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Abstract: Satellites frequently encounter atmospheric haze during imaging, leading to
the loss of detailed information in remote sensing images and significantly compromising
image quality. This detailed information is crucial for applications such as Earth observation
and environmental monitoring. In response to the above issues, this paper proposes an end-
to-end multi-scale adaptive feature extraction method for remote sensing image dehazing
(MSD-Net). In our network model, we introduce a dilated convolution adaptive module to
extract global and local detail features of remote sensing images. The design of this module
can extract important image features at different scales. By expanding convolution, the
receptive field is expanded to capture broader contextual information, thereby obtaining a
more global feature representation. At the same time, a self-adaptive attention mechanism
is also used, allowing the module to automatically adjust the size of its receptive field
based on image content. In this way, important features suitable for different scales can
be flexibly extracted to better adapt to the changes in details in remote sensing images. To
fully utilize the features at different scales, we also adopted feature fusion technology. By
fusing features from different scales and integrating information from different scales, more
accurate and rich feature representations can be obtained. This process aids in retrieving
lost detailed information from remote sensing images, thereby enhancing the overall image
quality. A large number of experiments were conducted on the HRRSD and RICE datasets,
and the results showed that our proposed method can better restore the original details
and texture information of remote sensing images in the field of dehazing and is superior
to current state-of-the-art methods.

Keywords: remote sensing for defogging; dilated convolution; self-adaptive attention;
multi-scale feature extraction

1. Introduction
In the field of computer vision, remote sensing image dehazing is one of the most

popular research directions. The blurring of images is caused by the presence of suspended
particles such as dust and smoke in the atmosphere, which absorb and scatter light, re-
sulting in a thin layer of haze that reduces visual quality. This can significantly affect
the performance of various computer vision tasks, such as remote sensing image object
detection and recognition.

At present, the mainstream image defogging research is mainly divided into the
following types. One is the image defogging method combining atmospheric scattering
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model and deep learning [1]. Through the estimation of transmission map and atmospheric
light, and then through the training of network model, the defogging image is finally
obtained. However, because the large atmospheric scattering model itself is a highly
simplified physical model, the atmospheric light and transmission map are predicted in
deep learning; there will be large errors, and the defogging effect is not ideal. The other is to
estimate the atmospheric light value and transmittance without relying on the atmospheric
scattering model. It is an end-to-end image defogging method, which can directly learn
the features from the image and countermeasure network (GAN), and is widely used [2].
By training a generator and a discriminator, the defogging image is outputted. At the
same time, there are some defogging methods based on deep convolutional neural network
(DCNN), such as residual network and densenet [3]. Many studies show that the end-
to-end deep learning method achieves better defogging effect than the method based on
physical model and prior knowledge.

A key aspect of remote sensing image dehazing is multi-scale feature extraction [4].
The capture of different information by features at different scales plays an important role
in the comprehensive understanding of the scene. Multiple methods have been proposed
to extract multi-scale features, including pyramid-based methods and multi-scale convo-
lutional neural networks (CNN). These methods aim to capture local details and global
contextual information, achieving a more comprehensive representation of remote sensing
images. In this study, we utilized dilated convolutions with different dilation rates for
multi-scale feature extraction [5]. Dilated convolution shows good performance in cap-
turing multi-scale information without significantly increasing computational complexity.
By using dilated convolutions with different dilation rates, features can be extracted at
multiple scales, including subtle local details and a broader global context. The choice
of different expansion rates allows us to control the receptive field of each convolutional
layer and captures information at different scales. This flexibility enables us to adaptively
extract important features at different granularity levels, effectively addressing the chal-
lenges of scale changes in remote sensing images. In addition, we also use feature fusion
technology to integrate the extracted multi-scale features, promoting more comprehensive
representation and enhancing the restoration of details in dehazing images.

The attention mechanism [6] can automatically adjust the weights of each pixel based
on the content and contextual information of the image, thereby paying more attention to
important features and regions. This can effectively improve the effect of image dehazing
and reduce interference with irrelevant information. Self-adaptive attention mechanism is
a commonly used attention mechanism that can automatically learn the weights of each
position based on image features and contextual information. In remote sensing image
dehazing, the self-adaptive attention mechanism can adaptively adjust weights based on
different regions and features of the image and focus more attention on important details
and structures. This can improve the ability of the dehazing model to recover details in
remote sensing images and reduce the impact on noise and irrelevant information. By
introducing a self-adaptive attention mechanism, our method can better capture important
detailed information in remote sensing image dehazing. The self-adaptive attention mecha-
nism can automatically adjust weights based on the characteristics and content of remote
sensing images, allowing the model to pay more attention to key details and structures in
the image. This can improve the defogging effect, restore important information obscured
by haze in remote sensing images, and provide clearer and more accurate image results.

