A Review of the Benefits of Nature Experiences: More Than Meets the Eye
Abstract
:1. Introduction
2. Methods
3. Sight
4. Sound
4.1. When Sound Becomes Noise
4.2. Warnings in Silence
5. Smell
Essential Oils
6. Taste
6.1. Enjoyment of Flavours
6.2. More Natural Food
6.3. Growing Your Own Food
7. Touch
7.1. Cardiovascular and Mood Effects
7.2. Non-Animal Nature Touch
8. Non-Sensory Pathways
8.1. Phytoncides
8.2. Negative Air Ions
Effects of Negative Air Ions
8.3. Soil and Gut Microbes
8.3.1. Old Friends
8.3.2. Chronic Inflammation and Disease
8.3.3. Effects of Microbiota
9. Future Research
10. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hartig, T.; Mitchell, R.; de Vries, S.; Frumkin, H. Nature and health. Ann. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, D.F.; Fuller, R.A.; Bush, R.; Lin, B.B.; Gaston, K.J. The health benefits of urban nature: How much do we need? BioScience 2015, 65, 476–485. [Google Scholar] [CrossRef]
- Burford, A. The Greek Temple Builders at Epidauros; University of Toronto Press: Toronto, ON, Canada, 1969. [Google Scholar]
- Thompson, C.W. Linking landscape and health: The recurring theme. Landsc. Urban Plan. 2011, 99, 187–195. [Google Scholar] [CrossRef]
- Montford, A. Health, Sickness, and the Friars in the Thirteenth and Fourteenth Centuries; Ashgate: Aldershot, UK, 2004. [Google Scholar]
- Olmstead, F.L. Notes on the Plan of Franklin Park and Related Matters; City of Boston Board of Commissioners of the Department of Parks: Boston, MA, USA, 1886. [Google Scholar]
- Stiles, A. Go rest, young man. Monit. Psychol. 2012, 43, 32. [Google Scholar]
- Bowler, D.E.; Buyung-Ali, L.M.; Knight, T.M.; Pullin, A.S. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health 2010, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Pearson, D.G.; Craig, T. The great outdoors? Exploring the mental health benefits of natural environments. Front. Psychol. 2014, 5, 1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, T. The benefits of children’s engagement with nature: A systematic literature review. Child. Youth Environ. 2014, 24, 10–34. [Google Scholar] [CrossRef]
- Stuster, J. Bold Endeavors: Lessons from Polar and Space Exploration; Naval Institute Press: Annapolis, MD, USA, 2011. [Google Scholar]
- Hunter, M.; Eickhoff, S.; Pheasant, R.; Douglas, M.; Watts, G.; Farrow, T. The state of tranquility: Subjective perception is shaped by contextual modulation of auditory connectivity. Neuroimage 2010, 53, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Dijk, E.; Weffers, M. Breathe with the ocean: A system for relaxation using combined audio and haptic stimuli. In Proceedings of the Special Symposium on Haptic and Audio-Visual Stimuli: Enhancing Experiences and Interaction, Amsterdam, The Netherlands, 7 July 2010. [Google Scholar]
- Kjellgren, A.; Buhrkall, H. A comparison of the restorative effect of a natural environment with that of a simulated natural environment. J. Environ. Psychol. 2010, 30, 464–472. [Google Scholar] [CrossRef]
- English Oxford Living Dictionaries. Available online: en.oxforddictionaries.com (accessed on 20 July 2017).
