Phytochemicals in Breast Cancer Prevention and Treatment: A Comprehensive Review
Abstract
:1. Introduction
Background
- Early Detection and Screening
- Late Diagnosis
- Socioeconomic and Racial Disparities
- Genetic and Biological Factors
- Healthcare Access and Quality
2. Breast Cancer Overview
3. Phytochemicals and Breast Cancer
3.1. What Are Phytochemicals?
3.1.1. Phenolic Compounds
3.1.2. Alkaloids
3.1.3. Terpenoids
3.1.4. Flavonoids
3.1.5. Glycosides
3.2. Potential Benefits of Phytochemicals
3.3. Mechanisms of Action
4. Phytochemicals Found in Foods
4.1. Cruciferous Vegetables
4.2. Berries and Citrus Fruits
4.3. Green Tea and Other Beverages
4.4. Herbs and Spices
4.5. From Marine Sources
5. Studies on Phytochemicals and Breast Cancer
5.1. In Vitro Studies
5.2. Animal Studies
5.3. Human Studies
5.4. Molecular Docking
6. Phytochemicals as Potential Preventive Agents
6.1. Role in Breast Cancer Prevention
6.2. Effects on Tumor Growth and Progression
6.3. Potential Side Effects and Interactions
6.4. Challenges and Limitations
7. Phytochemicals as Adjunctive Treatment
7.1. Complementary Approaches
7.2. Synergistic Effects with Conventional Treatments
7.3. Challenges and Limitations
8. Future Directions and Research Opportunities
8.1. Identifying Novel Phytochemicals
8.2. Optimizing Dosages and Delivery Methods
8.3. Personalized Medicine Approaches
8.3.1. Importance of Biomarkers in Tailored Phytochemical Selection
8.3.2. Future Perspectives on Personalized Phytochemical Therapies
8.4. Integrating Clinical Trials
8.4.1. Strategies to Address Challenges
- Pharmacokinetic Optimization
- 2.
- Standardization of Phytochemical Products
- 3.
- Adaptive Clinical Trial Designs
- 4.
- Integration of Genomic and Biomarker Data
8.4.2. Future Directions
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, Y.-S.; Zhao, Z.; Yang, Z.-N.; Xu, F.; Lu, H.-J.; Zhu, Z.-Y.; Shi, W.; Jiang, J.; Yao, P.-P.; Zhu, H.-P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci. 2017, 13, 1387. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, R.; Shaito, A.A.; Badran, A.; Baydoun, S.; Sobeh, M.; Ouchari, W.; Sahri, N.; Eid, A.H.; Mesmar, J.E.; Baydoun, E. Fractionation and phytochemical composition of an ethanolic extract of Ziziphus nummularia leaves: Antioxidant and anticancerous properties in human triple negative breast cancer cells. Front. Pharmacol. 2024, 15, 1331843. [Google Scholar] [CrossRef] [PubMed]
- Israel, B.e.B.; Tilghman, S.L.; Parker-Lemieux, K.; Payton-Stewart, F. Phytochemicals: Current strategies for treating breast cancer. Oncol. Lett. 2018, 15, 7471–7478. [Google Scholar] [CrossRef] [PubMed]
- Vibala, B.; Praseetha, P.; Vijayakumar, S. Phytochemical stimulants for cancer therapeutics from Garcinia gummi-gutta: A prime research report. Gene Rep. 2024, 34, 101885. [Google Scholar] [CrossRef]
- Bitwell, C.; Indra, S.S.; Luke, C.; Kakoma, M.K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci. Afr. 2023, 19, e01585. [Google Scholar] [CrossRef]
- Thakur, A.; Prasad, N.; Raina, K.; Sharma, R.; Chaudhary, A. Role of plant-based anticancer compounds in treatment of breast cancer. Curr. Pharmacol. Rep. 2023, 9, 468–488. [Google Scholar] [CrossRef]
- Twaij, B.M.; Hasan, M.N. Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. Int. J. Plant Biol. 2022, 13, 4–14. [Google Scholar] [CrossRef]
- Guerriero, G.; Berni, R.; Muñoz-Sanchez, J.A.; Apone, F.; Abdel-Salam, E.M.; Qahtan, A.A.; Alatar, A.A.; Cantini, C.; Cai, G.; Hausman, J.-F. Production of plant secondary metabolites: Examples, tips and suggestions for biotechnologists. Genes 2018, 9, 309. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Biotechnol. Isoprenoids 2015, 148, 63–106. [Google Scholar]
- Kumar, A.; P, N.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; K, S.; et al. Major phytochemicals: Recent advances in health benefits and extraction method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Saeedi, M.; Nabavi, S.M.; Mubarak, M.S.; Bishayee, A. Glycosides from medicinal plants as potential anticancer agents: Emerging trends towards future drugs. Curr. Med. Chem. 2019, 26, 2389–2406. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.; Kengne, M.H.; Fotsing, M.C.; Mmutlane, E.M.; Ndinteh, D.T. Traditional uses, phytochemistry, pharmacology and other potential applications of Vitellaria paradoxa Gaertn. (Sapotaceae): A review. Arab. J. Chem. 2021, 14, 103213. [Google Scholar] [CrossRef]
- Jie, Z. Structures and Bioactivities of Triterpene Glycosides from Three Plants (Bitter Gourd, Passion Flower, and Shea). Ph.D. Thesis, Nihon University, Tokyo, Japan, 2015. [Google Scholar]
- Rastogi, S.; Pandey, M.M.; Rawat, A.K.S. Medicinal plants of the genus Betula—Traditional uses and a phytochemical–pharmacological review. J. Ethnopharmacol. 2015, 159, 62–83. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, J.-S.; Hu, M.-J.; Liu, J.; Chen, H.-F.; Gao, H.; Wang, G.-H.; Li, S.-L.; Hao, X.-J.; Zhang, X.-K. Antiproliferative cardiac glycosides from the latex of Antiaris toxicaria. J. Nat. Prod. 2013, 76, 1771–1780. [Google Scholar] [CrossRef]
- Umdale, S.D.; Mundada, P.S.; Ahire, M.L. 9 Antiaris toxicaria (Upas Tree); CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Chavda, V.P.; Nalla, L.V.; Balar, P.; Bezbaruah, R.; Apostolopoulos, V.; Singla, R.K.; Khadela, A.; Vora, L.; Uversky, V.N. Advanced phytochemical-based nanocarrier systems for the treatment of breast cancer. Cancers 2023, 15, 1023. [Google Scholar] [CrossRef]
