Design of Mantis-Shrimp-Inspired Multifunctional Imaging Sensors with Simultaneous Spectrum and Polarization Detection Capability at a Wide Waveband
Abstract
:1. Introduction
2. Design and Result
2.1. Design of Metal–Dielectric Composite Film Filter
2.2. Design of Polarization Filter
2.3. Design of Spectral Polarization Multifunctional Device
3. Result and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Endler, J.A.; Westcott, D.A.; Madden, J.R.; Robson, T. Animal visual systems and the evolution of color patterns: Sensory processing illuminates signal evolution. Evolution 2005, 59, 1795–18181. [Google Scholar] [CrossRef]
- Rosenthal, G.G.; Ryan, M.J. Visual and acoustic communication in non-human animals: A comparison. J. Biosci. 2000, 25, 285–290. [Google Scholar] [CrossRef]
- Kelley, L.A.; Kelley, J.L. Animal visual illusion and confusion: The importance of a perceptual perspective. Behav. Ecol. 2014, 25, 450–463. [Google Scholar] [CrossRef]
- Gibson, J.J. Visually controlled locomotion and visual orientation in animals. Br. J. Psychol. 1958, 49, 182–194. [Google Scholar] [CrossRef]
- Pinto, L.H.; Enroth-Cugell, C. Tests of the mouse visual system. Mamm. Genome 2000, 11, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Osorio, D.; Vorobyev, M. A review of the evolution of animal colour vision and visual communication signals. Vis. Res. 2008, 48, 2042–2051. [Google Scholar] [CrossRef] [PubMed]
- Medathati, N.K.; Neumann, H.; Masson, G.S.; Kornprobst, P. Bio-inspired computer vision: Towards a synergistic approach of artificial and biological vision. Comput. Vis. Image Underst. 2016, 150, 1–30. [Google Scholar] [CrossRef]
- Liao, F.; Zhou, Z.; Kim, B.J.; Chen, J.; Wang, J.; Wan, T.; Chai, Y. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 2022, 5, 84–91. [Google Scholar] [CrossRef]
- Duparré, J.; Dannberg, P.; Schreiber, P.; Bräuer, A.; Tünnermann, A. Thin compound-eye camera. Appl. Opt. 2005, 44, 2949–2956. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Liu, C.; Zhang, Y.; Xu, H.; Wang, Y.; Yu, W. Multispectral curved compound eye camera. Opt. Express 2020, 28, 9216–9231. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.; Schwalbe, E.; Maas, H.G. Validation of geometric models for fisheye lenses. ISPRS J. Photogramm. Remote Sens. 2009, 64, 259–266. [Google Scholar] [CrossRef]
- Gong, M.; He, S.; Guo, R.; Wang, W. Cat-eye effect reflected beam profiles of an optical system with sensor array. Appl. Opt. 2016, 55, 4461–4466. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, Z.; Yi, K.; Han, Y.; Ren, Z. Snake-hot-eye-assisted multi-process-fusion target tracking based on a roll-pitch semi-strapdown infrared imaging seeker. J. Bionic Eng. 2022, 19, 1124–1139. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.F. Single-camera panoramic stereo imaging system with a fisheye lens and a convex mirror. Opt. Express 2011, 19, 5855–5867. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, C.; Xu, H.; Zhang, Y.; Yu, W. A compact bionic compound eye camera for imaging in a large field of view. Opt. Laser Technol. 2021, 135, 106705. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Y.; Wu, D.; Zhang, G.; Wang, Z.; Feng, X.; Yu, W. Biomimetic curved compound-eye camera with a high resolution for the detection of distant moving objects. Opt. Lett. 2020, 45, 6863–6866. [Google Scholar] [CrossRef]
- Zheng, Y.; Song, L.; Huang, J.; Zhang, H.; Fang, F. Detection of the three-dimensional trajectory of an object based on a curved bionic compound eye. Opt. Lett. 2019, 44, 4143–4146. [Google Scholar] [CrossRef]
- Marshall, J.; Oberwinkler, J. The colourful world of the mantis shrimp. Nature 1999, 401, 873–874. [Google Scholar] [CrossRef]
- Gagnon, Y.L.; Templin, R.M.; How, M.J.; Marshall, N.J. Circularly polarized light as a communication signal in mantis shrimps. Curr. Biol. 2015, 25, 3074–3078. [Google Scholar] [CrossRef]
- Zhong, B.; Wang, X.; Gan, X.; Yang, T.; Gao, J. A biomimetic model of adaptive contrast vision enhancement from mantis shrimp. Sensors 2020, 20, 4588. [Google Scholar] [CrossRef]
- Altaqui, A.; Sen, P.; Schrickx, H.; Rech, J.; Lee, J.W.; Escuti, M.; Kudenov, M. Mantis shrimp–inspired organic photodetector for simultaneous hyperspectral and polarimetric imaging. Sci. Adv. 2021, 7, eabe3196. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.C.; Flitton, J.C.; Hopcraft, K.I.; Jakeman, E.; Jordan, D.L.; Walker, J.G. Improving visibility depth in passive underwater imaging by use of polarization. Appl. Opt. 2003, 42, 2794–2803. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Khan, A.; Quinlan, R.; Yaroslavsky, A.N. Polarization-sensitive multimodal imaging for detecting breast cancer. Cancer Res. 2014, 74, 4685–4693. [Google Scholar] [CrossRef]