- Ryff, C.D. Well-being in adult life. Curr. Dir. Psychol. Sci. 1995, 4, 99–104. [Google Scholar] [CrossRef]
- Linton, M.; Dieppe, P.; Medina-Lara, A. Review of 99 self-report measures for assessing well-being in adults: Exploring dimensions of well-being and developments over time. BMJ Open 2016, 6, e010641. [Google Scholar] [CrossRef] [PubMed]
- Velarde, M.; Fry, G.; Tveit, M. Health effects of viewing landscapes—Landscape types in environmental psychology. Urban For. Urban Green. 2007, 6, 199–212. [Google Scholar] [CrossRef]
- Ulrich, R. Visual landscapes and psychological well-being. Landsc. Res. 1979, 4, 17–23. [Google Scholar] [CrossRef]
- Moore, E. A prison environment’s effect on health care service demands. J. Environ. Syst. 1981, 11, 17–34. [Google Scholar] [CrossRef]
- Ulrich, R. View through a window may influence recovery from surgery. Science 1984, 224, 420–421. [Google Scholar] [CrossRef] [PubMed]
- Laumann, K.; Garling, T.; Stormark, K. Rating scale measures of restorative components of environments. J. Environ. Psychol. 2001, 21, 31–44. [Google Scholar] [CrossRef]
- Tennessen, C.; Cimprich, B. Views to nature: Effects on attention. J. Environ. Psychol. 1995, 15, 77–85. [Google Scholar] [CrossRef]
- Ulrich, R. Health benefits of gardens in hospitals. In Proceedings of the Plants for People International Symposium, Floridae, The Netherlands, 2002. [Google Scholar]
- Valdez, P.; Mehrabian, A. Effects of color on emotions. J. Exp. Psychol. 1994, 123, 394–409. [Google Scholar] [CrossRef]
- Guilford, J.; Smith, P. A system of color preferences. Am. J. Psychol. 1959, 72, 487–502. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, K.; Suess, J. Effects of four psychological primary colors on anxiety state. Percept. Motor Skills 1975, 41, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Frank, O.; Gilovich, T. The dark side of self- and social perception: Black uniforms and aggression in professional sports. J. Personal. Soc. Psychol. 1988, 54, 74–85. [Google Scholar] [CrossRef]
- Berman, M.; Hout, M.; Kardan, O.; Hunter, M.; Yourganov, G.; Henderson, J. The perception of naturalness correlates with low-level visual features of environmental scenes. PLoS ONE 2014, 9, e114572. [Google Scholar] [CrossRef] [PubMed]
- Kardan, O.; Demiralp, E.; Hout, M.C.; Hunter, M.R.; Karimi, H.; Hanayik, T.; Yourganov, G.; Jonides, J.; Berman, M.G. Is the preference of natural versus man-made scenes driven by bottom-up processing of the visual features of nature? Front. Psychol. 2015, 6, 471. [Google Scholar] [CrossRef] [PubMed]
- Aks, D.; Sprott, J. Quantifying aesthetic preference for chaotic patterns. Empir. Stud. Arts 1996, 14, 1–16. [Google Scholar] [CrossRef]
- Bishop, I.; Rohrmann, B. Subjective responses to simulated and real environments: A comparison. Landsc. Urban Plan. 2003, 65, 261–277. [Google Scholar] [CrossRef]
- Faure, P.; Hoy, R. The sounds of silence: Cessation of signing and song pausing are ultrasound-induced acoustic startle behaviors in the katydid Neoconocephalus esiger (Orthoptera; Tettigoniidae). J. Comp. Physiol. A 2000, 186, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Pijanowski, B.C.; Farina, A.; Gage, S.H.; Dumyahn, S.L.; Krause, B.L. What is soundscape ecology? An introduction and overview of an emerging new science. Landsc. Ecol. 2011, 26, 1213–1232. [Google Scholar] [CrossRef]
- Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Schafer, R. The Soundscape: Our Sonic Environment and the Tuning of the World; Destiny Books: Rochester, VT, USA, 1994. [Google Scholar]
- Torigoe, K. Insights taken from three visited soundscapes in Japan. In Proceedings of the World Forum for Acoustic Ecology Symposium, Melbourne, Australia, 19–23 March 2003. [Google Scholar]
- O’Connor, P. The sound of silence: Valuing acoustics in heritage conservation. Geogr. Res. 2008, 46, 361–373. [Google Scholar] [CrossRef]
- Halfpenny, E. Pro-environmental behaviors and park visitors: The effect of place attachment. J. Environ. Psychol. 2010, 30, 409–421. [Google Scholar] [CrossRef]
- Yang, W.; Kang, J. Soundscapes and sound preferences in urban squares: A case study in Sheffield. J. Urban Design 2005, 10, 61–80. [Google Scholar] [CrossRef]
- Fisher, J.A. The value of natural sounds. J. Aesthet. Educ. 1999, 33, 26–42. [Google Scholar] [CrossRef]
- Carles, J.L.; Lopez Barrio, I.; de Lucio, J.V. Sound influence on landscape values. Landsc. Urban Plan. 1999, 43, 191–200. [Google Scholar] [CrossRef]
- Zhang, M.; Kang, J. Towards the evaluation, description, and creation of soundscapes in urban open spaces. Environ. Plan. B Plan. Design 2007, 34, 68–86. [Google Scholar] [CrossRef]
- Irvine, K.; Devine-Wright, P.; Payne, S.R.; Fuller, R.A.; Painter, B.; Gaston, K.J. Green space, soundscape and urban sustainability: An interdisciplinary study. Local Environ. 2009, 14, 155–172. [Google Scholar] [CrossRef]
- Pilcher, E.J.; Newman, P.; Manning, R.E. Understanding and managing experiential aspects of soundscapes at Muir Woods National Monument. Environ. Manag. 2009, 43, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Payne, S.R. The production of a perceived restorativeness soundscape scale. Appl. Acoust. 2013, 74, 255–263. [Google Scholar] [CrossRef]
- Purcell, T.; Peron, E.; Berto, R. Why do preferences differ between scene types? Environ. Behav. 2001, 33, 93–106. [Google Scholar] [CrossRef]
- Van den Berg, A.; Koole, S.; van der Wulp, N. Environmental preference and restoration: (How) are they related? J. Environ. Psychol. 2003, 23, 135–146. [Google Scholar] [CrossRef]
- Alvarsson, J.; Wien, S.; Nilsson, M. Stress recovery during exposure to nature sound and environmental noise. Int. J. Environ. Res. Public Health 2010, 7, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Bird, W. Natural Thinking: Investigating the Links between the Natural Environment, Biodiversity and Mental Health. Available online: https://www.rspb.org.uk/Images/naturalthinking_tcm9-161856.pdf (accessed on 6 September 2016).
