the visible region,
the lower the error. This metric is often used in research work on the T-LESS dataset.

MSSD (Maximum Symmetric Surface Distance): MSSD measures the maximum dis-
tance deviation of a surface point measured in 3D space. It is relevant for robotics applica-
tions. The smaller the maximum distance deviation between the surface of the 3D object in
the estimated pose and the surface points in the true value pose, the smaller the error.

MSPD (Maximum Symmetric Projection Distance): MSPD measures the maximum
deviation perceivable on the image plane and is relevant for augmented reality applications.
It calculates the maximum deviation of the 2D profile of an object on the image plane. It is
similar to MSSD, but calculates 2D projection. The smaller the maximum deviation of the
2D contour in the estimated pose from the true pose contour, the smaller the error.

AR (Average Recall): In the BOP Challenge [35], the pose error is measured by the
average of three error functions: Visible Surface Difference (VSD), Maximum Symmetric
Surface Distance (MSSD), and Maximum Symmetric Projection Distance (MSPD).

5. Analysis and Possible Future Directions
5.1. Analysis of Task

Convolutional neural networks, are good at establishing mapping relationships be-
tween 2D images to 3D objects, and methods utilizing deep learning of the networks have
been shown to significantly improve pose estimation accuracy and robustness [139–141]. It
can be known from the results of Tables 1 and 3 that, in general, the same method frame-
work performs better in terms of accuracy when based on RGB-D, but it has an efficiency
advantage when based on RGB images only. As shown in Table 7, based on the previous
content, we summarize the applicable scenarios and limitations of different algorithms.

Estimating rotations is significantly more complex and difficult than estimating trans-
lations. Common rotation representations, such as rotation matrix, quaternion, and Euler
angle, are usually discontinuous in 3D Euclidean space, which is very challenging for
neural network training. Sundermeyer et al. [75] utilize autoencoders to learn implicit 3D
orientation features directly from images, embedding rotation information in the latent
representation. Zhou et al. [142] introduce a continuous representation definition that is of
great benefit to deep-learning-based methods.

According to the characteristics of different data sets in Table 6, in industrial applica-
tions, metal parts often lack color information, the surface shows different reflections under
different lighting conditions, and the objects are mostly symmetric, with smooth surfaces
and less texture information. In these situations, methods based on RGB images may not
be so effective, the use of RGB-D or point cloud data needs to be considered. Symmetry
is also a widespread problem in pose estimation tasks. To handle it, methods such as
defining a suitable loss function [20,63], utilizing geometric constraints and transformations
designed for rotationally symmetric objects [60], or employing multi-view fusion [34] can
be considered.
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Table 7. Comparison of pose estimation algorithms based on deep learning.

Methods Level Advantages or Applicable Scenarios Limitation

Regression-based methods Instance-level Simple design and wide application. Applicability to complex
environments may be limited.

Feature-based methods Instance-level Situations with rich features and not
severe occlusion.

Symmetry needs to be considered.

Fusion-based methods Instance-level Industrial applications, are suitable
for occlusion.

The method design is relatively
complex.

Point cloud-based methods Instance-level Robot grabbing-related tasks. Surface reflections may result in
poorer results.

Regression-based methods Category-level Everyday objects, perform better in
generalization.

Poor handling of intra-category
differences.

Prior-based methods Category-level More robust to intra-class differences
and color changes.

High demand for computing
resources.

While in daily life scenarios, CAD models or depth maps are not readily available
for many objects, color images are very easy to capture. Here, it is possible to consider
using only RGB images as the input or a category-level method. Compared with instance-
based methods, category-level pose estimation methods have a better generalization abil-
ity to different shapes when category information is known. From the information in
Tables 4 and 5, we can know that there is still much room for improvement in category-level
pose estimation.

When considering training samples, tools for labeling object poses are provided by
Label Fusion [143], among others. However, labeling 6D poses in real images is both
expensive and unavoidably subject to a not insignificant percentage of errors [16,61]. In
contrast, synthetic images are advantageous due to their low time cost and storage efficiency.
Some approaches [32,38] utilize synthetic images for training or explore self-supervised
learning methods to deal with the problem that labeling real images is difficult. However,
the drawbacks of synthetic-to-real must not be overlooked, and the domain gap generated
by only training on synthetic images could affect their use in real-world scenarios. To
address this, referencing techniques used in the BOP Challenge [144], which generate
synthetic images through physically based rendering methods, can help minimize the
domain gap between synthetic and real images. Also, the treatment of DPDN [124] in
category-level pose estimation can be referenced.

The refinement method has proven very effective for initially rough poses. There are al-
ready some methods that improve accuracy through refinement, the usage of PoseCNN [20]
results in DeepIM [33] and the combination of Repose [74] and PVNet [46] are successful
examples. However, while refinement enhances accuracy, it also entails some efficiency
trade-offs for the method.