In this paper, we have the following three contributions:
Haze remote sensing image dataset: Preprocess the HRRSD dataset and synthesize

a haze remote sensing image dataset based on atmospheric scattering models using at-
mospheric light values and transmittance for model training and evaluation. Set the
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atmospheric light value parameters of the atmospheric scattering model between 0.75 and
1.0 and the transmittance between 0.25 and 0.75 and generate three different degrees of
haze remote sensing images based on different atmospheric light values and transmittance:
mild, moderate, and severe.

Self-adaptive attention mechanism: Introduce a self-adaptive attention mechanism
into the model, for feature maps of different scales in the channel dimension. The weight of
the channel is adaptively adjusted to effectively capture important feature information of
different scales and improve the expression ability of the features.

Multi-scale adaptive feature extraction module: Propose a multi-scale adaptive feature
extraction module. Then, adjust the model to reach its optimal state by increasing the
number of modules and changing the network depth. These feature extraction modules
can capture the details and structure of images at different scales and use self-adaptive
attention mechanisms to automatically adjust weights, highlight key detailed information,
thereby improving the dehazing effect and obtaining clearer and more accurate image
restoration results.

2. Related Works
The goal of remote sensing image dehazing is to improve the visibility and contrast

of the image by eliminating particles such as water vapor and suspended particles in
the atmosphere. In practice, people usually adopt two main methods to achieve this
goal: physical model-based methods and deep learning-based methods. The method
based on physical models utilizes atmospheric light transmission models to describe the
propagation process of light in the atmosphere. These methods require first estimating
parameters such as atmospheric light and transmittance, and then restoring the original
image through deconvolution or optimization algorithms. These methods are based on the
accurate modeling of atmospheric light transmission processes and can effectively remove
the influence of atmospheric shading. However, methods based on physical models often
require accurate prior information and complex computational processes, which may have
certain limitations for complex scenarios and changing atmospheric conditions. In contrast,
deep learning-based methods directly learn the mapping relationship of image dehazing
by training convolutional neural networks (CNNs). These methods can automatically learn
feature representations and dehaze maps in images through a large amount of annotated
data and end-to-end training of deep networks. This data-driven approach has strong
flexibility and generalization ability and can adapt to different remote sensing images and
atmospheric conditions. In addition, deep learning-based methods typically have fast
processing speed and low computational complexity, making them suitable for real-time
applications and large-scale data processing.

2.1. Physical Model-Based Remote Sensing Image Dehazing

The early dehazing models used atmospheric scattering models to solve the problem of
haze removal and established models based on the process of foggy imaging. It consists of
an incident light attenuation model and an atmospheric light imaging model. The dehazing
process uses prior knowledge or estimates multiple unknown parameter variables in the
model, and then directly derives the fog image from the foggy image. The DehazeNet
proposed by Cai et al. [7] was the first to apply convolutional neural networks to dehazing
tasks. The network takes foggy images as input and outputs predicted transmittance
maps, reconstructing clear dehazing images based on atmospheric scattering models.
The AOD-Net proposed by Li et al. [8] does not estimate atmospheric light values and
transmission matrices separately, but directly reconstructs fog-free images through an
integrated lightweight CNN. Zhang et al. [1] proposed a new dense connection encoder–
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decoder structure, combined with multi-level pyramid pooling modules, for estimating
transmission maps. This network is optimized using a newly introduced edge loss function.
To enhance the integration of structural information between the estimated transmission
image and the dehazing result, a joint discriminator within a generative adversarial network
framework is introduced. This discriminator assesses whether the dehazing image and the
estimated transmission image are authentic or synthetic.

The combination of atmospheric scattering models and deep learning methods has
significantly improved the effectiveness of image dehazing. Du et al. [9] proposed a direct
deep learning method that achieves image dehazing by bypassing the transmission map
estimation step through recursive deep residual learning. By introducing a discriminator
and a loss function adapted to foggy conditions, the perceptual quality of dehazing images
is optimized. Meanwhile, halo-like artifacts are eliminated through guided filtering. Zhao
et al. [10] proposed a two-stage weakly supervised dehazing framework called RefineDNet.
In the first stage, visibility is restored using a dark channel prior method. Subsequently,
in the second stage, adversarial learning was performed on unpaired foggy and clear
images to improve the initial dehazing results in the first stage to enhance realism. In
addition, in order to achieve higher quality results, an effective perception fusion strategy
has been introduced to integrate different dehazing outputs. He et al. [11] proposed a
dark channel prior method for removing haze from a single input image. Based on a key
observation, the local areas of most outdoor fog-free images contain pixels with very low
intensity in at least one color channel. Using this prior and haze imaging model, they
could directly estimate the thickness of haze and restore high-quality haze-free images.
Zhu [12] created a linear model from a prior model to model the scene depth of haze images
and used supervised learning methods to learn the model parameters for restoring depth
information. Transmittance was estimated through depth maps of haze images and scene
radiance was restored through atmospheric scattering models to effectively remove haze
from the images.