- Diette, G.; Lechtzin, N.; Haponik, E.; Devrotes, A.; Rubin, H. Distraction therapy with nature sights and sounds reduces pain during flexible bronchoscopy. Chest 2003, 123, 941. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.-C.; Ushida, T.; Matsubara, T.; Shimo, K.; Ito, A.; Oshima, K. Intra-operative natural sound decreases salivary amylase activity of patients undergoing inguinal hernia repair under epidural anesthesia. Reg. Anesth. Pain Med. 2008, 33, e234. [Google Scholar] [CrossRef] [PubMed]
- Ratcliffe, E.; Gatersleben, B.; Sowden, P.T. Bird sounds and their contributions to perceived attention restoration and stress recovery. J. Environ. Psychol. 2013, 36, 221–228. [Google Scholar] [CrossRef]
- Annerstedt, M.; Jonsson, P.; Wallergard, M.; Johansson, G.; Karlson, B.; Grahn, P.; Hansen, A.M.; Wahrborg, P. Inducing physiological stress recovery with sounds of nature in a virtual reality forest—Results from a pilot study. Physiol. Behav. 2013, 118, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Ogden, J.J.; Lindburg, D.G.; Maple, T.L. The effects of ecologically-relevant sounds on zoo visitors. Curator 1993, 36, 147–156. [Google Scholar] [CrossRef]
- Aghaie, B.; Rejeh, N.; Heravi-Karimooi, M.; Ebadi, A.; Moradin, S.T.; Vaismoradi, M.; Jasper, M. Effect of nature-based sound therapy on agitation and anxiety in coronary bypass graft patients during weaning of mechanical ventilation: A randomised clinical trial. Int. J. Nurs. Stud. 2014, 51, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, M.; Lange, E.; Kang, J. From 3D landscape visualization to environmental simulation: The contribution of sound to the perception of virtual environments. Landsc. Urban Plan. 2016, 148, 216–231. [Google Scholar] [CrossRef]
- Anderson, L.; Mulligan, B.; Goodman, L.; Regan, H. Effects of sounds on preferences for outdoor settings. Environ. Behav. 1983, 15, 539–566. [Google Scholar] [CrossRef]
- Lopez Barrio, I.; Carles, J.L. Acoustic dimensions of inhabited areas: Quality criteria. Soundscape Newsl. 1995, 10, 6–8. [Google Scholar]
- Rohrmann, B.; Bishop, I. Subjective responses to computer simulations of urban environments. J. Environ. Psychol. 2002, 22, 319–331. [Google Scholar] [CrossRef]
- Mace, B.L.; Bell, P.A.; Loomis, R.J. Aesthetic, affective, and cognitive effects of noise on natural landscape assessment. Soc. Nat. Resour. 1999, 12, 225–242. [Google Scholar]
- Mace, B.L.; Bell, P.A.; Loomis, R.J.; Haas, G. Source attribution of helicopter noise in pristine national park landscapes. J. Park Recreat. Adm. 2003, 21, 97–119. [Google Scholar]
- Benfield, J.; Bell, P.A.; Troup, L.; Soderstrom, N. Aesthetic and affective effects of vocal and traffic noise on natural landscape assessment. J. Environ. Psychol. 2010, 30, 103–111. [Google Scholar] [CrossRef]
- Kim, S.-O.; Shelby, B. Effects of soundscapes on perceived crowding and encounter norms. Environ. Manag. 2011, 48, 89–97. [Google Scholar] [CrossRef] [PubMed]
- De Coensel, B.; Vanwetswinkel, S.; Botteldooren, D. Effects of natural sounds on the perception of road traffic noise. J. Acoust. Soc. Am. 2011, 129, EL148–EL153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, J.A. What the hills are alive with: In defense of the sounds of nature. J. Aesthet. Art Crit. 1998, 56, 167–179. [Google Scholar] [CrossRef]