- Sohel, M.; Aktar, S.; Biswas, P.; Amin, M.A.; Hossain, M.A.; Ahmed, N.; Mim, M.I.H.; Islam, F.; Mamun, A.A. Exploring the anti-cancer potential of dietary phytochemicals for the patients with breast cancer: A comprehensive review. Cancer Med. 2023, 12, 14556–14583. [Google Scholar] [CrossRef]
- Gu, J.-W.; Makey, K.L.; Tucker, K.B.; Chinchar, E.; Mao, X.; Pei, I.; Thomas, E.Y.; Miele, L. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vasc. Cell 2013, 5, 9. [Google Scholar] [CrossRef]
- Wang, Z.; Loo, W.T.; Wang, N.; Chow, L.W.; Wang, D.; Han, F.; Zheng, X.; Chen, J.-P. Effect of Sanguisorba officinalis L. on breast cancer growth and angiogenesis. Expert Opin. Ther. Targets 2012, 16, S79–S89. [Google Scholar] [CrossRef]
- Penta, D.; Natesh, J.; Mondal, P.; Meeran, S.M. Dietary diindolylmethane enhances the therapeutic effect of centchroman in breast cancer by inhibiting neoangiogenesis. Nutr. Cancer 2023, 75, 734–749. [Google Scholar] [CrossRef] [PubMed]
- Chinnikrishnan, P.; Aziz Ibrahim, I.A.; Alzahrani, A.R.; Shahzad, N.; Sivaprakasam, P.; Pandurangan, A.K. The Role of Selective Flavonoids on Triple-Negative Breast Cancer: An Update. Separations 2023, 10, 207. [Google Scholar] [CrossRef]
- Dhaheri, Y.S.A. Identification of Novel Natural Compounds with Anti-Breast Cancer Activities. Ph.D. Thesis, United Arab Emirates University, Al Ain, United Arab Emirates, 2014. [Google Scholar]
- Nagaraju, G.P.; Peela, S. Theranostics and Precision Medicine for the Management of Hepatocellular Carcinoma, Volume 1: Biology and Pathophysiology; Academic Press: New York, NY, USA, 2022. [Google Scholar]
- Ahmadi, A.; Shadboorestan, A.; Nabavi, S.; Setzer, W.; Nabavi, S. The role of hesperidin in cell signal transduction pathway for the prevention or treatment of cancer. Curr. Med. Chem. 2015, 22, 3462–3471. [Google Scholar] [CrossRef] [PubMed]
- Ajee, R.S.; Kaushik, S.; Sharma, N.; Singh, I. The Catharanthus Genome; Springer: Berlin/Heidelberg, Germany, 2022; pp. 15–33. [Google Scholar]
- Freudenberg, J.A.; Wang, Q.; Katsumata, M.; Drebin, J.; Nagatomo, I.; Greene, M.I. The role of HER2 in early breast cancer metastasis and the origins of resistance to HER2-targeted therapies. Exp. Mol. Pathol. 2009, 87, 1–11. [Google Scholar] [CrossRef]
- McCubrey, J.A.; Lertpiriyapong, K.; Steelman, L.S.; Abrams, S.L.; Yang, L.V.; Murata, R.M.; Rosalen, P.L.; Scalisi, A.; Neri, L.M.; Cocco, L. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2017, 9, 1477. [Google Scholar] [CrossRef]
- Carrano, R.; Grande, M.; Leti Maggio, E.; Zucca, C.; Bei, R.; Palumbo, C.; Focaccetti, C.; Nardozi, D.; Lucarini, V.; Angiolini, V. Dietary Polyphenols Effects on Focal Adhesion Plaques and Metalloproteinases in Cancer Invasiveness. Biomedicines 2024, 12, 482. [Google Scholar] [CrossRef]
- Lee, S.; Rauch, J.; Kolch, W. Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity. Int. J. Mol. Sci. 2020, 21, 1102. [Google Scholar] [CrossRef]
- Farghadani, R.; Naidu, R. Curcumin: Modulator of key molecular signaling pathways in hormone-independent breast cancer. Cancers 2021, 13, 3427. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Sumantran, V.N.; Angayarkanni, N. Epigallocatechin gallate & curcumin prevent transforming growth factor beta 1-induced epithelial to mesenchymal transition in ARPE-19 cells. Indian J. Med. Res. 2017, 146, S85–S96. [Google Scholar]
- Bahadar, N.; Bahadar, S.; Sajid, A.; Wahid, M.; Ali, G.; Alghamdi, A.; Zada, H.; Khan, T.; Ullah, S.; Sun, Q. Epigallocatechin gallate and curcumin inhibit Bcl-2: A pharmacophore and docking based approach against cancer. Breast Cancer Res. 2024, 26, 114. [Google Scholar] [CrossRef]
- Pinheiro, A.A.; Lee, C.Y.-A.; Santos, A.G.P.d.; Pereira, É.R.; Rosário, M.S.d.; Ribeiro, D.L.; Serpeloni, J.M.; Rocha, C.Q.d. Chemical Characterization and Evaluation of the Antitumoral Activity of Annona tomentosa RE Fr. on Breast (MCF-7) Three-Dimensional (3D) Tumor Spheroids. J. Braz. Chem. Soc. 2024, 35, e20240037. [Google Scholar]
- Karia, P.; Patel, K.V.; Rathod, S.S. Breast cancer amelioration by Butea monosperma in-vitro and in-vivo. J. Ethnopharmacol. 2018, 217, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, P.P.; Vardhan, P.S.; Kapewangolo, P.; Shuaib, M.; Prajapati, S.K.; Singh, A.K.; Kumar, S. Bulbine frutescens phytochemical inhibits notch signaling pathway and induces apoptosis in triple negative and luminal breast cancer cells. Life Sci. 2019, 234, 116783. [Google Scholar] [CrossRef] [PubMed]
- Ishiwara, D.G.P. Decatropis bicolor (Zucc.) Radlk essential oil induces apoptosis of the MDA-MB-231 breast cancer cell line. BMC Complement. Altern. Med. 2016, 16, 266. [Google Scholar]
- Ranganathan, S.; Halagowder, D.; Sivasithambaram, N.D. Quercetin suppresses twist to induce apoptosis in MCF-7 breast cancer cells. PLoS ONE 2015, 10, e0141370. [Google Scholar] [CrossRef]
- Ko, Y.S.; Jung, E.J.; Go, S.-i.; Jeong, B.K.; Kim, G.S.; Jung, J.-M.; Hong, S.C.; Kim, C.W.; Kim, H.J.; Lee, W.S. Polyphenols extracted from Artemisia annua L. exhibit anti-cancer effects on radio-resistant MDA-MB-231 human breast cancer cells by suppressing stem cell phenotype, β-Catenin, and MMP-9. Molecules 2020, 25, 1916. [Google Scholar] [CrossRef]