2.2. Deep Learning-Based Remote Sensing Image Dehazing

To overcome the limitations of physical models, end-to-end network models have
emerged to achieve dehazing directly. Ren et al. [13] introduced a multi-scale deep neural
network to learn the mapping between blurred images and their corresponding trans-
mission maps. This network comprises a coarse-grained component for predicting the
global transmission map from the entire image and a fine-grained component for local
optimization, aiming to achieve single image dehazing. Researchers proposed an algorithm
based on conditional generative adversarial network cGAN [14], which introduces an
encoder and decoder architecture. By introducing VGG features and regularizing gradi-
ent priors, the cGAN formula is further optimized to generate dehazing images. Engin
et al. [2] proposed a cycle dehaze, which trains the network by inputting clear and blurred
images in a non-paired manner. This method improves cycle GAN by combining cyclic
consistency and perceptual loss, improving the quality of texture information recovery
and generating haze-free images. Ma et al. [15] developed a dark channel model, which
optimizes the transmission map through transmission coefficients to achieve haze removal.
Zhang et al. [16] proposed a three-scale encoder and a fusion module that can efficiently
and directly learn fogless images, achieving image dehazing.

With the continuous development of deep learning, many scholars have proposed
numerous new dehazing models. Chen et al. [17] proposed an end-to-end-gated context ag-
gregation network to directly recover the final fog-free image. Liu et al. [18] proposed Grid-
DehazeNet for single image dehazing, where preprocessing, backbone, and post-processing
modules work together to achieve attention-based multi-scale estimation and effectively
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reduce artifacts. In their subsequent research, they proposed GridDehazeNet+ [19], which
is an improvement over GridDehazeNet [18], which no longer relies on atmospheric scatter-
ing models and introduces grid structures and spatial channel attention blocks, enhancing
multi-scale estimation and feature fusion capabilities. Ren et al. [20] calculated pixel level
confidence maps based on the appearance differences between different inputs to mix
the exported input information and pre-serve regions with good visibility. Xu et al. [21]
proposed the concept of “virtual depth”, where the cover plays a role in haze detection in
natural images, providing clues to the foreground and background. Through iterative use
of defogging operators, haze is gradually removed. Mei et al. [22] employed a progressive
feature fusion UNet to directly learn the highly non-linear transformation function from
observed foggy images to non-foggy real images, thereby accomplishing dehazing. In the
dehazing task, generative adversarial networks (GANs) have also been widely applied.
Dong et al. [23], with FD-GAN, used the proposed fusion discriminator to generate dehaz-
ing images that are more natural, realistic, with less color distortion, and fewer artifacts
by incorporating frequency information into additional prior information. Dong et al. [24]
proposed a multi-scale-enhanced dehazing network based on the U-Net architecture, which
introduces a reinforced subtraction operation enhancement strategy in the decoder of the
proposed model. By enhancing the decoder, the dehazing image is gradually restored.
Huang et al. [25] proposed that cGAN combines the information of RGB and SAR images
to eliminate image blur. Shao et al. [26] proposed a domain adaptive paradigm that incor-
porates real, haze images into dehazing training by utilizing the characteristics of clear
images, further improving domain adaptability and ultimately achieving dehazing. Yin
et al. [27] proposed an encoder–decoder framework, with pyramid pooling operation, and
also proposed a novel parallel spatial channel attention block, which was applied at the
end of the encoder to guide the decoder to reconstruct clearer images.

In the field of remote sensing, there are also many dehazing models that are specif-
ically designed for remote sensing images. Li et al. [28] proposed a two-stage dehazing
neural network, FCTF-Net, which improves the dehazing effect of remote sensing images
through multi-scale feature extraction and result refinement [29]. Hong et al. [30] designed
a dehazing network using a knowledge distillation method. Wu et al. [31] used the idea
of contrastive learning to mine information by using fuzzy images and clear images as
negative samples and positive samples, respectively. Huang et al. [32] proposed DCRD-
Net, which can accurately remove haze in remote sensing images and accurately restore
details. Wang et al. [33] proposed a feature pyramid-based PFE that utilizes complementary
features from different CNN layers to assist in clear image prediction. Huang et al. [34]
introduced self-filtering blocks to eliminate redundant features, improve the representation
ability of learning features, and achieve the restoration of image content. Jin et al. [35] ex-
tracted feature representations from pre-trained DINOViT modules to recover background
information, introduced uncertainty feedback learning, focused on non-uniform fog areas,
and iteratively improved dehazing output based on uncertainty maps using feedback
networks. Guo et al. [36] proposed SCANet, which enhances foggy occluded areas through
attention generation networks and scene reconstruction networks, restricts attention maps
by utilizing brightness differences in images, and ultimately achieves effective dehazing.

