Optimal Design and Operation of an Ultrasonic Driving System for Algae Removal Considering Underwater Environment Load
Abstract
:1. Introduction
2. Methodology and Approach
2.1. Impedance Characteristics Analysis in Underwater Load Modeling
2.2. Prototype Module Design and FEM Analysis Results
3. Driving Circuit and System Design
Optimal Design of the Ultrasonic Driving Circuit System for Algae Removal Application
4. Experimental Results
Design and Experimental Results of the Ultrasonic Application Hardware
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.J. A Study on the Removal of Algae using Ultrasonic Pulse. In Proceedings of the Institute of Electronics and Information Engineers Conference (Summer Annual Conference of IEIE), Jeju, Republic of Korea, 26–28 June 2019; pp. 1305–1308. [Google Scholar]
- Byeon, K.D.; Kim, G.Y.; Lee, I.J.; Jin, J.C. Investigation and Evaluation of Algae Removal Technologies Applied in Domestic Rivers and Lakes. J. Korean Soc. Environ. Eng. 2016, 38, 387–394. [Google Scholar] [CrossRef]
- Zhang, S.; Li, F.; Yu, F.; Jiang, X.; Lee, H.Y.; Luo, J.; Shrout, T.R. Recent Development in Piezoelectric Crystals. J. Korean Ceram. Soc. 2018, 55, 419–439. [Google Scholar] [CrossRef]
- Prokic, M. Piezoelectric Transducers Modeling and Characterization; MPI: Le Locle, Switzerland, 2004. [Google Scholar]
- Moon, J.H.; Park, S.J.; Lim, S.K.; Kim, D.O. A Study on Resonance Tracking Method of Ultrasonic Welding Machine Inverter. J. Korean Soc. Ind. Converg. 2021, 24, 481–490. [Google Scholar]
- Thinh, N.V.; Le, H.T.M. Researching to Determine the Characteristic Parameters of the Power Ultrasonic Transducer by Finite Element Method and COMSOL-MULTIPHYSICS Program. Int. J. Eng. Res. Technol. 2019, 8, 9. [Google Scholar]
- Binh, D.T.; Chebanenko, V.A.; Duong, L.V.; Kirillova, E.; Thang, P.M.; Soloviev, A.N. Applied theory of bending vibration of the piezoelectric and piezomagnetic bimorph. J. Adv. Dielectr. 2020, 10, 2050007. [Google Scholar] [CrossRef]
- Joo, H.W.; Lee, C.H.; Jung, H.K. Equivalent Circuit Parameter Estimation of Piezoelectric Transformer Using Finite Element Method. In Proceedings of the KIEE Conference, Seoul, Republic of Korea, 18 July 2001; pp. 913–915. [Google Scholar]
- IEEE. IEEE Standard on Piezoelectricity; Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Paerl, H.W.; Fulton, R.S.; Moisander, P.H.; Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World 2001, 1, 76–113. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Paul, V.J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 2012, 46, 1349–1363. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Hall, N.S.; Calandrio, E.S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 2011, 409, 1739–1745. [Google Scholar] [CrossRef]
- Lee, T.J.; Nakano, K.; Matsumura, M. Ultrasonic irradiation for blue green algae bloom control. Environ. Technol. 2001, 22, 83–390. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Chen, Y.; Hao, H.; Wu, M.; Wang, B.; Lv, H.; Zhang, G. Influence of ultrasonic field on microcystins produced by bloom-forming algae. Colloids Surf. B Biointerfaces 2005, 41, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Joo, C.D.; Kim, T.K. A Study on the Underwater Environment Load Modeling and Impedance Characteristics Analysis of Langevin Type Piezoelectric Transducer. Trans. Korean Inst. Electr. Eng. 2022, 71, 1812–1819. [Google Scholar] [CrossRef]
- Lin, S.; Xu, J. Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers. Sensors 2017, 17, 329. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Dong, X.; Shekhani, H.; Li, C.; Maida, Y.; Tou, T.; Uchino, K. Driving an Inductive Piezoelectric Transducer with Class E Inverter. Sens. Actuators A Phys. 2017, 261, 219–227. [Google Scholar] [CrossRef]