- Feng, X.-L.; Ho, S.C.; Mo, X.-F.; Lin, F.-Y.; Zhang, N.-Q.; Luo, H.; Zhang, X.; Zhang, C.-X. Association between flavonoids, flavonoid subclasses intake and breast cancer risk: A case-control study in China. Eur. J. Cancer Prev. 2020, 29, 493–500. [Google Scholar] [CrossRef]
- Adlercreutz, H.; Mazur, W.; Heinonen, S.-M.; Stumpf, K. Phytoestrogens and breast cancer. In Breast Cancer; CRC Press: Boca Raton, FL, USA, 2002; pp. 549–576. [Google Scholar]
- Kawatra, A.; Gupta, S.; Dhankhar, R.; Singh, P.; Gulati, P. Application of Phytochemicals in Therapeutic, Food, Flavor, and Cosmetic Industries. In Phytochemical Genomics: Plant Metabolomics and Medicinal Plant Genomics; Springer: Berlin/Heidelberg, Germany, 2023; pp. 85–108. [Google Scholar]
- Prabhakar, P.; Mukherjee, S.; Kumar, A.; Kumar, S.; Verma, D.K.; Dhara, S.; Maiti, M.K.; Banerjee, M. Optimization of MAE for Carica papaya phytochemicals, and its in silico, in vitro, and ex vivo evaluation: For functional food and drug applications. Food Biosci. 2023, 54, 102861. [Google Scholar] [CrossRef]
- W Watson, G.; M Beaver, L.; E Williams, D.; H Dashwood, R.; Ho, E. Phytochemicals from cruciferous vegetables, epigenetics, and prostate cancer prevention. AAPS J. 2013, 15, 951–961. [Google Scholar] [CrossRef]
- Diab, K.A. In vitro studies on phytochemical content, antioxidant, anticancer, immunomodulatory, and antigenotoxic activities of lemon, grapefruit, and mandarin citrus peels. Asian Pac. J. Cancer Prev. 2016, 17, 3559–3567. [Google Scholar]
- Prasanth, M.I.; Sivamaruthi, B.S.; Chaiyasut, C.; Tencomnao, T. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients 2019, 11, 474. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhao, C.; Shi, H.; Liao, Y.; Xu, F.; Du, H.; Xiao, H.; Zheng, J. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Crit. Rev. Food Sci. Nutr. 2023, 63, 2018–2041. [Google Scholar] [CrossRef] [PubMed]
- Khalili, L.; Centner, A.M.; Salazar, G. Effects of berries, phytochemicals, and probiotics on atherosclerosis through gut microbiota modification: A meta-analysis of animal studies. Int. J. Mol. Sci. 2023, 24, 3084. [Google Scholar] [CrossRef] [PubMed]
- Shrubsole, M.J.; Lu, W.; Chen, Z.; Shu, X.O.; Zheng, Y.; Dai, Q.; Cai, Q.; Gu, K.; Ruan, Z.X.; Gao, Y.-T. Drinking green tea modestly reduces breast cancer risk. J. Nutr. 2009, 139, 310–316. [Google Scholar] [CrossRef]
- Muhammad, A.; Ibrahim, M.A.; Erukainure, O.L.; Malami, I.; Adamu, A. Spices with breast cancer chemopreventive and therapeutic potentials: A functional foods based-review. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 2018, 18, 182–194. [Google Scholar] [CrossRef]
- Guldiken, B.; Ozkan, G.; Catalkaya, G.; Ceylan, F.D.; Yalcinkaya, I.E.; Capanoglu, E. Phytochemicals of herbs and spices: Health versus toxicological effects. Food Chem. Toxicol. 2018, 119, 37–49. [Google Scholar] [CrossRef]
- Henning, S.M.; Zhang, Y.; Seeram, N.P.; Lee, R.-P.; Wang, P.; Bowerman, S.; Heber, D. Antioxidant capacity and phytochemical content of herbs and spices in dry, fresh and blended herb paste form. Int. J. Food Sci. Nutr. 2011, 62, 219–225. [Google Scholar] [CrossRef]
- Wali, A.F.; Majid, S.; Rasool, S.; Shehada, S.B.; Abdulkareem, S.K.; Firdous, A.; Beigh, S.; Shakeel, S.; Mushtaq, S.; Akbar, I. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi Pharm. J. 2019, 27, 767–777. [Google Scholar] [CrossRef]
- Chatterjee, P.; Gupta, S.; Banerjee, S. Understanding the role of the natural warriors: Phytochemicals in breast cancer chemoprevention. In Recent Frontiers of Phytochemicals; Elsevier: Amsterdam, The Netherlands, 2023; pp. 261–293. [Google Scholar]
- Okuyama, N.C.M.; Ribeiro, D.L.; da Rocha, C.Q.; Pereira, É.R.; de Syllos Cólus, I.M.; Serpeloni, J.M. Three-dimensional cell cultures as preclinical models to assess the biological activity of phytochemicals in breast cancer. Toxicol. Appl. Pharmacol. 2023, 460, 116376. [Google Scholar] [CrossRef]
- Kapinova, A.; Kubatka, P.; Golubnitschaja, O.; Kello, M.; Zubor, P.; Solar, P.; Pec, M. Dietary phytochemicals in breast cancer research: Anticancer effects and potential utility for effective chemoprevention. Environ. Health Prev. Med. 2018, 23, 36. [Google Scholar] [CrossRef]
- Chavda, V.P.; Vuppu, S.; Bezbaruah, R.; Nalla, L.V.; Gajula, S.N.R.; Balar, P.C.; Mishra, T.; Sharma, N.; Kamaraj, S.; Suresh, T. Phytochemical Loaded Nanovehicles of Biopolymer for Breast Cancer: A Systemic review. Clin. Complement. Med. Pharmacol. 2023, 3, 100114. [Google Scholar] [CrossRef]
- Li, F. Discovery of survivin inhibitors and beyond: FL118 as a proof of concept. Int. Rev. Cell Mol. Biol. 2013, 305, 217–252. [Google Scholar] [PubMed]
- Arafah, A.; Rehman, M.U.; Mir, T.M.; Wali, A.F.; Ali, R.; Qamar, W.; Khan, R.; Ahmad, A.; Aga, S.S.; Alqahtani, S. Multi-therapeutic potential of naringenin (4′, 5, 7-trihydroxyflavonone): Experimental evidence and mechanisms. Plants 2020, 9, 1784. [Google Scholar] [CrossRef] [PubMed]
- Tuli, H.S.; Mittal, S.; Aggarwal, D.; Parashar, G.; Parashar, N.C.; Upadhyay, S.K.; Barwal, T.S.; Jain, A.; Kaur, G.; Savla, R. Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance. In Seminars in Cancer Biology; Academic Press: New York, NY, USA; pp. 196–218.