- European Information Service. State Aid: Commission Extends Bremer Vulkan Investigation; European Report, No. 2173; European Commission: Brussels, Belgium, 1996. [Google Scholar]
- European Commission. Commision Green Paper on Future Noise Policy [Com(96)540]; European Commission: Brussels, Belgium, 1996. [Google Scholar]
- Evans, G.; Hygge, S.; Bullinger, M. Chronic noise exposure and psychological stress. Psychol. Sci. 1995, 6, 333–338. [Google Scholar] [CrossRef]
- Bronzaft, A.; Ahern, K.; McGinn, R.; O’Connor, J.; Savino, B. Aircraft noise: A potential hazard. Environ. Behav. 1998, 30, 101–113. [Google Scholar] [CrossRef]
- Stansfeld, S.; Matheson, M. Noise pollution: Non-auditory effect on health. Br. Med. Bull. 2003, 68, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Gramann, J. The effect of mechanical noise and natural sound on visitor experiences in units of the National Park Service. Soc. Sci. Res. Rev. 1999, 1, 1–16. [Google Scholar]
- Staples, S. Human response to environmental noise: Psychological research and public policy. Am. Psychol. 1996, 51, 143–150. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for community noise. In Guideline Document; Berglund, B., Lindvail, T., Schwela, D., Goh, K., Eds.; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Ohrstrom, E. Longitudinal surveys on effects of changes in road traffic noise—Annoyance, activity disturbances and psycho-social well being. J. Acoust. Soc. Am. 2004, 115, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Babisch, W.; Beule, B.; Schust, M.; Kersten, N.; Ising, H. Traffic noise and risk of myocardial infarction. Epidemiology 2005, 16, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Stansfeld, S.; Berglund, B.; Clark, C.; Lopez Barrio, I.; Fisher, P.; Ohrstrom, E.; Haines, M.; Head, J.; Hugge, S.; van Kamp, I.; et al. Aircraft and road traffic noise and children’s cognition and health: A cross-national study. Lancet 2005, 365, 1942–1949. [Google Scholar] [CrossRef]
- Bluhm, G.; Berglind, N.; Nordling, E.; Rosenlund, M. Road traffic noise and hypertension. Occup. Environ. Med. 2007, 64, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Mace, B.L.; Bell, P.A.; Loomis, R.J. Visibility and natural quiet in national parks and wilderness areas: Psychological considerations. Environ. Behav. 2004, 36, 5–31. [Google Scholar] [CrossRef]
- Gidlof-Gunnarsson, A.; Ohstrom, E. Noise and well-being in urban residential environments: The potential role of perceived availability to nearby green areas. Landsc. Urban Plan. 2007, 83, 115–126. [Google Scholar] [CrossRef]
- US National Parks. National Parks Overflights Act of 1987. Public Law 100-91 (101 Stat. 674), 1987.
- US National Parks. National Parks Air Tour Management Act of 2000. Public Law 106-181, Title VIII (114 Stat. 185), 2000.
- National Park Service. National Park Service Management Policies; US Government Printing Office: Washington, DC, USA, 2006.
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Driver, B.; Tinsely, E.; Manfredo, M. The paragraphs about leisure and recreation experience preference scales: Results from two inventories designed to assess the breadth of perceived psychological benefits of leisure. In Benefits of Leisure Driver; Brown, P., Peterson, G., Eds.; State College: Venture, PA, USA, 1991; pp. 263–286. [Google Scholar]
- McDonald, C.; Baumgartner, R.; Iachan, R. National Park Service Aircraft Management Studies (USDI Rep. No. 94-2); National Park Service: Denver, CO, USA, 1995.
