Fine-Grained Building Classification in Rural Areas Based on GF-7 Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. GF-7 MUX Image
2.3. GF-7 Building Footprint
2.4. GF-7 Building Height
3. Methodology
3.1. Overview
3.2. Supervised Roof Classification
3.3. Evaluation Indicators
3.4. Template-Based Height Correction
3.5. Unsupervised Cluster Analysis
3.6. Coding of Fine-Grained Building Types
4. Results
4.1. Roof Types in the Study Area
4.2. Height of Buildings with Different Roof Types
4.3. Results of the Fine-Grained Building Classification
5. Discussion
5.1. Comparison of Different Supervised Classification Models
5.2. Variable Importance and Number of Clusters in Cluster Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Qi, W.; Xia, C.; Zhang, J.; Nie, G.; Li, H. Seismic Risk Assessment Based on Residential Building Stock and Field Survey Results: A Case Study of 3 Cities in Shanxi Province. Front. Earth Sci. 2024, 12, 1424382. [Google Scholar] [CrossRef]
- Chaoxu, X.; Nie, G.; Li, H.; Fan, X.; Yang, R. Study on the Seismic Lethal Level of Buildings and Seismic Disaster Risk in Guangzhou, China. Geomat. Nat. Hazards Risk 2022, 13, 800–829. [Google Scholar] [CrossRef]
- Kang, H.; Kim, Y. The Physical Vulnerability of Different Types of Building Structure to Debris Flow Events. Nat. Hazards 2016, 80, 1475–1493. [Google Scholar] [CrossRef]
- Hu, K.; Cui, P.; Zhang, J. Characteristics of Damage to Buildings by Debris Flows on 7 August 2010 in Zhouqu, Western China. Nat. Hazards Earth Syst. Sci. 2012, 12, 2209–2217. [Google Scholar] [CrossRef]
- Cerri, M.; Steinhausen, M.; Kreibich, H.; Schröter, K. Are OpenStreetMap Building Data Useful for Flood Vulnerability Modelling? Nat. Hazards Earth Syst. Sci. 2021, 21, 643–662. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Wang, T.; Wang, S.; Wang, R.; Xu, D.; Zhou, J. Spatial-Temporal Evolution Characteristics Analysis of Color Steel Buildings in Lanzhou City. ISPRS Int. J. Geo-Inf. 2024, 13, 179. [Google Scholar] [CrossRef]
- Abdel-Jaber, F.; Dirks, K. Thermal Load Prediction in Residential Buildings Using Interpretable Classification. Buildings 2024, 14, 1989. [Google Scholar] [CrossRef]
- Calka, B.; Bielecka, E.; Zdunkiewicz, K. Redistribution Population Data across a Regular Spatial Grid According to Buildings Characteristics. Geod. Cartogr. 2016, 65, 149–162. [Google Scholar] [CrossRef]
- He, Z.; Yao, W.; Shao, J.; Wang, P. UB-FineNet: Urban Building Fine-Grained Classification Network for Open-Access Satellite Images. ISPRS J. Photogramm. Remote Sens. 2024, 217, 76–90. [Google Scholar] [CrossRef]
- Chu, G.; Li, M.; Wang, X. Integrating Height Features for Multi-Scale Urban Building Type Classification from High-Resolution Remote Sensing Images. J. Geo-Inf. Sci. 2021, 23, 2073–2085. [Google Scholar] [CrossRef]
- Erener, A.; Sarp, G.; Karaca, M.I. An Approach to Urban Building Height and Floor Estimation by Using LiDAR Data. Arab. J. Geosci. 2020, 13, 1005. [Google Scholar] [CrossRef]
- Huang, Y.; Zhuo, L.; Haiyan, T.; Shi, Q.; Liu, K. A Novel Building Type Classification Scheme Based on Integrated LiDAR and High-Resolution Images. Remote Sens. 2017, 9, 679. [Google Scholar] [CrossRef]