- Patel, G.; Thakur, N.S.; Kushwah, V.; Patil, M.D.; Nile, S.H.; Jain, S.; Banerjee, U.C.; Kai, G. Liposomal delivery of mycophenolic acid with quercetin for improved breast cancer therapy in SD rats. Front. Bioeng. Biotechnol. 2020, 8, 631. [Google Scholar] [CrossRef] [PubMed]
- Pouget, C.; Lauthier, F.; Simon, A.; Fagnere, C.; Basly, J.-P.; Delage, C.; Chulia, A.-J. Flavonoids: Structural requirements for antiproliferative activity on breast cancer cells. Bioorganic Med. Chem. Lett. 2001, 11, 3095–3097. [Google Scholar] [CrossRef]
- Chandrika, B.B.; Steephan, M.; Kumar, T.S.; Sabu, A.; Haridas, M. Hesperetin and naringenin sensitize HER2 positive cancer cells to death by serving as HER2 tyrosine kinase inhibitors. Life Sci. 2016, 160, 47–56. [Google Scholar] [CrossRef]
- Vollono, L.; Falconi, M.; Gaziano, R.; Iacovelli, F.; Dika, E.; Terracciano, C.; Bianchi, L.; Campione, E. Potential of curcumin in skin disorders. Nutrients 2019, 11, 2169. [Google Scholar] [CrossRef]
- Jia, T.; Zhang, L.; Duan, Y.; Zhang, M.; Wang, G.; Zhang, J.; Zhao, Z. The differential susceptibilities of MCF-7 and MDA-MB-231 cells to the cytotoxic effects of curcumin are associated with the PI3K/Akt-SKP2-Cip/Kips pathway. Cancer Cell Int. 2014, 14, 126. [Google Scholar] [CrossRef]
- Fu, H.; Wang, C.; Yang, D.; Wei, Z.; Xu, J.; Hu, Z.; Zhang, Y.; Wang, W.; Yan, R.; Cai, Q. Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J. Cell. Physiol. 2018, 233, 4634–4642. [Google Scholar] [CrossRef]
- Cabeza, L.; Ortiz, R.; Prados, J.; Delgado, Á.V.; Martín-Villena, M.J.; Clares, B.; Perazzoli, G.; Entrena, J.M.; Melguizo, C.; Arias, J.L. Improved antitumor activity and reduced toxicity of doxorubicin encapsulated in poly (ε-caprolactone) nanoparticles in lung and breast cancer treatment: An in vitro and in vivo study. Eur. J. Pharm. Sci. 2017, 102, 24–34. [Google Scholar] [CrossRef]
- Seca, A.M.; Pinto, D.C. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci. 2018, 19, 263. [Google Scholar] [CrossRef]
- Wang, L.-b.; Wang, D.-n.; Wu, L.-g.; Cao, J.; Tian, J.-h.; Liu, R.; Ma, R.; Yu, J.-j.; Wang, J.; Huang, Q. Homoharringtonine inhibited breast cancer cells growth via miR-18a-3p/AKT/mTOR signaling pathway. Int. J. Biol. Sci. 2021, 17, 995. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, T.; Murata, S.; Nakayama, K.; Sano, N.; Ogawa, K.; Nowatari, T.; Tamura, T.; Nozaki, R.; Fukunaga, K.; Ohkohchi, N. (-)-Epigallocatechin-3-gallate suppresses liver metastasis of human colorectal cancer. Oncol. Rep. 2014, 31, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.-J.; Wan, Y.; Zhu, D.-D.; Wang, M.-X.; Jiang, H.-M.; Huang, D.-L.; Luo, L.-F.; Chen, M.-J.; Yang, W.-P.; Li, H.-M. Resveratrol mediates the apoptosis of triple negative breast cancer cells by reducing POLD1 expression. Front. Oncol. 2021, 11, 569295. [Google Scholar] [CrossRef]
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol. 2020, 10, 497776. [Google Scholar] [CrossRef]
- Balkrishna, A.; Sharma, N.; Srivastava, D.; Kukreti, A.; Srivastava, S.; Arya, V. Exploring the Safety, Efficacy, and Bioactivity of Herbal Medicines: Bridging Traditional Wisdom and Modern Science in Healthcare. Future Integr. Med. 2024, 3, 35–49. [Google Scholar] [CrossRef]
- Taghizadeh, M.S.; Niazi, A.; Moghadam, A.; Afsharifar, A. Experimental, molecular docking and molecular dynamic studies of natural products targeting overexpressed receptors in breast cancer. PLoS ONE 2022, 17, e0267961. [Google Scholar] [CrossRef] [PubMed]
- Bishayee, K.; Paul, A.; Ghosh, S.; Sikdar, S.; Mukherjee, A.; Biswas, R.; Boujedaini, N.; Khuda-Bukhsh, A.R. Condurango-glycoside-A fraction of Gonolobus condurango induces DNA damage associated senescence and apoptosis via ROS-dependent p53 signalling pathway in HeLa cells. Mol. Cell. Biochem. 2013, 382, 173–183. [Google Scholar] [CrossRef]
- Mondal, J.; Bishayee, K.; Panigrahi, A.K.; Khuda-Bukhsh, A.R. Low doses of ethanolic extract of Boldo (Peumus boldus) can ameliorate toxicity generated by cisplatin in normal liver cells of mice in vivo and in WRL-68 cells in vitro, but not in cancer cells in vivo or in vitro. J. Integr. Med. 2014, 12, 425–438. [Google Scholar] [CrossRef]
- Bouker, K.B.; Hilakivi-Clarke, L. Genistein: Does it prevent or promote breast cancer? Environ. Health Perspect. 2000, 108, 701–708. [Google Scholar] [CrossRef]
- Tophkhane, C.; Yang, S.; Bales, W.; Archer, L.; Osunkoya, A.; Thor, A.D.; Yang, X. Bcl-2 overexpression sensitizes MCF-7 cells to genistein by multiple mechanisms. Int. J. Oncol. 2007, 31, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Rajah, T.T.; Peine, K.J.; Du, N.; Serret, C.A.; Drews, N.R. Physiological concentrations of genistein and 17β-estradiol inhibit MDA-MB-231 breast cancer cell growth by increasing BAX/BCL-2 and reducing pERK1/2. Anticancer Res. 2012, 32, 1181–1191. [Google Scholar] [PubMed]
- Kaushik, S.; Shyam, H.; Agarwal, S.; Sharma, R.; Nag, T.C.; Dwivedi, A.K.; Balapure, A.K. Genistein potentiates Centchroman induced antineoplasticity in breast cancer via PI3K/Akt deactivation and ROS dependent induction of apoptosis. Life Sci. 2019, 239, 117073. [Google Scholar] [CrossRef] [PubMed]