- Haas, G.; Wakefield, T. National Parks and the American Public: A National Public Opinion Survey on the National Park System; National Parks and Conservation Association and Colorado State University: Washington, DC, USA; Fort Collins, CO, USA, 1998. [Google Scholar]
- Kariel, H. Factors affecting response to noise in outdoor recreational environments. Can. Geogr. 1990, 34, 142–149. [Google Scholar] [CrossRef]
- Peretti, P.O.; Swenson, K. Effects of music on anxiety as determined by physiological skin response. J. Res. Music Educ. 1974, 22, 278–283. [Google Scholar] [CrossRef]
- Jordania, J. Music and emotions: Humming in human prehistory. In Problems of the Traditional Polyphony Materials of the Fourth International Symposium on Traditional Polyphony, Tbilisi, Republic of Georgia, 15–19 September 2008; pp. 41–49. [Google Scholar]
- Spangler, H. Silence as a defense against predatory bats in two species of calling insects. Southwest. Nat. 1984, 29, 481–488. [Google Scholar] [CrossRef]
- Dapper, A.L.; Baugh, A.T.; Ryan, M.J. The sounds of silence as an alarm cue in tungara frogs, Physalaemus pustulosus. BioTropica 2011, 43, 380–385. [Google Scholar] [CrossRef]
- Sherman, P. Nepotism and the evolution of alarm calls. Science 1977, 197, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Seyfarth, R.; Cheney, D.; Marier, P. Monkey responses to three different alarm calls: Evidence of predator classification and semantic communication. Science 1980, 210, 801–803. [Google Scholar] [CrossRef] [PubMed]
- Templeton, C.; Greene, E.; Davis, K. Allometry of alarm calls: Black capped chickadees encode information about predator size. Science 2005, 308, 1934–1937. [Google Scholar] [CrossRef] [PubMed]
- Curio, E. The Ethology of Predation; Springer: Berlin, Germany, 1976. [Google Scholar]
- Glass, S.T.; Lingg, E.; Heuberger, E. Do ambient urban odors evoke basic emotions? Appl. Olfactory Cognit. 2014, 5, 158. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.T.; Heuberger, E. The impact of natural odors on affective states in humans. Chem. Sens. 2008, 33, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Lorig, T.S.; Herman, K.; Schwartz, G.; Cain, W. EEG activity during administration of low-concentration odors. Bull. Psychon. Soc. 1990, 28, 405–408. [Google Scholar] [CrossRef]
- Schloss, K.B.; Goldberger, C.S.; Palmer, S.E.; Levitan, C.A. What’s that smell? An ecological approach to understanding preferences for familiar odors. Perception 2015, 44, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Haviland-Jones, J. Human olfactory communication of emotion. Percept. Motor Skills 2000, 91, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Davidson, G. Concerning hallucinations of smell. Psychiatr. Q. 1938, 12, 253–270. [Google Scholar] [CrossRef]
- Zald, D.; Pardo, J. Functional neuroimaging of the olfactory system in humans. Int. J. Psychophysiol. 2000, 36, 165–181. [Google Scholar] [CrossRef]
- Kay, L.M.; Freeman, W.J. Bidirectional processing in the olfactory-limbic axis during olfactory behavior. Behav. Neurosci. 1998, 112, 541. [Google Scholar] [CrossRef] [PubMed]
- Kohler, C.; Barrett, F.; Gur, R.; Turetsky, B.; Moberg, P. Association between facial emotion recognition and odor identification in schizophrenia. J. Neuropsychiatry Clin. Neurosci. 2007, 19, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Herz, R.S.; Cupchik, G.C. The emotional distinctiveness of odor-evoked memories. Chem. Sens. 1995, 20, 517–528. [Google Scholar] [CrossRef]
- Soudry, Y.; Lemogne, C.; Malinvaud, D.; Consoli, S.-M.; Bonfils, P. Olfactory system and emotion: Common substrates. Eur. Ann. Ororhinolaryngol. Head Neck Dis. 2011, 128, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, S. Aromatheraphy: Current and emerging applications. Altern. Complement. Ther. 2011, 17, 26–31. [Google Scholar] [CrossRef]
- Price, J.L. Beyond the primary olfactory cortex: Olfactory-related areas in the neocortex, thalamus and hypothalamus. Chem. Sens. 1985, 10, 239–258. [Google Scholar] [CrossRef]