3. Method
In this section, we will provide a detailed description of the design of the MSD-Net

model. As shown in Figure 1, the model takes fog images as input. Firstly, the input image
is processed through a shallow feature extraction module. Next, the image enters an archi-
tecture with multiple jump connections and multi-scale-dilated convolutional self-adaptive
attention mechanisms. The multi-scale-dilated convolutional self-adaptive attention mod-
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ule in this architecture extracts multi-scale features from images. By performing dilated
convolution operations, the model can capture the details and contextual information
of images in different receptive fields. The self-adaptive attention mechanism can adap-
tively learn the importance of each position in the image, thereby better understanding the
structure of the image.

After the feature extraction stage, we introduced a feature fusion module to fuse
multi-scale feature information. The function of this module is to combine features from
different scales to obtain a more comprehensive and rich feature representation. Through
feature fusion, the model can better capture the details and texture information in fog
images. Finally, after processing via the feature fusion module, we use the reconstruction
module to restore the fog-free image. This module converts the fused feature maps into the
final fog-free image. This process can be seen as an image restoration process, where the
model can reduce or eliminate visual degradation caused by haze by learning the mapping
from foggy images to non-foggy images.

In addition, each dilated convolutional base block structure is combined with local
residual connections. This connection method allows the model to better propagate gradi-
ents during the training process and helps alleviate the problem of vanishing gradients.
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Figure 1. Diagram of the MSD-Net model architecture.

In Figure 2, we propose an improved group module based on feature fusion attention
network to enhance its ability to obtain rich and important features. Firstly, dilated con-
volutions with expansion rates of 1, 2, and 4 are introduced. The three different colors at
various depths represent different expansion rates, allowing for the multi-scale feature ex-
traction of remote sensing images within different receptive field ranges, thereby enriching
feature information. Secondly, the ECA attention module is introduced, which serves to
adaptively extract important feature information at different scales and reduce the number
of parameters in the group module. Finally, the important feature information obtained at
different scales is fused to achieve a more comprehensive feature set, which enhances the
clarity of the dehazing results.
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3.1. Feature Extraction of Dilated Convolution

Multi-scale feature extraction is a commonly used technique in remote sensing image
dehazing, aimed at obtaining feature information from images at different scales to better
restore clear images. Among them, dilated convolutions with different expansion rates are
widely used to achieve multi-scale feature extraction. Firstly, different dilation rates are
introduced in the dehazing network to perform dilation convolution operations. By using
dilated convolutions with dilation rates of 1, 2, and 4, feature representations of different
scales are obtained. Secondly, the output feature maps of each scale’s dilated convolution
will be further processed and fused. This can fuse features of different scales to obtain a
more comprehensive and rich feature representation to better restore clear images.

The role of dilated convolutions with different expansion rates in remote sensing image
dehazing is mainly reflected in the following aspects: (1) Multi-scale feature extraction:
Dilated convolutions with different expansion rates can capture details and structural
information in the image at different scales. By setting different expansion rates, receptive
fields at different scales can be obtained, thereby extracting multi-scale features; it is very
important to restore the details and structures of various scales in remote sensing images;
(2) Enhanced feature representation: By performing dilated convolution operations with
different dilation rates, feature representations from different scales can be obtained. These
feature representations can capture information from different scales in the image, thereby
enhancing the feature representation ability of the image, helping to more accurately restore
clear images and improve the dehazing effect.

3.2. Self-Adaptive Attention Mechanism

Self-adaptive attention methods play an important role in remote sensing image dehaz-
ing. This method can improve the processing ability of the dehazing network for different
regions in the image by introducing attention mechanisms, enabling it to more accurately
perceive and reconstruct detailed information in the image. Firstly, by establishing an
end-to-end dehazing model, the model receives input remote sensing images and outputs
images of haze removal. Then, an attention module is introduced into the network to
adaptively adjust the network’s attention level to different haze areas. The self-adaptive
attention module can dynamically adjust the weights of the network at different posi-
tions based on the content and feature distribution of the image, thereby improving the
perception and reconstruction ability of details. This design can help the network better
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handle complex scenes and differences between different regions in remote sensing images,
thereby improving the dehazing effect.

The role of self-adaptive attention methods in remote sensing image dehazing is
mainly reflected in the following aspects: (1) Improving detail retention ability: Self-
adaptive attention methods can make the network pay more attention to the details in the
image, thereby better preserving and reconstructing detailed information. By adjusting
attention weights, the network can enhance its perception and reconstruction of details in a
targeted manner, making the dehazing results clearer and more realistic; (2) Improving the
dehazing effect: Introducing a self-adaptive attention mechanism can enable the network
to more accurately perceive and process haze in images, thereby improving the dehazing
effect. The attention module can automatically adjust the weight allocation of the network
based on the different content of the image, enabling the network to better cope with the
different degrees and types of haze. By increasing attention to haze areas, the network can
better reduce the impact of haze and improve the quality and clarity of haze removal results;
(3) Enhanced robustness: Self-adaptive attention methods can enhance the robustness of
remote sensing image dehazing networks. By adaptively adjusting the network’s attention
level, the network can better adapt to remote sensing images in different scenes and
environments. This makes the network more stable and reliable in processing remote
sensing images with diversity and complexity, improving processing capabilities and
robustness of defogging effects.