- Kasiri, N.; Rahmati, M.; Ahmadi, L.; Eskandari, N.; Motedayyen, H. Therapeutic potential of quercetin on human breast cancer in different dimensions. Inflammopharmacology 2020, 28, 39–62. [Google Scholar] [CrossRef]
- Huang, R.; Ding, L.; Ye, Y.; Wang, K.; Yu, W.; Yan, B.; Liu, Z.; Wang, J. Protective effect of quercetin on cadmium-induced renal apoptosis through cyt-c/caspase-9/caspase-3 signaling pathway. Front. Pharmacol. 2022, 13, 990993. [Google Scholar] [CrossRef]
- Berdan, C.A.; Ho, R.; Lehtola, H.S.; To, M.; Hu, X.; Huffman, T.R.; Petri, Y.; Altobelli, C.R.; Demeulenaere, S.G.; Olzmann, J.A. Parthenolide covalently targets and inhibits focal adhesion kinase in breast cancer cells. Cell Chem. Biol. 2019, 26, 1027–1035.e1022. [Google Scholar] [CrossRef]
- Takeda, S.; Matsuo, K.; Yaji, K.; Okajima-Miyazaki, S.; Harada, M.; Miyoshi, H.; Okamoto, Y.; Amamoto, T.; Shindo, M.; Omiecinski, C.J. (−)-Xanthatin selectively induces GADD45γ and stimulates caspase-independent cell death in human breast cancer MDA-MB-231 cells. Chem. Res. Toxicol. 2011, 24, 855–865. [Google Scholar] [CrossRef]
- Takeda, S.; Nishimura, H.; Koyachi, K.; Matsumoto, K.; Yoshida, K.; Okamoto, Y.; Amamoto, T.; Shindo, M.; Aramaki, H. (–)-Xanthatin induces the prolonged expression of c-Fos through an N-acetyl-L-cysteine (NAC)-sensitive mechanism in human breast cancer MDA-MB-231 cells. J. Toxicol. Sci. 2013, 38, 547–557. [Google Scholar] [CrossRef]
- Takeda, S.; Okajima, S.; Noguchi, M.; Miyoshi, H.; Koyachi, K.; Matsumoto, K.; Shindo, M.; Aramaki, H. Possible involvement of FosB in (–)-xanthatin-mediated anti-proliferative effects in human cancer MDA-MB-231 cells. Fundam. Toxicol. Sci. 2016, 3, 115–119. [Google Scholar] [CrossRef]
- Jiang, D.; Xu, J.; Liu, S.; Nasser, M.I.; Wei, W.; Mao, T.; Liu, X.; Zou, X.; Li, J.; Li, X. Rosmanol induces breast cancer cells apoptosis by regulating PI3K/AKT and STAT3/JAK2 signaling pathways. Oncol. Lett. 2021, 22, 631. [Google Scholar] [CrossRef]
- Shu, L.; Cheung, K.-L.; Khor, T.O.; Chen, C.; Kong, A.-N. Phytochemicals: Cancer chemoprevention and suppression of tumor onset and metastasis. Cancer Metastasis Rev. 2010, 29, 483–502. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, K.J.; Christian, S.D.; Srinivasan, H. Screening of anti-carcinogenic properties of phytocompounds from Allium ascalonicum for treating breast cancer through in silico and in vitro approaches. Appl. Biochem. Biotechnol. 2023, 195, 1136–1157. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, R.; Radhakrishnan, A.K.; Selvaduray, K.R.; Nesaretnam, K. Selective anti-cancer effects of palm phytonutrients on human breast cancer cells. RSC Adv. 2015, 5, 1745–1753. [Google Scholar] [CrossRef]
- Yaacob, N.S.; Yankuzo, H.M.; Devaraj, S.; Wong, J.K.M.; Lai, C.-S. Anti-tumor action, clinical biochemistry profile and phytochemical constituents of a pharmacologically active fraction of S. crispus in NMU-induced rat mammary tumour model. PLoS ONE 2015, 10, e0126426. [Google Scholar] [CrossRef]
- Solanki, R.; Rajput, P.K.; Jodha, B.; Yadav, U.C.; Patel, S. Enhancing apoptosis-mediated anticancer activity of evodiamine through protein-based nanoparticles in breast cancer cells. Sci. Rep. 2024, 14, 2595. [Google Scholar]
- Xu, A.-L.; Xue, Y.-Y.; Tao, W.-T.; Wang, S.-Q.; Xu, H.-Q. Oleanolic acid combined with olaparib enhances radiosensitization in triple negative breast cancer and hypoxia imaging with 18F-FETNIM micro PET/CT. Biomed. Pharmacother. 2022, 150, 113007. [Google Scholar] [CrossRef]
- Wu, W.; Jia, X.H.; Zhang, S.; Dong, C.M.; Kang, F.H.; Zou, Z.X.; Xu, K.P. Two New Abietane Diterpenoids from Selaginella moellendorffii Hieron. Chem. Biodivers. 2020, 17, e2000111. [Google Scholar] [CrossRef]
- Mbaveng, A.T.; Noulala, C.G.; Samba, A.R.; Tankeo, S.B.; Fotso, G.W.; Happi, E.N.; Ngadjui, B.T.; Beng, V.P.; Kuete, V.; Efferth, T. Cytotoxicity of botanicals and isolated phytochemicals from Araliopsis soyauxii Engl. (Rutaceae) towards a panel of human cancer cells. J. Ethnopharmacol. 2021, 267, 113535. [Google Scholar] [CrossRef]
- Aly, S.H.; Elbadry, A.M.; Doghish, A.S.; El-Nashar, H.A. Unveiling the pharmacological potential of plant triterpenoids in breast cancer management: An updated review. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 5571–5596. [Google Scholar] [CrossRef]
- Salam, S.; Harneti, D.; Maharani, R.; Safari, A.; Hidayat, A.T.; Lesmana, R.; Nafiah, M.A.; Supratman, U.; Prescott, T.A.K.; Shiono, Y. Cytotoxic triterpenoids from Chisocheton pentandrus. Phytochemistry 2021, 187, 112759. [Google Scholar] [CrossRef]
- Choodej, S.; Pudhom, K. Cycloartane triterpenoids from the leaves of Euphorbia neriifolia. Phytochem. Lett. 2020, 35, 1–5. [Google Scholar] [CrossRef]
