Selenoprotein-P1 (SEPP1) Expression in Human Proximal Tubule Cells after Ischemia-Reperfusion Injury: An In Vitro Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Cell Viability
2.3. Protein Extraction and Western Blot Analysis
2.4. Flow Cytometer Analysis/ROS Assay
2.5. Statistical Analysis
3. Results
3.1. Effects of CoCl2 and Sodium Selenite on Cell Viability and Cellular Morphology
3.2. Effects on ROS Production after Exposure to CoCl2 and/or Sodium Selenite
3.3. Effects of CoCl2 and Sodium Selenite on the Expression of SEPP1
4. Discussion
4.1. Selenium’s Antioxidant Properties
4.2. SEPP1 Expression
4.3. Limits of the Study
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malek, M.; Nematbakhsh, M. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J. Renal Inj. Prev. 2015, 4, 20–27. [Google Scholar]
- Shiva, N.; Sharma, N.; Kulkarni, Y.A.; Mulay, S.R.; Gaikwad, A.B. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sci. 2020, 256, 117860. [Google Scholar] [CrossRef]
- Coppolino, G.; Leonardi, G.; Andreucci, M.; Bolignano, D. Oxidative stress and kidney function: A brief update. Curr. Pharm. Des. 2018, 24, 4794–4799. [Google Scholar] [CrossRef]
- O’Neal, J.B.; Shaw, A.D.; Billings, F.T.t. Acute kidney injury following cardiac surgery: Current understanding and future directions. Crit. Care 2016, 20, 187. [Google Scholar] [CrossRef] [PubMed]
- Coppolino, G.; Presta, P.; Saturno, L.; Fuiano, G. Acute kidney injury in patients undergoing cardiac surgery. J. Nephrol. 2013, 26, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Hoste, E.A.J.; Kellum, J.A.; Selby, N.M.; Zarbock, A.; Palevsky, P.M.; Bagshaw, S.M.; Goldstein, S.L.; Cerda, J.; Chawla, L.S. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 2018, 14, 607–625. [Google Scholar] [CrossRef]
- Nourie, N.; Ghaleb, R.; Lefaucheur, C.; Louis, K. Toward precision medicine: Exploring the landscape of biomarkers in acute kidney injury. Biomolecules 2024, 14, 82. [Google Scholar] [CrossRef]
- Rossiter, A.; La, A.; Koyner, J.L.; Forni, L.G. New biomarkers in acute kidney injury. Crit. Rev. Clin. Lab Sci. 2024, 61, 23–44. [Google Scholar] [CrossRef]
- Bolignano, D.; Jiritano, F.; Zicarelli, M.; Pizzini, P.; Cutrupi, S.; Andreucci, M.; Testa, A.; Battaglia, D.; Spoto, B.; Mastroroberto, P.; et al. Selenoprotein p-1 (sepp1) as an early biomarker of acute kidney injury in patients undergoing cardiopulmonary bypass. Rev. Cardiovasc. Med. 2022, 23, 170. [Google Scholar] [CrossRef]
- Qi, Z.; Duan, A.; Ng, K. Selenoproteins in health. Molecules 2023, 29, 136. [Google Scholar] [CrossRef]
- Lobanov, A.V.; Hatfield, D.L.; Gladyshev, V.N. Eukaryotic selenoproteins and selenoproteomes. Biochim. Biophys. Acta 2009, 1790, 1424–1428. [Google Scholar] [CrossRef] [PubMed]
- Pisano, A.; D’Arrigo, G.; Coppolino, G.; Bolignano, D. Biotic supplements for renal patients: A systematic review and meta-analysis. Nutrients 2018, 10, 1224. [Google Scholar] [CrossRef] [PubMed]
- Bolignano, D.; Coppolino, G.; Barilla, A.; Campo, S.; Criseo, M.; Tripodo, D.; Buemi, M. Caffeine and the kidney: What evidence right now? J. Ren. Nutr. 2007, 17, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Burk, R.F.; Hill, K.E. Selenoprotein p. A selenium-rich extracellular glycoprotein. J. Nutr. 1994, 124, 1891–1897. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, X.; Wei, Y. Selenium and selenoproteins in health. Biomolecules 2023, 13, 799. [Google Scholar] [CrossRef] [PubMed]