- Niyomthai, S.; Sangswang, A.; Naetiladdanon, S.; Mujjalinvimut, E. Operation region of class E resonant inverter for ultrasonic transducer. In Proceedings of the 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, 27–30 June 2017; pp. 435–438. [Google Scholar] [CrossRef]
- Cheng, H.L.; Cheng, C.A.; Fang, C.C.; Yen, H.C. Single-switch high power factor inverter for driving piezoelectric ceramic transducer. In Proceedings of the 2009 International Conference on Power Electronics and Drive Systems (PEDS), Taipei, Taiwan, 2–5 November 2009; pp. 1571–1576. [Google Scholar] [CrossRef]
- Li, Y.-F. Auto-tuning controller design of class E inverter with resonant components varying. In Proceedings of the 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, China, 28–31 May 2012; pp. 217–221. [Google Scholar] [CrossRef]
- Niyomthai, S.; Sangswang, A.; Naetiladdanon, S.; Mujjalinvimut, E. A predictive control of class E resonant inverter for ultrasonic cleaners. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 6319–6324. [Google Scholar] [CrossRef]
- Ashique, R.H.; Shihavuddin, A.S.M.; Khan, M.M.; Islam, A.; Ahmed, J.; Arif, M.S.B.; Maruf, M.H.; Al Mansur, A.; Haq, M.A.U.; Siddiquee, A. An Analysis and Modeling of the Class-E Inverter for ZVS/ZVDS at Any Duty Ratio with High Input Ripple Current. Electronics 2021, 10, 1312. [Google Scholar] [CrossRef]
- Shin, J.-K.; Kim, H.; Kim, S.W.; Chong, S.-A.; Moon, B.C.; Lee, S.; Choi, J.W. A practical new technology of removing algal bloom: Kwater gate water combine. Korean J. Ecol. Environ. 2014, 47, 214–218. [Google Scholar] [CrossRef]
- Park, P.N.; Kim, K.M.; Cho, Y.C. Evaluation Methods for the Removal Efficiency of Physical Algal Bloom Removal Devices. Environ. Impact Assess. 2023, 32, 419–430. [Google Scholar]
Module Design Case | Resonant Frequency [kHz] | Displacement [μm] | Force [N] | ||||||
---|---|---|---|---|---|---|---|---|---|
Center | Inner | Outer | End | Center | Inner | Outer | End | ||
Transducer + AL housing | 22.4 | 2.47 | 2.49 | 2.57 | 2.54 | 2.3 × 10−3 | 0.62 | 5.85 | 1.22 |
Transducer + SUS304 housing | 21.1 | 0.95 | 0.98 | 1.19 | 1.35 | 0.09 × 10−3 | 1.20 | 5.15 | 10.81 |
Transducer + Brass housing | 19.9 | 0.7 | 0.74 | 1.03 | 1.29 | 1.2 × 10−3 | 1.79 | 6.51 | 13.83 |
Cop | R1 | L1 | C1 | |
---|---|---|---|---|
1st Resonance | 4.40 [nF] | 20.64 [Ω] | 139.50 [mH] | 448.83 [pF] |
2nd Resonance | 3.92 [nF] | 40.86 [Ω] | 146.28 [mH] | 116.79 [pF] |
3rd Resonance | 3.00 [nF] | 21.33 [Ω] | 66.85 [mH] | 102.54 [pF] |
@fs = 38.2 [kHz] | @fs = 40 [kHz] | |
---|---|---|
24 [V] | 24 [V] | |
1.25 [A] | 1.7 [A] | |
30 [W] | 40.8 [W] | |
193 [ | 120 [] | |
0.25 [] | 0.56 [] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, C.; Kim, T. Optimal Design and Operation of an Ultrasonic Driving System for Algae Removal Considering Underwater Environment Load. Sensors 2025, 25, 542. https://doi.org/10.3390/s25020542
Joo C, Kim T. Optimal Design and Operation of an Ultrasonic Driving System for Algae Removal Considering Underwater Environment Load. Sensors. 2025; 25(2):542. https://doi.org/10.3390/s25020542
Chicago/Turabian StyleJoo, Changdae, and Taekue Kim. 2025. "Optimal Design and Operation of an Ultrasonic Driving System for Algae Removal Considering Underwater Environment Load" Sensors 25, no. 2: 542. https://doi.org/10.3390/s25020542
APA StyleJoo, C., & Kim, T. (2025). Optimal Design and Operation of an Ultrasonic Driving System for Algae Removal Considering Underwater Environment Load. Sensors, 25(2), 542. https://doi.org/10.3390/s25020542