- Zhao, G.; Yan, W.; Cao, D. Simultaneous determination of betulin and betulinic acid in white birch bark using RP-HPLC. J. Pharm. Biomed. Anal. 2007, 43, 959–962. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhang, X.L.; Yuan, J.W.; Zhang, H.R.; Liu, D.; Hao, J.; Ji, W.; Wu, X.Z.; Chen, D. Cucurbitacin B inhibits the migration and invasion of breast cancer cells by altering the biomechanical properties of cells. Phytother. Res. 2019, 33, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, P.P.; Singh, A.K.; Shuaib, M.; Prajapati, K.S.; Vardhan, P.S.; Gupta, S.; Kumar, S. 3-O-(E)-p-Coumaroyl betulinic acid possess anticancer activity and inhibit Notch signaling pathway in breast cancer cells and mammosphere. Chem.-Biol. Interact. 2020, 328, 109200. [Google Scholar] [CrossRef]
- Johnson, I.T. Phytochemicals and cancer. Proc. Nutr. Soc. 2007, 66, 207–215. [Google Scholar] [CrossRef]
- Bathaie, S.Z.; Faridi, N.; Nasimian, A.; Heidarzadeh, H.; Tamanoi, F. How phytochemicals prevent chemical carcinogens and/or suppress tumor growth? Enzymes 2015, 37, 1–42. [Google Scholar]
- Huang, Y.; Bu, Q. Adverse effects of phytochemicals. In Nutritional Toxicology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 355–384. [Google Scholar]
- Lecomte, S.; Demay, F.; Ferrière, F.; Pakdel, F. Phytochemicals targeting estrogen receptors: Beneficial rather than adverse effects? Int. J. Mol. Sci. 2017, 18, 1381. [Google Scholar] [CrossRef]
- Molyneux, R.J.; Lee, S.T.; Gardner, D.R.; Panter, K.E.; James, L.F. Phytochemicals: The good, the bad and the ugly? Phytochemistry 2007, 68, 2973–2985. [Google Scholar] [CrossRef]
- Hosein Farzaei, M.; Bahramsoltani, R.; Rahimi, R. Phytochemicals as adjunctive with conventional anticancer therapies. Curr. Pharm. Des. 2016, 22, 4201–4218. [Google Scholar] [CrossRef]
- Jain, A.; Madu, C.O.; Lu, Y. Phytochemicals in chemoprevention: A cost-effective complementary approach. J. Cancer 2021, 12, 3686. [Google Scholar] [CrossRef]
- Pezzani, R.; Salehi, B.; Vitalini, S.; Iriti, M.; Zuñiga, F.A.; Sharifi-Rad, J.; Martorell, M.; Martins, N. Synergistic effects of plant derivatives and conventional chemotherapeutic agents: An update on the cancer perspective. Medicina 2019, 55, 110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Virgous, C.; Si, H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J. Nutr. Biochem. 2019, 69, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, P.K.; Doble, M. Synergistic effect of phytochemicals in combination with hypoglycemic drugs on glucose uptake in myotubes. Phytomedicine 2009, 16, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Richards, L.A.; Glassmire, A.E.; Ochsenrider, K.M.; Smilanich, A.M.; Dodson, C.D.; Jeffrey, C.S.; Dyer, L.A. Phytochemical diversity and synergistic effects on herbivores. Phytochem. Rev. 2016, 15, 1153–1166. [Google Scholar] [CrossRef]
- Kowalczyk, M.C.; Kowalczyk, P.; Tolstykh, O.; Hanausek, M.; Walaszek, Z.; Slaga, T.J. Synergistic effects of combined phytochemicals and skin cancer prevention in SENCAR mice. Cancer Prev. Res. 2010, 3, 170–178. [Google Scholar] [CrossRef]
- Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004, 134, 3479S–3485S. [Google Scholar] [CrossRef]
- Sohn, S.-I.; Priya, A.; Balasubramaniam, B.; Muthuramalingam, P.; Sivasankar, C.; Selvaraj, A.; Valliammai, A.; Jothi, R.; Pandian, S. Biomedical applications and bioavailability of curcumin—An updated overview. Pharmaceutics 2021, 13, 2102. [Google Scholar] [CrossRef]
- Aqil, F.; Munagala, R.; Jeyabalan, J.; Vadhanam, M.V. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett. 2013, 334, 133–141. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Wang, L.; Liu, Q.; Yang, S.; Wang, C. Advancing herbal medicine: Enhancing product quality and safety through robust quality control practices. Front. Pharmacol. 2023, 14, 1265178. [Google Scholar] [CrossRef]
- Russo, M.; Spagnuolo, C.; Tedesco, I.; Russo, G.L. Phytochemicals in cancer prevention and therapy: Truth or dare? Toxins 2010, 2, 517–551. [Google Scholar] [CrossRef] [PubMed]
- Shaito, A.; Posadino, A.M.; Younes, N.; Hasan, H.; Halabi, S.; Alhababi, D.; Al-Mohannadi, A.; Abdel-Rahman, W.M.; Eid, A.H.; Nasrallah, G.K. Potential adverse effects of resveratrol: A literature review. Int. J. Mol. Sci. 2020, 21, 2084. [Google Scholar] [CrossRef] [PubMed]
- Abebe, W. Review of herbal medications with the potential to cause bleeding: Dental implications, and risk prediction and prevention avenues. EPMA J. 2019, 10, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Singh, R.; Sharma, B. Phytochemicals mediated signalling pathways and their implications in cancer chemotherapy: Challenges and opportunities in phytochemicals based drug development: A review. Biochem. Compd. 2017, 5, 2. [Google Scholar] [CrossRef]
- Lagoa, R.; Silva, J.; Rodrigues, J.R.; Bishayee, A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol. Adv. 2020, 38, 107382. [Google Scholar] [CrossRef]
- Efferth, T.; Saeed, M.E.; Mirghani, E.; Alim, A.; Yassin, Z.; Saeed, E.; Khalid, H.E.; Daak, S. Integration of phytochemicals and phytotherapy into cancer precision medicine. Oncotarget 2017, 8, 50284. [Google Scholar] [CrossRef]
- Chen, C.; Lin, C.-J.; Pei, Y.-C.; Ma, D.; Liao, L.; Li, S.-Y.; Fan, L.; Di, G.-H.; Wu, S.-Y.; Liu, X.-Y. Comprehensive genomic profiling of breast cancers characterizes germline-somatic mutation interactions mediating therapeutic vulnerabilities. Cell Discov. 2023, 9, 125. [Google Scholar] [CrossRef]