- Sinha, I.; Karagoz, K.; Fogle, R.L.; Hollenbeak, C.S.; Zea, A.H.; Arga, K.Y.; Stanley, A.E.; Hawkes, W.C.; Sinha, R. “Omics” of selenium biology: A prospective study of plasma proteome network before and after selenized-yeast supplementation in healthy men. OMICS 2016, 20, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, Z.; Gong, P.; Yao, W.; Ba, Q.; Wang, H. Review on the health-promoting effect of adequate selenium status. Front. Nutr. 2023, 10, 1136458. [Google Scholar] [CrossRef]
- Bolignano, D.; D’Arrigo, G.; Pisano, A.; Coppolino, G. Pentoxifylline for anemia in chronic kidney disease: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0134104. [Google Scholar] [CrossRef] [PubMed]
- Bolignano, D.; Coppolino, G.; Aloisi, C.; Romeo, A.; Nicocia, G.; Buemi, M. Effect of a single intravenous immunoglobulin infusion on neutrophil gelatinase-associated lipocalin levels in proteinuric patients with normal renal function. J. Investig. Med. 2008, 56, 997–1003. [Google Scholar] [CrossRef]
- Becker, N.P.; Martitz, J.; Renko, K.; Stoedter, M.; Hybsier, S.; Cramer, T.; Schomburg, L. Hypoxia reduces and redirects selenoprotein biosynthesis. Metallomics 2014, 6, 1079–1086. [Google Scholar] [CrossRef]
- Yang, X.; Hill, K.E.; Maguire, M.J.; Burk, R.F. Synthesis and secretion of selenoprotein p by cultured rat astrocytes. Biochim. Biophys. Acta 2000, 1474, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.E.; Wu, S.; Motley, A.K.; Stevenson, T.D.; Winfrey, V.P.; Capecchi, M.R.; Atkins, J.F.; Burk, R.F. Production of selenoprotein p (sepp1) by hepatocytes is central to selenium homeostasis. J. Biol. Chem. 2012, 287, 40414–40424. [Google Scholar] [CrossRef] [PubMed]
- Burk, R.F.; Hill, K.E. Selenoprotein p: An extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu. Rev. Nutr. 2005, 25, 215–235. [Google Scholar] [CrossRef] [PubMed]
- Cabello, R.; Fontecha-Barriuso, M.; Martin-Sanchez, D.; Lopez-Diaz, A.M.; Carrasco, S.; Mahillo, I.; Gonzalez-Enguita, C.; Sanchez-Nino, M.D.; Ortiz, A.; Sanz, A.B. Urinary cyclophilin a as marker of tubular cell death and kidney injury. Biomedicines 2021, 9, 217. [Google Scholar] [CrossRef] [PubMed]
- Sadri, M.; Delbandi, A.A.; Rashidi, N.; Kardar, G.A.; Falak, R. Cobalt chloride-induced hypoxia can lead skbr3 and hek293t cell lines toward epithelial-mesenchymal transition. Iran J. Allergy Asthma Immunol. 2022, 21, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Lepore, S.M.; Maggisano, V.; Lombardo, G.E.; Maiuolo, J.; Mollace, V.; Bulotta, S.; Russo, D.; Celano, M. Antiproliferative effects of cynaropicrin on anaplastic thyroid cancer cells. Endocr. Metab Immune Disord. Drug Targets 2019, 19, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Capriglione, F.; Maiuolo, J.; Celano, M.; Damante, G.; Russo, D.; Bulotta, S.; Maggisano, V. Quercetin protects human thyroid cells against cadmium toxicity. Int. J. Mol. Sci. 2021, 22, 6849. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Sanchez, J.; Chanez-Cardenas, M.E. The use of cobalt chloride as a chemical hypoxia model. J. Appl. Toxicol. 2019, 39, 556–570. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Ma, Y.; Lu, M.; Liu, W.; Zhou, H. Paeoniflorin alleviates hypoxia/reoxygenation injury in hk-2 cells by inhibiting apoptosis and repressing oxidative damage via keap1/nrf2/ho-1 pathway. BMC Nephrol. 2023, 24, 314. [Google Scholar] [CrossRef]
- Coppolino, G.; Bolignano, D.; Campo, S.; Loddo, S.; Teti, D.; Buemi, M. Circulating progenitor cells after cold pressor test in hypertensive and uremic patients. Hypertens. Res. 2008, 31, 717–724. [Google Scholar] [CrossRef]
- Olson, G.E.; Winfrey, V.P.; Hill, K.E.; Burk, R.F. Megalin mediates selenoprotein p uptake by kidney proximal tubule epithelial cells. J. Biol. Chem. 2008, 283, 6854–6860. [Google Scholar] [CrossRef]
- Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science 1973, 179, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Avissar, N.; Ornt, D.B.; Yagil, Y.; Horowitz, S.; Watkins, R.H.; Kerl, E.A.; Takahashi, K.; Palmer, I.S.; Cohen, H.J. Human kidney proximal tubules are the main source of plasma glutathione peroxidase. Am. J. Physiol. 1994, 266, C367–C375. [Google Scholar] [CrossRef] [PubMed]
- Sturiale, A.; Coppolino, G.; Loddo, S.; Criseo, M.; Campo, S.; Crasci, E.; Bolignano, D.; Nostro, L.; Teti, D.; Buemi, M. Effects of haemodialysis on circulating endothelial progenitor cell count. Blood Purif. 2007, 25, 242–251. [Google Scholar] [CrossRef]
- Buemi, M.; Floccari, F.; Costa, C.; Caccamo, C.; Belghity, N.; Campo, S.; Pernice, F.; Bonvissuto, G.; Coppolino, G.; Barilla, A.; et al. Dialysis-related genotoxicity: Sister chromatid exchanges and DNA lesions in t and b lymphocytes of uremic patients. Genomic damage in patients on hemodiafiltration. Blood Purif. 2006, 24, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Stoppe, C.; Schalte, G.; Rossaint, R.; Coburn, M.; Graf, B.; Spillner, J.; Marx, G.; Rex, S. The intraoperative decrease of selenium is associated with the postoperative development of multiorgan dysfunction in cardiac surgical patients. Crit. Care Med. 2011, 39, 1879–1885. [Google Scholar] [CrossRef] [PubMed]
- Stoppe, C.; Spillner, J.; Rossaint, R.; Coburn, M.; Schalte, G.; Wildenhues, A.; Marx, G.; Rex, S. Selenium blood concentrations in patients undergoing elective cardiac surgery and receiving perioperative sodium selenite. Nutrition 2013, 29, 158–165. [Google Scholar] [CrossRef]
- Stoppe, C.; McDonald, B.; Meybohm, P.; Christopher, K.B.; Fremes, S.; Whitlock, R.; Mohammadi, S.; Kalavrouziotis, D.; Elke, G.; Rossaint, R.; et al. Effect of high-dose selenium on postoperative organ dysfunction and mortality in cardiac surgery patients: The sustain csx randomized clinical trial. JAMA Surg. 2023, 158, 235–244. [Google Scholar] [CrossRef]
- Cernaro, V.; Coppolino, G.; Visconti, L.; Rivoli, L.; Lacquaniti, A.; Santoro, D.; Buemi, A.; Loddo, S.; Buemi, M. Erythropoiesis and chronic kidney disease-related anemia: From physiology to new therapeutic advancements. Med. Res. Rev. 2019, 39, 427–460. [Google Scholar] [CrossRef]
- Gharipour, M.; Ouguerram, K.; Nazih, E.H.; Salehi, M.; Behmanesh, M.; Roohafza, H.; Hosseini, S.M.; Nezafati, P.; Dianatkhah, M.; Gharipour, A.; et al. Effects of selenium supplementation on expression of sepp1 in mrna and protein levels in subjects with and without metabolic syndrome suffering from coronary artery disease: Selenegene study a double-blind randomized controlled trial. J. Cell Biochem. 2018, 119, 8282–8289. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppolino, G.; Celano, M.; Musolino, M.; D’Agostino, M.; Zicarelli, M.; Andreucci, M.; De Caro, C.; Russo, D.; Russo, E.; Bolignano, D. Selenoprotein-P1 (SEPP1) Expression in Human Proximal Tubule Cells after Ischemia-Reperfusion Injury: An In Vitro Model. Medicina 2024, 60, 875. https://doi.org/10.3390/medicina60060875
Coppolino G, Celano M, Musolino M, D’Agostino M, Zicarelli M, Andreucci M, De Caro C, Russo D, Russo E, Bolignano D. Selenoprotein-P1 (SEPP1) Expression in Human Proximal Tubule Cells after Ischemia-Reperfusion Injury: An In Vitro Model. Medicina. 2024; 60(6):875. https://doi.org/10.3390/medicina60060875
Chicago/Turabian StyleCoppolino, Giuseppe, Marilena Celano, Michela Musolino, Mario D’Agostino, Mariateresa Zicarelli, Michele Andreucci, Carmen De Caro, Diego Russo, Emilio Russo, and Davide Bolignano. 2024. "Selenoprotein-P1 (SEPP1) Expression in Human Proximal Tubule Cells after Ischemia-Reperfusion Injury: An In Vitro Model" Medicina 60, no. 6: 875. https://doi.org/10.3390/medicina60060875