- Goel, N.; Grasso, D. Olfactory discrimination and transient mood change in young men and women: Variation by season, mood state, and time of day. Chronobiol. Int. 2004, 21, 691–719. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Haviland-Jones, J. Rapid mood change and human odors. Physiol. Behav. 1999, 68, 241–250. [Google Scholar] [CrossRef]
- Lehrner, J.; Eckersberger, C.; Walla, P.; Potsch, G.; Deecke, L. Ambient odor of orange in a dental office reduces anxiety and improves mood in female patients. Physiol. Behav. 2000, 71, 83–86. [Google Scholar] [CrossRef]
- Hermans, D.; Baeyens, F.; Eelen, P. Odours as affective-proessing context for word evaluation: A case of cross-modal affective priming. Cognit. Emot. 1998, 12, 601–613. [Google Scholar]
- Millot, J.-L.; Brand, G. Effects of pleasant and unpleasant ambient odors on human voice pitch. Neurosci. Lett. 2001, 297, 61–63. [Google Scholar] [CrossRef]
- Doty, R.L. Odor-guided behavior in mammals. Experientia 1986, 42, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.A. Olfaction and human social behavior effects of a pleasant scent on attraction and social perception. Personal. Soc. Psychol. Bull. 1981, 7, 611–616. [Google Scholar] [CrossRef]
- Todrank, J.; Byrnes, D.; Wrzesniewski, A.; Rozin, P. Odors can change preferences for people in photographs: A cross-modal evaluative conditioning study with olfactory USs and visual CSs. Learn. Motiv. 1995, 26, 116–140. [Google Scholar] [CrossRef]
- Baron, R.A. The sweet smell of... helping: Effects of pleasant ambient fragrance on prosocial behavior in shopping malls. Personal. Soc. Psychol. Bull. 1997, 23, 498–503. [Google Scholar] [CrossRef]
- Baron, R.A.; Thomsley, J. A whiff of reality: Positive affect as a potential mediator of the effects of pleasant fragrances on task performance and helping. Environ. Behav. 1994, 26, 766–784. [Google Scholar] [CrossRef]
- Warm, J.S.; Dember, W.N.; Parasuraman, R. Effects of olfactory stimulation on performance and stress. J. Soc. Cosmet. Chem. 1991, 42, 199–210. [Google Scholar]
- Smith, D.G.; Standing, L.; De Man, A. Verbal memory elicited by ambient odor. Percept. Motor Skills 1992, 74, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Diego, M.A.; Jones, N.A.; Field, T.; Hernandez-Reif, M.; Schanberg, S.; Kuhn, C.; McAdam, V.; Galamaga, R.; Galamaga, M. Aromatherapy positively affects mood, EEG patterns of alertness and math computations. Int. J. Neurosci. 1998, 96, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Buchbauer, G.; Jirovetz, L.; Jager, W.; Plank, C.; Dietrich, H. Fragrance compounds and essential oils with sedative effects upon inhalation. J. Pharm. Sci. 1993, 82, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Lindsley, D.; Holmes, J. Basic Human Neuropsychology; Elsevier: New York, NY, USA, 1984. [Google Scholar]
- Heuberger, E.; Hongratanaworakit, T.; Bohm, C.; Weber, R.; Buchbauer, G. Effects of chiral fragrances on human autonomic nervous system parameters and self-evaluation. Chem. Sens. 2001, 26, 281–292. [Google Scholar] [CrossRef]
- Haze, S.; Sakai, K.; Gozu, Y. Effects of fragrance inhalation on sympathetic activation in normal adults. Jpn. J. Pharmacol. 2002, 90, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, K.; Kawamoto, M.; Nomura, M.; Otani, H.; Nabika, T.; Gonda, T. Effects of phytoncides on blood pressure under restraint stress in SHRSP. Clin. Exp. Pharmacol. Physiol. 2004, 31, S27–S28. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, H.; Ruddle, J. Aromatherapy and occupational therapy. Br. J. Occup. Ther. 1992, 55, 310–314. [Google Scholar] [CrossRef]
- Valnet, R. The Practice of Aromatherapy; C.W. Daniel: Saffron Walden, UK, 1986. [Google Scholar]
- Conn, D.; Seiltz, D. Advances in the treatment of psychiatric disorders in long-term care homes. Curr. Opin. Psychiatry 2010, 23, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Hur, M.; Lee, M.; Kim, C.; Ernst, E. Aromatherapy for treatment of hypertension: A systematic review. J. Eval. Clin. Pract. 2012, 18, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, H.; Wilkinson, J. Biological activities of lavendar essential oil. Phytother. Res. 2002, 16, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Cooke, B.; Edzard, E. Aromatherapy—A systematic review. Br. J. Gen.Pract. 2000, 50, 493–496. [Google Scholar] [PubMed]