- Zoi, V.; Kyritsis, A.P.; Galani, V.; Lazari, D.; Sioka, C.; Voulgaris, S.; Alexiou, G.A. The Role of Curcumin in Cancer: A Focus on the PI3K/Akt Pathway. Cancers 2024, 16, 1554. [Google Scholar] [CrossRef]
- Pejčić, T.; Zeković, M.; Bumbaširević, U.; Kalaba, M.; Vovk, I.; Bensa, M.; Popović, L.; Tešić, Ž. The role of isoflavones in the prevention of breast cancer and prostate cancer. Antioxidants 2023, 12, 368. [Google Scholar] [CrossRef]
- Mazurakova, A.; Koklesova, L.; Samec, M.; Kudela, E.; Kajo, K.; Skuciova, V.; Csizmár, S.H.; Mestanova, V.; Pec, M.; Adamkov, M. Anti-breast cancer effects of phytochemicals: Primary, secondary, and tertiary care. EPMA J. 2022, 13, 315–334. [Google Scholar] [CrossRef]
- Wen, X.; Pu, H.; Liu, Q.; Guo, Z.; Luo, D. Circulating Tumor DNA—A Novel Biomarker of Tumor Progression and Its Favorable Detection Techniques. Cancers 2022, 14, 6025. [Google Scholar] [CrossRef] [PubMed]
- Raikar, G.S.; Raikar, A.S.; Somnache, S.N. Advancements in artificial intelligence and machine learning in revolutionising biomarker discovery. Braz. J. Pharm. Sci. 2023, 59, e23146. [Google Scholar] [CrossRef]
- Maserat, E. Integration of Artificial Intelligence and CRISPR/Cas9 System for Vaccine Design; SAGE Publications Sage: London, UK, 2022; Volume 21, p. 11769351221140102. [Google Scholar]
- Talib, W.H.; Awajan, D.; Alqudah, A.; Alsawwaf, R.; Althunibat, R.; Abu AlRoos, M.; Al Safadi, A.; Abu Asab, S.; Hadi, R.W.; Al Kury, L.T. Targeting cancer hallmarks with epigallocatechin gallate (EGCG): Mechanistic basis and therapeutic targets. Molecules 2024, 29, 1373. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, B.T.; Bezerra, P.H.A.; Torqueti, M.R. Antitumor effects of co-treatment of resveratrol with antitumor drugs in ER-and HER2-positive breast cancer cells are due to induction of apoptosis and modulation of estrogen receptor expression. Breast Cancer 2024, 31, 754–768. [Google Scholar] [CrossRef] [PubMed]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Mugale, M.N.; Dev, K.; More, B.S.; Mishra, V.S.; Washimkar, K.R.; Singh, K.; Maurya, R.; Rath, S.K.; Chattopadhyay, D.; Chattopadhyay, N. A Comprehensive Review on Preclinical Safety and Toxicity of Medicinal Plants. Clin. Complement. Med. Pharmacol. 2024, 4, 100129. [Google Scholar] [CrossRef]
- Waksmundzka-Hajnos, M.; Sherma, J. High Performance Liquid Chromatography in Phytochemical Analysis; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
Phytochemicals | Plant Source | Biomedical Activity | Reference |
---|---|---|---|
Polyphenols | |||
Flavanols | Grapes, green and black tea | Antioxidant Anti-inflammatory | [11] |
Flavanones | Citrus fruits, grapes | Anti-inflammatory Anti-allergic | |
Flavones | Pea, watermelon, pepper | Anticancer Antioxidant | |
Anthocyanidins | Cereals, legumes | Anti-inflammatory Antioxidant | |
Carotenoids | |||
α-carotene | Banana, avocado, mango, pumpkin | Anticancer Eye Health | |
Lutein | Spinach, broccoli, pepper, nuts, dates | Improves immunity Hepatoprotective | |
β-carotene | Spinach, grapes, carrot, pepper, mango, lettuce | Improves immunity Hepatoprotective | |
Xanthophylls | Pepper, mushroom, pumpkin | Improves blood flow Antioxidant | |
Fucoxanthin | Seaweeds, microalgae | Antioxidant Anticancer Antimicrobial Antiobesity Anti-inflammatory | |
Saponins | |||
Oleanane | Almond, black gram | Hypolipidemic Antimicrobial | |
Polysaccharides | |||
Fucoidan | seaweeds | Antioxidant Antimicrobial | |
Amylopectin | Rice, corn, potato | Improves gut microbes | |
Fibers | Green leafy vegetables, fruits | Prevent cardiovascular diseases | |
Terpenoids | Algae, mushrooms, lichens | Antiviral Anti-inflammatory Anti-allergic | |
phytoestrogen | Berries, grapes, peanuts, peas, cereals | Protection from cardiovascular diseases Anticancer Antidiabetic |
Sl. No. | Group | Major Plant Source/Family/Species | Chemical Nature/Nucleus | Structure of the Nucleus |
---|---|---|---|---|
1. | Tropane alkaloid | Solanaceae | Tropane (C4N skeleton) nucleus | |
2. | Pyrrolizidine alkaloids |
|
| |
3. | Piperidine alkaloids |
| ||
4. | Quinolines alkaloid | Cinchona plant |
| |
5. | Isoquinoline alkaloids | Higher plants |
| |
6. | Indole alkaloids |
| ||
7. | Steroidal alkaloids |
|
| |
8. | Imidazole alkaloid |
|
| |
9. | Purine alkaloids |
|
| |
10. | Pyrrolidine alkaloids |
|
|
Compound | Source | Potential | Reference |
---|---|---|---|
Paradoxoside A | Vitellaria paradoxa | Anticancer Potential | [14,15,16] |
Butyroside | Vitellaria paradoxa | ||
Tieghemelin | Vitellaria paradoxa | ||
papyriferoside A | Betula papyrifera Betula papyrifera | ||
5-O-β-D-apiofuranosyl-(1→2)-β-D-glucopyranosyl-1, 7-bis-(4-hydroxyphenyl)-heptan-3-one | Betula papyrifera | ||
Platyphyl Loside | Betula papyrifera | ||
Solamargine | Solanum incanum | ||
Antiaroside J | Antiaris toxicaria | Toxic potential against human NIHH460 lung cancer cells | [13,17,18] |
Antiaroside N | Antiaris toxicaria | ||
Antiaroside O | Antiaris toxicaria | ||
Antiaroside P | Antiaris toxicaria | ||
Antiaroside | Antiaris toxicaria | ||
Deglucocheirotoxol | Antiaris toxicaria | ||
Convallatoxol | Antiaris toxicaria | ||