To meet the real-time requirements of the task, an end-to-end pose estimation method
based on sparse feature matching can be considered, or a method combined with detection
results can be designed. Generally, sparse feature matching methods are faster than dense
matching. Compared with segmentation-based methods, object detection-based methods
can better meet the speed requirements of processing before pose estimation. But time
efficiency is not the only goal, multi-stage approaches may be more time-consuming than
end-to-end approaches, but each module can be optimized independently to improve
accuracy and are easier to modularize for different specific tasks.

5.2. Challenges and Possible Future Directions

In recent years, driven by the rapid development of computer vision, deep-learning-
based pose estimation methods have made significant progress. However, these methods
still face various challenges and a lot of research space exists.
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One of the widespread challenges in various application scenarios is how to achieve
accurate pose estimation under low texture, severe occlusion, cluttered background, or
changing lighting conditions. To solve these problems, previous methods have made
many efforts. For example, using RGB-D images may address the shortcomings of only
using RGB or point clouds. Or incorporating geometric constraints and domain-specific
knowledge into the network architecture and loss function design to enhance the model’s
ability to utilize prior information. But there is still room for improvement.

Another challenge is the need for methods based on small samples, or even zero
samples, to estimate the pose of new objects, and how to improve the generalization perfor-
mance of the method. Achieving accurate pose estimation for specific object instances often
demands extensive training data, limiting generalization capability. Therefore, a significant
trend in this field is the development of approaches that address small sample challenges.
One promising approach is category-level pose estimation, which does not rely on spe-
cific objects, can be trained with a smaller sample size, and offers robust generalization
to unseen instances. Data augmentation techniques, such as symmetry transformations
and illumination variations, contribute to enhanced model robustness against pose and
appearance variations. Bridging the gap between synthetic and real images is an ongoing
challenge in this context, and Blenderproc’s method [144] offers a valuable reference.

The third possible direction is that when facing tasks with high accuracy or speed
requirements, integration with other advanced knowledge may be required. There are
an increasing number of methods that use object detection [145] or segmentation meth-
ods [146] in the initial stage of pose estimation. For example, SAM [146] can be effectively
utilized during the training process of POPE [147]. Convolutional Neural Networks (CNNs)
excel at capturing local information, while transformer architectures [148] are adept at
handling global information. Although transformers have gained prominence in tasks like
human body pose estimation, their adoption in 6DoF pose estimation is relatively limited.
Transformer has shown excellent performance in many areas, which means that combining
CNN and Transformer may lead to better performance. While CNNs currently dominate
the landscape of network architectures, recent efforts [96,107,149,150] have explored the in-
tegration of attention mechanism modules, yielding promising results. Transformers have
also been used by several methods [151–153] to address structural irregularities present in
point cloud data.

The fourth is to use multi-view information. Important factors such as physical and
semantic information in the same scene are shared in different views, and better representa-
tion can be obtained by utilizing multiple views [154]. In the field of deep-learning-based
pose estimation, the limitations of a single perspective are gradually emerging. The uti-
lization of multiple viewpoints is poised to be an important direction for the future of
pose estimation. These multiple viewpoints offer a more comprehensive representation of
the target object, effectively alleviating visual ambiguities, and multi-view data are easily
accessible in tasks such as industrial object manipulation. [155] aggregats 2D–3D Distri-
butions of Multiple Views for Initial Position Estimation and Refinement One promising
avenue involves the learning of optimal observation viewpoints. For instance, Gen6D [156]
initially extracts target region features through a dedicated target detector and subsequently
employs a viewpoint selection module to match these features, pinpointing the reference
viewpoint most akin to the target viewpoint. This process simplifies regression challenges.
Alternatively, different views can be harnessed to iteratively optimize pose estimation. By
initially conducting coarse pose estimation using global features and then fine-tuning it
through the alignment of detailed features from various viewpoints, a step-wise refinement
of the pose is realized. This progression, from coarse to fine, has practical applications in
tasks such as robot grasping, where multi-view data can inform the selection of optimal
grasping positions, enhancing overall operational efficiency [157].

The final possibility is to propose new datasets to meet the demands of the task for
changes in usage scenarios. Existing datasets, as shown in Table 6, while widely used,
may have limitations in terms of scenario diversity and data types. To cater to the varied
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demands of applications across different scenarios, future datasets with richer scenarios and
diverse data types are expected to emerge. Such datasets will play a key role in advancing
the development of a unified framework for cross-modal pose estimation, accommodating
a wide range of usage requirements.

5.3. Conclusions

In this study, we categorize the 6DoF pose estimation methods into two groups:
instance-level and category-level. We analyze the applicable scenarios of different methods
in each category, and also provide method recommendations based on the challenges faced
by different application scenarios. Although the 6DoF method has developed rapidly in
recent years, there is still a lot of room for in-depth research. This article also provides
simple suggestions for possible future research directions. In the future, we would like to
extend this work to the video field, as well as real-time pose estimation and robot grabbing.
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