3.3. Expansive Convolutional Group

In our model, the expansion basis block is composed of multiple key components,
including expansion convolution, local residual learning for each expansion rate, and a
self-adaptive attention module. The combination of these components enables our model
to better handle remote sensing image dehazing tasks and improve model performance
and training stability.

Firstly, dilated convolution plays an important role in dilated basis blocks. By using
convolution kernels with different dilation rates, dilated convolution can extract features
from images within different receptive fields. This multi-scale feature extraction helps
to capture details and structural information at different scales, thereby improving the
dehazing effect. Meanwhile, local residual learning for each expansion rate allows the
main network to bypass irrelevant information through multiple local residual connections
and focus its main attention on effective information. This local residual learning strategy
can enhance the network’s ability to learn key features, improving model performance
and training stability. Secondly, the self-adaptive attention module plays a crucial role in
expanding the base blocks. This module can automatically adjust the network’s attention
level in different regions by introducing an attention mechanism. By dynamically adjusting
the weight allocation of the network based on the content and feature distribution of the
image, the self-adaptive attention module can improve the network’s ability to perceive
and reconstruct details. This enables the network to more accurately process haze in
images and improve the dehazing effect. In addition, the basic extension blocks and
skip connection modules form a group, which plays an important role in MSD-Net. The
ongoing addition of basic extension blocks enhances the depth and expressiveness of
the network, thereby enhancing the model’s capability to model complex scenes and
multi-scale information. Jumping connections make MSD-Net easier to train, which helps
alleviate the problems of vanishing gradients and unstable training. Finally, the final stage
of MSD-Net includes a convolutional network layer and a long shortcut global residual
learning module to reconstruct fog-free images. These modules are responsible for further
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processing the features extracted, and then fused multiple times to reconstruct the image
and restore clarity.

3.4. Loss Function

The L1 loss function, also known as the absolute value loss function, is one of the
most commonly used loss functions. In remote sensing image dehazing tasks, the L1 loss
function is used to measure the degree of difference between the generated dehazing image
and the true clear image. Its function is to perform the following: (1) Provide pixel level
consistency: The L1 loss function promotes the generated dehazing image to be consistent
with the real image at the pixel level. It penalizes the absolute difference between each pixel
in the predicted image and the corresponding pixel in the real image, thereby promoting the
generated image to be closer to the real image; (2) Preserve detailed information: Compared
to other loss functions, such as L2 loss function, L1 loss function is more sensitive to outliers.
This means that the L1 loss function is more capable of preserving detailed information
and avoiding excessive smoothing of the generated image in defogging tasks. Therefore,
using the L1 loss function can better restore the detailed information in remote sensing
images. Advantages compared to other loss functions: (1) Better noise resistance: L1 loss
function is more robust to noise compared to L2 loss function. In remote sensing images,
there may be interference from sensor noise or atmospheric scattering, and the L1 loss
function can better handle these noises and reduce their impact on the dehazing effect;
(2) Promote faster convergence: The L1 loss function can promote faster convergence speed
during the training process. Compared to the L2 loss function, the L1 loss function has
a greater response to gradients during the optimization process, allowing the network
to learn appropriate weights and parameters more quickly; (3) Preserve texture details:
Due to the nature of the L1 loss function, it tends to produce sparsity. This means that the
generated dehazing image is more likely to retain the texture details in the original image,
avoiding blurring or smoothing.

It is worth noting that the L1 loss function also has some limitations, such as sensitivity
to outliers and significant gradient changes. Although many dehazing algorithms use
perceptual loss and structural similarity loss, we still prioritize using L1 loss for training in
MSD-Net.

loss(h, g) = ∑n
i=1||g i − MSD(hi) || (1)

Here, h and g represent the input parameters; gi represents the real situation of the
ground, and hi represents the input of foggy image.

4. Experiment
4.1. Data Setting

In the task of remote sensing image defogging, it is difficult to obtain the real-world
foggy image and the corresponding non-foggy image. Therefore, most defogging tasks are
data driven and based on atmospheric scattering models via scattering coefficient β and
atmospheric light intensity a to synthesize foggy image dataset. Remote sensing image
defogging uses the open-sourced dataset HRRSD, which is the dataset released by the
University of the Chinese Academy of Sciences in 2019 and contains 21,761 images obtained
from Google Earth and Baidu maps. There are 55,740 target instances in HRRSD, and each
category is about 4K. The HRRSD contains 13 categories of targets. The 13 categories are as
follows: aircraft, baseball field, basketball court, bridge, intersection, track and field, port,
parking lot, ship, storage tank, T-junction, tennis court, and car. The highlight of the dataset
is that the sample size of each category is relatively balanced, and each category has about
4000 samples.
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The HRRSD dataset is preprocessed and simulates the process of haze formation using
an atmospheric scattering model. The formula for this model is as follows:

I (x) = J (x) t (x) + A (1 − t (x)) (2)

I (x) represents the synthesized foggy image mapping; J (x) represents the mapping of
non-foggy targets; t (x) represents the medium transmission map dependent on unknown
depth information, and A represents the global atmospheric light value. Haze remote
sensing images are simulated by setting the transmittance t (x) and atmospheric light
value A.