- Maddocks-Jennings, W.; Wilkinson, J.M. Aromatherapy practice in nursing—Literature review. J. Adv. Nurs. 2004, 48, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Fung, J.; Tsang, H.; Chung, R. A systematic review of the use of aromatherapy in treatment of behavioral problems in dementia. Geriatr. Gerontol. Int. 2012, 12, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.; Carson, C.; Riley, T. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Werker, E. Function of essential oil-secreting glandular hairs in aromatic plants of Lamiacea—A review. Flavour Fragr. J. 1993, 8, 249–255. [Google Scholar] [CrossRef]
- Fox, N.A.; Davidson, R.J. Taste-elicited changes in facial signs of emotion and the asymmetry of brain electrical activity in human newborns. Neuropsychologia 1986, 24, 417–422. [Google Scholar] [CrossRef]
- Crook, C. Taste perception in the newborn infant. Infant Behav. Dev. 1978, 1, 52–69. [Google Scholar] [CrossRef]
- Rolls, E. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol. Hung. 2008, 95, 131–164. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T. Central mechanisms of taste: Cognition, emotion and taste-elicited behaviors. Jpn. Dent. Sci. Rev. 2008, 44, 91–99. [Google Scholar] [CrossRef]
- Wooding, S.; Gunn, H.; Ramos, P.; Thalmann, S.; Xing, C.; Meyerhof, W. Genetics and bitter taste responses to goitrin, a plant toxin found in vegetables. Chem. Sens. 2010, 35, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Ames, B.; Profet, M.; Gold, L. Dietary pesticides (99.99% all natural). Proc. Natl. Acad. Sci. USA 1990, 87, 7777–7781. [Google Scholar] [CrossRef] [PubMed]
- Bate-Smith, E. Attractants and repellents in higher animals. In Phytochemical Ecology: Proceedings of the Phytochemical Society Symposium; Harborne, J., Ed.; Academic Press: London, UK, 1972; pp. 45–56. [Google Scholar]
- Brieskorn, C. Physiological and therapeutic aspects of bitter compounds. In Bitterness in Foods and Beverages; Rouseff, R., Ed.; Elsevier: New York, NY, USA, 1990; pp. 15–33. [Google Scholar]
- Garcia, J.; Hankins, W. The evolution of bitter and the acquisition of toxiphobia. In Olfaction and Taste. V. Proceedings of the 5th International Symposium in Melbourne, Australia; Denton, D., Coghlan, J., Eds.; Academic Press: New York, NY, USA, 1975; pp. 39–45. [Google Scholar]
- Glendinning, J.I. Is the bitter rejection response always adaptive? Physiol. Behav. 1994, 56, 1217–1227. [Google Scholar] [CrossRef]
- Desmet, P.M.; Schifferstein, H.N. Sources of positive and negative emotions in food experience. Appetite 2008, 50, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Lyman, B. A Psychology of Food, More Than a Matter of Taste; Van Nostrand Reinhold: New York, NY, USA, 1982. [Google Scholar]
- Canetti, L.; Bachar, E.; Berry, E.M. Food and emotion. Behav. Process. 2002, 60, 157–164. [Google Scholar] [CrossRef]
- Lockie, S.; Lyons, K.; Lawrence, G.; Grice, J. Choosing organics: A path analysis of factors underlying the selection of organic food among Australian consumers. Appetite 2004, 43, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Hughner, R.S.; McDonagh, P.; Prothero, A.; Schultz, C.J.; Stanton, J. Who are organic food consumers? A compilation and review of why people purchase organic food. J. Consum. Behav. 2007, 6, 94. [Google Scholar] [CrossRef]
- Roddy, G.; Cowan, C.; Hutchinson, G. Irish market. Br. Food J. 1996, 96, 3–10. [Google Scholar] [CrossRef]
- Schifferstein, H.; Oude Ophuis, P. Health-related determinants of organic food consumption in The Netherlands. Food Q. Preference 1998, 9, 119–133. [Google Scholar] [CrossRef]
- Magnusson, M.; Arvola, A.; Hursti, U.; Aberg, L.; Sjoden, P. Attitudes towards organic foods among Swedish consumers. Br. Food J. 2001, 103, 209–227. [Google Scholar] [CrossRef]
- Lea, E.; Worsley, T. Australians’ organic food beliefs, demographics and values. Br. Food J. 2005, 107, 855–869. [Google Scholar] [CrossRef]
- Institute of Food Science and Technology. Organic Food. Available online: http://www.ifst.org/ (accessed on 16 July 2016).