Desglucocheirotoxin | Antiaris toxicaria | ||
Strophalloside | Antiaris toxicaria | ||
Convallatoxin | Antiaris toxicaria | ||
Toxicarioside B | Antiaris toxicaria | ||
Antialloside | Antiaris toxicaria | ||
Antiarin | Antiaris toxicaria | ||
Antiaroside Q | Antiaris toxicaria |
Phytochemicals | Cancer Target | Therapeutic Effect | Reference |
---|---|---|---|
Phenolics, terpenoids, and alkaloids | MCF-7 and MDA-MB-231 |
| [36] |
Butea monosperma extracts | MCF-7 breast cancer cell |
| [37] |
Bulbine frutescens phytochemicals | T47D cells of breast cancer |
| [38] |
Polyphenols, Quercetin, curcumin, and resveratrol | Cancer Stem Cells (CSCs) |
| [30] |
β-terpineol, 1,5-cyclooctadiene, 3-(methyl-2)propenyl, and cyclohexene | MDA-MB-231 |
| [39] |
Quercetin | MCF-7 breast cancer cell |
| [40] |
Polyphenols | Breast Cancer Cells (MDA-MB-231) |
| [41] |
Flavonols, flavan-3-ols and anthocyanidins | Phytoestrogens analysis |
| [42] |
Glycitein | Phytoestrogens analysis |
| [43] |
Compound | Target | Structure | Mechanism | Reference |
---|---|---|---|---|
Genistein | Breast cancer |
| [79,80,81,82] | |
Quercetin |
| [83,84] | ||
Parthenolide |
| [85] | ||
Xanthatin |
| [86,87,88] | ||
Rosmanol |
| [89] |
Compound/Extract/Plant Extract | Method | Target | Concentration (IC50) | References |
---|---|---|---|---|
A. muricata Methanol extract | Extract | MDA-MB-231 and MCF7 cell lines. | 17 and 23 µg/ml | [91] |
A. muricata water extract | Extract | MDA-MB-231 and MCF7 cell lines. | 19 and 24.5 µg/ml | [91] |
ASE | Extract | MCF-7 cells | 1400 µg/ml | [91] |
Carotenoids | Fractionation | MDA-MB-231 | 4.25 µg/ml | [92] |
Squalene | Fractionation | MDA-MB-231 | 16.8 µg/ml | [92] |
Fraction of S. crispus | Fractionation | MCF-7 cells | 100 µg/ml | [93] |
Bryonia dioica | Extract | MCF-7 | 9.81 mg/mL | [20] |
Baeckea frutescens | Plant | MCF-7 MDA-MB-231, MCF10A | 53 μg/mL | [20] |
Bulbine frutescens | Plant | MDA-MB-231, T47D | 4.8–28.4 μg/mL | [20] |
Cimicifuga dahurica | Plant | MCF-7 | 30 μM | [20] |
Fagonia indica | Plant | MCF-7, MDA-MB-468 | 50–100 μM | [20] |
Glycyrrhiza glabra | Plant | Multiple cell line | 0 or 20 mg/kg | [20] |
Lawsonia nermis | Plant | MCF-7 | 1.5 μM | [20] |
Morus alba | Plant | MCF-7 | 350 μg/mL | [20] |
Premna odorata | Plant | MCF-7, BT-474 | 13.3 μM | [20] |
Salvia species | Plant | T47D, ZR-75-1, BT 474 | 30 μg/mL | [20] |
Senecio graveolens | Plant | ZR-75-1, MDA-MB-231 | 200 μg/mL | [20] |
EVO | Isolation | MDA-MB-231 | 17.48 μg/mL | [94] |
ENPs | Isolation | MCF-7 | 7.86 μg/mL | [94] |
oleanolic acid | Compound | DA-MB-231 cells | 28.02 µg/mL | [95] |
β-sitosterol | Compound | MCF-7 | 15.42 µg/mL | [95] |
β-amyrin | Compound | MCF-7 | 10.08 µg/mL | [95] |
β-sitosterol-glucoside | Compound | MCF-7 | 11.34 µg/mL | [95] |
(22E, 24S)-Ergosta-4,6,8(14), 22-tetraen-3-one | Compound | MCF-7 | 24.2 µM | [96] |
β-sitosterol s | Compound | MCF-7 | 24.6 µM | [96] |
Walsucochinone C | Compound | MCF-7 | 16.4 µM | [96] |
Nimonol | Compound | MCF-7 | 22.03 µM | [96] |
Limonoid Kihadanin B | Compound | MDA-MB-231 | 7.79 µM | [97] |
Chisopaten (A-D) | Compound | MCF-7 | 4.01 µM | [98] |
Chisopaten (A-D) | Compound | MCF-7 | 4.33 µM | [98] |
melianodiol | Compound | MCF-7 | 16.84 µM | [99] |
cycloschimperols B | Compound | MCF-7 | 2.10 µM | [99] |
neriifolins A | Compound | MCF-7 | 13.14 µM | [100] |
neriifolins B | Compound | MCF-7 | 7.12 µM | [100] |
neriifolins C | Compound | MCF-7 | 9.50 µM | [100] |
Betulinic acid (BA) | Compound | MCF-7 | 19.06 µM | [101] |
Cucurbitacin B (CuB) | Compound | MDA-MB-231 | 15.89 µM | [102] |
Cucurbitacin B (CuB) | Compound | SKBR-3 cells | 6.177 µM | [102] |
3-O-(E)-p-coumaroylbetulinic acid (CB) | Compound | MDA-MB-231 | 5.884 µM | [103] |
3-O-(E)-p-coumaroylbetulinic acid (CB) | Compound | T-47D cells | 2.708 µM | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wali, A.F.; Pillai, J.R.; Talath, S.; Shivappa, P.; Sridhar, S.B.; El-Tanani, M.; Rangraze, I.R.; Mohamed, O.I.; Al Ani, N.N. Phytochemicals in Breast Cancer Prevention and Treatment: A Comprehensive Review. Curr. Issues Mol. Biol. 2025, 47, 30. https://doi.org/10.3390/cimb47010030
Wali AF, Pillai JR, Talath S, Shivappa P, Sridhar SB, El-Tanani M, Rangraze IR, Mohamed OI, Al Ani NN. Phytochemicals in Breast Cancer Prevention and Treatment: A Comprehensive Review. Current Issues in Molecular Biology. 2025; 47(1):30. https://doi.org/10.3390/cimb47010030
Chicago/Turabian StyleWali, Adil Farooq, Jayachithra Ramakrishna Pillai, Sirajunisa Talath, Pooja Shivappa, Sathvik Belagodu Sridhar, Mohamed El-Tanani, Imran Rashid Rangraze, Omnia Ibrahim Mohamed, and Nowar Nizar Al Ani. 2025. "Phytochemicals in Breast Cancer Prevention and Treatment: A Comprehensive Review" Current Issues in Molecular Biology 47, no. 1: 30. https://doi.org/10.3390/cimb47010030
APA StyleWali, A. F., Pillai, J. R., Talath, S., Shivappa, P., Sridhar, S. B., El-Tanani, M., Rangraze, I. R., Mohamed, O. I., & Al Ani, N. N. (2025). Phytochemicals in Breast Cancer Prevention and Treatment: A Comprehensive Review. Current Issues in Molecular Biology, 47(1), 30. https://doi.org/10.3390/cimb47010030