In order to verify the generality of our model, we also selected the rice dataset in
the field of remote sensing, which contains 500 foggy remote sensing satellite images and
500 non-foggy satellite images. We selected 450 pairs of images as the training dataset and
50 pairs of images as the validation dataset to evaluate the generality of our network model.

4.2. Training Setup

We train our model in the RGB channel and enhance the training dataset by randomly
rotating the images to 90, 180, 270 degrees, and flipping them horizontally. Two blurry
image blocks with a size of 256 × 256 are extracted as inputs for the MSD network. The
entire network is trained in 5 × 105 steps. We use the Adam optimizer, where β1 and β2
take the default values of 0.9 and 0.999. The initial learning rate is set to 1 × 10−4, and we
use cosine annealing strategy to adjust the learning rate from the initial value to zero by
following the cosine function, assuming the total number of batches is T, η. If it is the initial
rate of return, then at batch t, the learning rate ηt is calculated as follows:

ηt =
1
2
(1 + cos(

tπ
T
)) (3)

Our model was implemented in Python on the Tesla T4 GPU. To assess the perfor-
mance, we utilized peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM)
as our quantitative evaluation metrics. Higher PSNR and SSIM values indicate superior re-
stored image quality. Additionally, a lower LPIPS value signifies greater similarity between
two images. The PSNR formula is as follows:

PSNR = 10 × log(
Max2

I
MSE

) (4)

Among these metrics, Max2
I denotes the maximum pixel intensity in the image, while

MSE stands for the mean squared error between two images.
SSIM takes into account three essential aspects of an image: luminance, contrast, and

structure. The formula for SSIM is as follows:

SSIM(x, y) =

(
2uxuy + C1

)(
2σxy + C2

)(
u2

x + u2
y + C1

)(
σ2

x + σ2
Y + C2

) (5)

In this context, u represents the mean; σxy denotes the covariance; σ2 signifies the
variance, and C1 and C2 are constants that remain unchanged.

4.3. Experimental Details

SCANet and GCANet are both deep learning networks based on attention mechanisms,
and they have their own characteristics and application scenarios in feature extraction.
SCANet is mainly used for 3D object detection, which enhances feature representations
at different scales through spatial channel attention mechanism. It uses pyramid pooling
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and global average pooling to generate attention maps of space and channels, highlighting
important features and suppressing unimportant information. In addition, SCANet also
adopts an extended spatial upsampling model to restore spatial information and improve
the accuracy of the 3D region proposal network. GCANet focuses on image dehazing and
rain removal tasks. It encodes global information through global correlation operations
so that the features of each location can contain global context, thereby more accurately
estimating the dehazing effect of the image. GCANet also uses smooth dilated convolutions
to reduce artifacts and employs gated fusion subnetworks to fuse multi-scale features,
further improving dehazing performance. Their common core idea is to use attention
mechanisms to enhance the model’s ability to capture key features, thereby improving
performance in their respective fields. SCANet improves the accuracy of 3D detection
through spatial and channel attention, while GCANet enhances the dehazing effect of
images through global correlation and multi-scale feature fusion. Both models demonstrate
the powerful potential of attention mechanisms in feature extraction.

Table 1 presents the quantitative evaluation results for the HRRSD and RICE datasets,
including PSNR and SSIM metrics to measure the dehazing performance under different
haze density conditions. On both datasets, our model has shown top-tier dehazing ca-
pabilities. Although our approach exhibits a slightly reduced dehazing effect in dense
fog compared to thin fog, it still performs admirably in dealing with more severe image
degradation, such as removing heavy haze from remote sensing images. Compared to other
methods, SCANet has a relatively weaker defogging performance, while GCANet [17] has
achieved a better defogging effect. Nevertheless, these methods still fall short in terms of
the fineness of the dehazing results when compared to our model.

Table 1. Quantitative comparison of dehazing results on HRRSD and RICE datasets.

Method
HRRSD RICE

PSNR SSIM LOE MAE PSNR SSIM LOE MAE

AOD-Net 21.46 0.808 0.076 0.375 17.05 0.731 0.085 0.362
DehazeNet 22.31 0.771 0.064 0.324 19.12 0.763 0.063 0.356

SCANet 24.67 0.813 0.065 0.321 22.81 0.796 0.074 0.305
GirdDehazeNet 26.12 0.864 0.054 0.347 25.75 0.870 0.065 0.285

GCANet 27.91 0.866 0.045 0.313 27.07 0.863 0.046 0.263
MAXIM 30.50 0.950 0.043 0.235 32.75 0.980 0.043 0.222

Ours 32.21 0.975 0.032 0.225 34.26 0.988 0.036 0.196

To further highlight the competitiveness of our model, we have chosen the MAXIM [37]
model as a reference for comparison. MAXIM has already made significant achievements
in the field of dehazing and serves as an advanced benchmark within the industry. Its
performance is crucial for assessing the strengths and weaknesses of our model. By
comparing with the MAXIM model, the unique advantages and potential of our model in
handling complex foggy scenes become more pronounced. In summary, these results fully
demonstrate that our model not only remains competitive in dehazing performance but
also surpasses existing advanced methods in certain scenarios.