- Ghasemian, N.; Wang, J.; Najafi, M. Fusion of Google Street View, LiDAR, and Orthophoto Classifications Using Ranking Classes Based on F1 Score for Building Land-Use Type Detection. Remote Sens. 2024, 16, 2011. [Google Scholar] [CrossRef]
- Atwal, K.; Anderson, T.; Pfoser, D.; Züfle, A. Predicting Building Types Using OpenStreetMap. Sci. Rep. 2022, 12, 19976. [Google Scholar] [CrossRef] [PubMed]
- Abhilash, B.; Busari, E.; Syranidou, C.; Linssen, J.; Stolten, D. Classification of Building Types in Germany: A Data-Driven Modeling Approach. Data 2022, 7, 45. [Google Scholar] [CrossRef]
- Häberle, M.; Hoffmann, E.; Zhu, X. Can Linguistic Features Extracted from Geo-Referenced Tweets Help Building Function Classification in Remote Sensing? ISPRS J. Photogramm. Remote Sens. 2022, 188, 255–268. [Google Scholar] [CrossRef]
- Jochem, W.C.; Leasure, D.R.; Pannell, O.; Chamberlain, H.R.; Jones, P.; Tatem, A.J. Classifying Settlement Types from Multi-Scale Spatial Patterns of Building Footprints. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 1161–1179. [Google Scholar] [CrossRef]
- Jochem, W.C.; Tatem, A.J. Tools for Mapping Multi-Scale Settlement Patterns of Building Footprints: An Introduction to the R Package Foot. PLoS ONE 2021, 16, e0247535. [Google Scholar] [CrossRef]
- Du, S.; Zheng, M.; Guo, L.; Wu, Y.; Li, Z.; Liu, P. Urban Building Function Classification Based on Multisource Geospatial Data: A Two-Stage Method Combining Unsupervised and Supervised Algorithms. Earth Sci. Inform. 2024, 17, 1179–1201. [Google Scholar] [CrossRef]
- Hecht, R.; Meinel, G.; Buchroithner, M. Automatic Identification of Building Types Based on Topographic Databases—A Comparison of Different Data Sources. Int. J. Cartogr. 2015, 1, 18–31. [Google Scholar] [CrossRef]
- Liu, M.; Wang, P.; Hu, K.; Gu, C.; Jin, S.; Chen, L. A Method for Extracting High-Resolution Building Height Information in Rural Areas Using GF-7 Data. Sensors 2024, 24, 6076. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Zhang, X.; Zhao, C.; Xu, C.; Mo, F.; Dai, J. System Design and Key Technolongies of the GF-7 Satellite. Chin. Space Sci. Technol. 2020, 40, 1–9. [Google Scholar] [CrossRef]
- Zhang, X.; He, T.; Zhao, C.; Mo, F.; Guo, A.; Luo, W.; Yang, J. Demonstration of Surveying and Mapping System and Performance Evaluation of GF-7 Satellite. Spacecr. Eng. 2020, 29, 1–11. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. arXiv 2018, arXiv:1703.06870. [Google Scholar]
- Wang, Y.; Li, S.; Teng, F.; Lin, Y.; Wang, M.; Cai, H. Improved Mask R-CNN for Rural Building Roof Type Recognition from UAV High-Resolution Images: A Case Study in Hunan Province, China. Remote Sens. 2022, 14, 265. [Google Scholar] [CrossRef]
- Han, Q.; Yin, Q.; Zheng, X.; Chen, Z. Remote Sensing Image Building Detection Method Based on Mask R-CNN. Complex Intell. Syst. 2022, 8, 1847–1855. [Google Scholar] [CrossRef]
- Perez, J.; Fusco, G.; Sadahiro, Y. Classification and Clustering of Buildings for Understanding Urban Dynamics: A Framework for Processing Spatiotemporal Data. Rev. Int. Géomat. 2023, 31, 303–328. [Google Scholar] [CrossRef]