- Tukimin, S.N.; Karman, S.B.; Ahmad, M.Y.; Zaman, W.S.W.K. Polarized light-based cancer cell detection techniques: A review. IEEE Sens. J. 2019, 19, 9010–9025. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, B.; Su, X.; Wang, L.; Li, K. Underwater imaging based on LF and polarization. IEEE Photonics J. 2019, 11, 1–9. [Google Scholar] [CrossRef]
- Wilson, W.E.; Ferris, R.H.; Axtens, P.; Brown, A.; Davis, E.; Hampson, G.; Wark, R.M. The Australia telescope compact array broad-band backend: Description and first results. Mon. Not. R. Astron. Soc. 2011, 416, 832–856. [Google Scholar] [CrossRef]
- Göröcs, Z.; Ozcan, A. On-chip biomedical imaging. IEEE Rev. Biomed. Eng. 2012, 6, 29–46. [Google Scholar] [CrossRef]
- Wirgin, A.; Maradudin, A.A. Resonant response of a bare metallic grating to S-polarized light. Prog. Surf. Sci. 1986, 22, 1–99. [Google Scholar] [CrossRef]
- Lambrechts, A.; Gonzalez, P.; Geelen, B.; Soussan, P.; Tack, K.; Jayapala, M. A CMOS-compatible, integrated approach to hyper-and multispectral imaging. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014; pp. 10–15. [Google Scholar]
- Yang, J.; Cui, K.; Cai, X.; Xiong, J.; Zhu, H.; Rao, S.; Zhang, W. Ultraspectral imaging based on metasurfaces with freeform shaped meta-atoms. Laser Photonics Rev. 2022, 16, 2100663. [Google Scholar] [CrossRef]
- Vulis, D.I.; Li, Y.; Reshef, O.; Camayd-Muñoz, P.; Yin, M.; Kita, S.; Mazur, E. Monolithic CMOS-compatible zero-index metamaterials. Opt. Express 2017, 25, 12381–12399. [Google Scholar] [CrossRef]
- Lee, H.; Chen, T.; Li, J.; Yang, K.Y.; Jeon, S.; Painter, O.; Vahala, K.J. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics 2012, 6, 369–373. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, S.; Ning, Y.; Dun, X.; Dong, S.; Wang, Z.; Cheng, X. Grayscale-patterned integrated multilayer-metal-dielectric microcavities for on-chip multi/hyperspectral imaging in the extended visible bandwidth. Opt. Express 2023, 31, 14027–14036. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, P.; Geelen, B.; Blanch, C.; Tack, K.; Lambrechts, A. A CMOS-compatible, monolithically integrated snapshot-mosaic multispectral imager. NIR News 2015, 26, 6–11. [Google Scholar] [CrossRef]
- Okamoto, K. Fundamentals of Optical Waveguides; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Berning, P.H.; Turner, A.F. Induced transmission in absorbing films applied to band pass filter design. JoSA 1957, 47, 230–239. [Google Scholar] [CrossRef]
- MacLeod, H.A. Thin-Film Optical Filters, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Brundrett, D.L.; Glytsis, E.N.; Gaylord, T.K. Homogeneous layer models for high-spatial-frequency dielectric surface-relief grat-ings: Conical diffraction and antireflection designs. Appl. Opt. 1994, 33, 2695–2706. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, C.T.; Chen, P.; Zhang, Y.H.; Liu, S.J.; Chen, Q.M.; Ge, S.-J.; Hu, W.; Lu, Y.-Q. Pancharatnam-berry phase reversal via opposite-chirality-coexisted superstructures. Light Sci. Appl. 2022, 11, 8. [Google Scholar] [CrossRef]
- Xu, M.; Wang, C.; Wang, K.; Shi, H.; Li, Y.; Jiang, H. Polarization Super-Resolution Imaging Method Based on Deep Compressed Sensing. Sensors 2022, 22, 9676. [Google Scholar] [CrossRef]
- Goldstein, D.H. Polarized Light, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar] [CrossRef]
Channel 1 | Channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel 6 | Channel 7 | Channel 8 | Channel 9 | Channel 10 | Channel 11 | Channel 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Thickness of the resonator (nm) | 112 | 124 | 136 | 150 | 164 | 178 | 190 | 200 | 212 | 224 | 242 | 250 |
Wavelength (nm) | 472 | 502 | 537 | 571 | 614 | 655 | 686 | 719 | 752 | 792 | 843 | 871 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Wang, S.; Gao, B.; Li, C.; Yu, W. Design of Mantis-Shrimp-Inspired Multifunctional Imaging Sensors with Simultaneous Spectrum and Polarization Detection Capability at a Wide Waveband. Sensors 2024, 24, 1689. https://doi.org/10.3390/s24051689
Wang T, Wang S, Gao B, Li C, Yu W. Design of Mantis-Shrimp-Inspired Multifunctional Imaging Sensors with Simultaneous Spectrum and Polarization Detection Capability at a Wide Waveband. Sensors. 2024; 24(5):1689. https://doi.org/10.3390/s24051689
Chicago/Turabian StyleWang, Tianxin, Shuai Wang, Bo Gao, Chenxi Li, and Weixing Yu. 2024. "Design of Mantis-Shrimp-Inspired Multifunctional Imaging Sensors with Simultaneous Spectrum and Polarization Detection Capability at a Wide Waveband" Sensors 24, no. 5: 1689. https://doi.org/10.3390/s24051689