4.4. Qualitative Analysis

In this section, we present a qualitative comparison of our model with five other
advanced dehazing methods using the HRRSD and RICE remote sensing haze image
datasets. Figure 3 illustrates the qualitative results of each method on the haze test. AOD-
Net exhibits significant residual haze and color distortion in dehazing images, resulting
in poor overall appearance. DehazeNet dehazing effect was not significant, with over
half of the area still experiencing haze. SCANe is generally similar to the actual situation
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on the ground, but it can be observed that the haze has decreased, but it has not been
completely removed. GridDehazeNet managed to achieve a certain level of dehazing,
yet when compared to the ground truth images, a slight amount of haze remains in
the overall restoration. GCANet demonstrated relatively good defogging capabilities.
However, the images restored using GCANet appeared significantly darker than the ground
truth, for instance, the runway in the playground appeared as dark red. Our method
produced dehazing images that closely resemble the ground truth, achieving superior
detail restoration.
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Figure 3. Visualization table of shallow concentration haze on HRRSD dataset.

Figure 4 illustrates the comparative outcomes of various dehazing techniques when
applied to images with moderate haze levels. Such levels of atmospheric turbidity tend
to obscure critical details in satellite imagery. In this scenario, AOD-Net’s effectiveness in
removing haze is subpar, leaving considerable fog in the enhanced image and resulting in
noticeable discrepancies compared to the actual, undistorted scene. DehazeNet has a certain
degree of haze removal effect, but there are still significant haze residues in important local
information areas. SCANet has a relatively significant effect on removing haze, but there is
a slight color distortion in certain areas. Compared to thin fog, GirdDehazeNet has a poorer
dehazing effect in moderate concentration haze and can only remove a small amount of
haze in some areas. Although GCANet has achieved large-scale defogging, a small amount
of residual haze is more noticeable. In contrast, our method achieved excellent defogging
performance under moderate haze conditions, exhibiting better color fidelity.



Sensors 2025, 25, 218 13 of 19

Sensors 2024, 24, x FOR PEER REVIEW 12 of 18 
 

 

Figure 3. Visualization table of shallow concentration haze on HRRSD dataset. 

Figure 4 illustrates the comparative outcomes of various dehazing techniques when 
applied to images with moderate haze levels. Such levels of atmospheric turbidity tend to 
obscure critical details in satellite imagery. In this scenario, AOD-Net’s effectiveness in 
removing haze is subpar, leaving considerable fog in the enhanced image and resulting in 
noticeable discrepancies compared to the actual, undistorted scene. DehazeNet has a cer-
tain degree of haze removal effect, but there are still significant haze residues in important 
local information areas. SCANet has a relatively significant effect on removing haze, but 
there is a slight color distortion in certain areas. Compared to thin fog, GirdDehazeNet 
has a poorer dehazing effect in moderate concentration haze and can only remove a small 
amount of haze in some areas. Although GCANet has achieved large-scale defogging, a 
small amount of residual haze is more noticeable. In contrast, our method achieved excel-
lent defogging performance under moderate haze conditions, exhibiting better color fidel-
ity. 

   
Hazy AOD-Net DehazeNet 

   
GirdDehazeNet GCANet SCANet 

   
MAXIM Ours Clear 

Figure 4. Visualization table of equal concentration haze in HRRSD dataset. 