- Memduhoğlu, A.; Fulman, N.; Zipf, A. Enriching Building Function Classification Using Large Language Model Embeddings of OpenStreetMap Tags. Earth Sci. Inform. 2024, 17, 5403–5418. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- De Wit, A.J.W.; Clevers, J.G.P.W. Efficiency and Accuracy of Per-Field Classification for Operational Crop Mapping. Int. J. Remote Sens. 2004, 25, 4091–4112. [Google Scholar] [CrossRef]
- Jain, A. Data Clustering: 50 Years Beyond K-Means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Calinski, T.; Harabasz, J. A Dendrite Method for Cluster Analysis. Commun. Stat.—Theory Methods 1974, 3, 1–27. [Google Scholar] [CrossRef]
- Huang, X.; Cheng, F.; Bao, Y.; Wang, C.; Wang, J.; Wu, J.; He, J.; Lao, J. Urban Building Height Extraction Accommodating Various Terrain Scenes Using ICESat-2/ATLAS Data. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103870. [Google Scholar] [CrossRef]
- Lao, J.; Wang, C.; Zhu, X.; Xi, X.; Nie, S.; Wang, J.; Cheng, F.; Zhou, G. Retrieving Building Height in Urban Areas Using ICESat-2 Photon-Counting LiDAR Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102596. [Google Scholar] [CrossRef]
- Dandabathula, G.; Sitiraju, S.R.; Jha, C.S. Retrieval of Building Heights from ICESat-2 Photon Data and Evaluation with Field Measurements. Environ. Res. Infrastruct. Sustain. 2021, 1, 011003. [Google Scholar] [CrossRef]
Pitched | Greenhouse | Color Steel | Flat | Complex | Average | ||
---|---|---|---|---|---|---|---|
XGBoost | Recall | 0.9388 | 0.9516 | 0.6957 | 0.9344 | 0.8750 | 0.8791 |
Precision | 0.9388 | 0.9219 | 0.8649 | 0.8143 | 1.0000 | 0.9080 | |
F1-Score | 0.9388 | 0.9365 | 0.7711 | 0.8702 | 0.9333 | 0.8900 | |
Random Forest | Recall | 0.8776 | 0.9194 | 0.6522 | 0.9016 | 0.7500 | 0.8201 |
Precision | 0.9773 | 0.8636 | 0.7895 | 0.7534 | 0.9231 | 0.8614 | |
F1-Score | 0.9247 | 0.8906 | 0.7143 | 0.8209 | 0.8276 | 0.8356 |
Roof Type | Color | Shape | |||||||
---|---|---|---|---|---|---|---|---|---|
Band 1 | Band 2 | Band 3 | Band 4 | PanStd | Area | Length | Width | Ratio | |
Pitched | 0.2500 | 0.4519 | 0.6198 | 0.6025 | 0.3206 | 0.6598 | 0.6786 | 0.5351 | 0.3687 |
Greenhouse | 0.8503 | 0.8529 | 0.8327 | 0.7515 | 0.6127 | 0.5844 | 0.5723 | 0.1760 | 0.3683 |
Color Steel | 0.5745 | 0.6019 | 0.7901 | 0.6334 | 0.2487 | 0.7033 | 0.6969 | 0.6735 | 0.5786 |
Flat | 0.5451 | 0.6677 | 0.7185 | 0.6386 | 0.3519 | 0.7198 | 0.6930 | 0.4608 | 0.5493 |
Complex | 0.6131 | 0.6527 | 0.7042 | 0.3101 | 0.0654 | 0.7932 | 0.8126 | 0.5090 | 0.6622 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Wang, P.; Han, P.; Liu, L.; Li, B. Fine-Grained Building Classification in Rural Areas Based on GF-7 Data. Sensors 2025, 25, 392. https://doi.org/10.3390/s25020392
Liu M, Wang P, Han P, Liu L, Li B. Fine-Grained Building Classification in Rural Areas Based on GF-7 Data. Sensors. 2025; 25(2):392. https://doi.org/10.3390/s25020392
Chicago/Turabian StyleLiu, Mingbo, Ping Wang, Peng Han, Longfei Liu, and Baotian Li. 2025. "Fine-Grained Building Classification in Rural Areas Based on GF-7 Data" Sensors 25, no. 2: 392. https://doi.org/10.3390/s25020392
APA StyleLiu, M., Wang, P., Han, P., Liu, L., & Li, B. (2025). Fine-Grained Building Classification in Rural Areas Based on GF-7 Data. Sensors, 25(2), 392. https://doi.org/10.3390/s25020392