Figure 5 presents the qualitative analysis of different dehazing approaches when 
dealing with images affected by dense haze. The dataset predominantly features remote 
sensing photographs that have been significantly obscured by thick haze, leading to a sub-
stantial loss of texture and detail. The hazy images show that objects such as airplanes are 
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Figure 5 presents the qualitative analysis of different dehazing approaches when
dealing with images affected by dense haze. The dataset predominantly features remote
sensing photographs that have been significantly obscured by thick haze, leading to a
substantial loss of texture and detail. The hazy images show that objects such as airplanes
are nearly indistinguishable due to the haze. Under these dense haze conditions, AOD
Net’s performance is unsatisfactory. While it manages to eliminate a thin layer of haze, the
resulting image has a yellowish hue. Moreover, when compared to the ground truth, the
restored image lacks accurate color representation, with the original color details being
nearly unrecognizable. Although DehazeNet achieves a certain degree of dehazing effect,
there is color distortion in some areas, which affects the overall appearance of the image.
The dehazing effect of SCANet is average, and it can achieve a state of output from dense
fog to thin fog. The images restored using GirdDehazeNet have a large amount of haze
residue, especially in the grassland area, where the haze is more pronounced. GCANet can
achieve complete dehazing, but the color is darker compared to the real ground conditions,
and it appears black in the airport airspace area, which affects the overall appearance of
remote sensing images. Our model still maintains good dehazing performance in dense
haze conditions, which is close to the actual ground conditions.
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Figure 6 show the qualitative results of each method on the RICE test set, which is
composed of dense and uniform remote sensing images obscured by haze. The effect
of AOD-Net is poor. Although it has achieved a certain degree of defogging effect, the
overall color of the mountains has changed, which is significantly different from the real
situation on the ground. The image restored by DehazeNet has obvious dark tones, and
there is local color distortion in the mountain area, which affects the overall appearance
of the image. The dehazing effect achieved by SCANet is relatively poor, only achieving
a small portion of dehazing. From an overall perspective, it only weakens the density of
some haze. The image generated by GridDehaze has a darker central part and an overall
white tone, with poor dehazing effect, only deepening the color of the mountain. The
images restored by GCANet exhibit significant excessive dehazing and loss of original
texture details. Compared with ground truth images, our model solves the challenge of
texture restoration, enhances image details, and improves the color saturation and quality
of remote sensing images.
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To create a scatter plot for the evaluation metrics of the synthetic datasets, HRRSD_Dehaze
and RICE were used, visually demonstrating the performance of various algorithms. The
diameter of each scatter point represents the range from the maximum to the minimum
value of each algorithm, as shown in Figure 7.
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4.5. Ablation Analysis

To validate the effectiveness of our proposed method, we conducted ablation exper-
iments on the HRRSD dataset to analyze the performance of our designed self-adaptive
attention mechanism and multi-scale feature extraction using dilated convolution. The
quantitative evaluation results are shown in Table 2.
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Table 2. Quantitative comparison of dehazing results on HRRSD and RICE datasets.

Method
HRRSD

PSNR SSIM

Base 18.16 0.846
Base + SA 28.49 0.970
Base + DC 34.14 0.987

Base + SA + DC 36.85 0.998

Initially, we established a foundational network devoid of self-adaptive attention and
dilated convolution, denoted as “Base” in Table 2. Subsequently, we incrementally inte-
grated the self-adaptive attention mechanism and dilated convolution into this foundational
network, resulting in the configurations “Base + SA”, “Base + DC”, and “Base + SA + DC”
as listed in Table 2. This process aimed to assess the individual contributions of these
components to the network’s dehazing capabilities.

Figure 8 visually contrasts the quantitative outcomes of our ablation study across
various network modules, providing a clear demonstration of each module’s efficacy within
our network. Drawing from the ablation study results on the HRRSD dataset as presented
in Table 2 and Figure 6, we can deduce the following: The proposed method yields the
poorest results in the absence of both self-adaptive attention and dilated convolution,
leading to significant image distortion and subpar quality. Incorporating the self-adaptive
attention mechanism into the Base network enhances PSNR and SSIM values, thereby
improving image quality. Studies indicate that self-adaptive attention mechanisms adeptly
concentrate on crucial image elements. However, they fall short in replicating the fine
details and textures present in the actual ground truth. The addition of dilated convolution
to the Base network introduces the multi-scale feature extraction that we designed. This
modification results in a notable increase in both PSNR (by 1.46) and SSIM (by 0.115)
compared to the Base network. The image quality is markedly enhanced, confirming
that our dilated convolution-based multi-scale feature extraction effectively bolsters the
network’s dehazing performance and restores the fine details of hazy remote sensing
images. When both the self-adaptive attention mechanism and dilated convolution are
integrated into the Base network, PSNR and SSIM values show further improvement over
the Base + SA and Base + DC networks. This outcome validates the effectiveness of our
multi-scale adaptive network design, which leverages dilated convolution to enhance
image details and quality, ensuring a close resemblance to ground truth images.
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5. Conclusions
In this article, we propose a multi-scale self-adaptive attention network to solve the

problem of dehazing in remote sensing images. Our model includes a multi-scale adaptive
feature extraction module consisting of dilated convolutions with different expansion rates
and self-adaptive attention mechanisms, expanding convolutions with different expansion
rates to obtain multi-scale information and preserve detailed features. The self-adaptive
attention mechanism adaptively processes the uneven distribution of haze and important
feature information in remote sensing images and outputs useful features to the network
backbone. The multi-scale adaptive feature extraction module can focus and enhance the
main information during the defogging process, further improving the defogging quality
of remote sensing images. The experimental results show that this method achieves state-
of-the-art dehazing effects on HRRSD and RICE benchmark remote sensing fuzzy datasets
and significantly restores the detailed information of the image. In future work, we plan
to design a new remote sensing image dehazing algorithm and construct a more realistic
public large-scale remote sensing image dehazing dataset to promote research in the field
of remote sensing image dehazing.
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