- Roddy, G.; Cowan, C.; Hutchinson, G. Consumer attitudes and behaviour to organic foods in Ireland. J. Int. Consum. Mark. 1996, 9, 41–63. [Google Scholar] [CrossRef]
- Farah, A.S.; Rennie, D. Consumer perceptions towards organic food. Procedia Soc. Behav. Sci. 2012, 49, 360–367. [Google Scholar]
- McEachern, M.G.; McClean, P. Organic purchasing motivations and attitudes: Are they ethical? Int. J. Consum. Stud. 2002, 26, 85–92. [Google Scholar] [CrossRef]
- Hjelmar, U. Consumers’ purchase of organic food products. A matter of convenience and reflexive practices. Appetite 2011, 56, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Fillion, L.; Arazi, S. Does organic food taste better? A claim substantiation approach. Nutr. Food Sci. 2002, 32, 153–157. [Google Scholar] [CrossRef]
- Davies, A.; Titterington, A.J.; Cochrane, C. Who buys organic food? A profile of the purchasers of organic food in Northern Ireland. Br. Food J. 1995, 97, 17–23. [Google Scholar] [CrossRef]
- Baker, S.; Thompson, K.E.; Engelken, J.; Huntley, K. Mapping the values driving organic food choice: Germany vs. the UK. Eur. J. Mark. 2004, 38, 995–1012. [Google Scholar] [CrossRef]
- Zanoli, R.; Naspetti, S. Consumer motivations in the purchase of organic food: A means-end approach. Br. Food J. 2002, 104, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Yiridoe, E.K.; Bonti-Ankomah, S.; Martin, R.C. Comparison of consumer perceptions and preference toward organic versus conventionally produced foods: A review and update of the literature. Renew. Agric. Food Syst. 2005, 20, 193–205. [Google Scholar] [CrossRef]
- Jacka, F.N.; Mykletun, A.; Berk, M.; Bjelland, I.; Tell, G.S. The association between habitual diet quality and the common mental disorders in community-dwelling adults: The Hordaland health study. Psychosom. Med. 2011, 73, 483–490. [Google Scholar] [CrossRef] [PubMed]
- McCreadie, R.G. Diet, smoking and cardiovascular risk in people with schizophrenia: Descriptive study. Br. J. Psychiatry 2003, 183, 534–539. [Google Scholar] [CrossRef] [PubMed]
- McGrath-Hanna, N.K.; Greene, D.M.; Tavernier, R.J.; Bult-Ito, A. Diet and mental health in the Arctic: Is diet and important risk factor for mental health in circumpolar peoples? A review. Int. J. Circumpolar Health 2003, 62, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [PubMed]
- Lee, M.-J.; Popkin, B.M.; Kim, S. The unique aspects of the nutrition transition in South Korea: The retention of healthful elements in their traditional diet. Public Health Nutr. 2002, 5, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Willcox, D.C.; Willcox, B.J.; Todoriki, H.; Suzuki, M. The Okinawan diet: Health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J. Am. Coll. Nutr. 2009, 28, 500S–516S. [Google Scholar] [CrossRef] [PubMed]
- Boaz, N. Evolving Health: The Origins of Illness and How the Modern World Is Making Us Sick; Wiley and Sons: New York, NY, USA, 2002. [Google Scholar]
- Nesse, R.; Williams, G. Why We Get Sick. The New Science of Darwinian Medicine; Times Books: New York, NY, USA, 1994. [Google Scholar]
- Eaton, S.B.; Konnor, M. Paleolithic nutrition. A consideration of its nature and current implications. N. Engl. J. Med. 1985, 312, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Eaton, S.B.; Konner, M.; Shostak, M. Stone agers in the fast lane: Chronic degenerative diseases in evolutionary perspective. Am. J. Med. 1988, 84, 739–749. [Google Scholar] [CrossRef]
- Church, A.; Mitchell, R.; Ravenscroft, N.; Stapleton, L. ‘Growing your own’: A multi-level modelling approach to understanding personal food growing trends and motivations in Europe. Ecol. Econ. 2015, 110, 71–80. [Google Scholar] [CrossRef]
- Crouch, D.; Ward, C. The Allotment: Its Landscape and Culture; Five Leaves: Nottingham, UK, 1999. [Google Scholar]
- National Gardening Association. The Impact of Home and Community Gardening in America. Available online: http://www.gardenresearch.com/files/2009-Impact-of-Gardening-in-America-White-Paper.pdf (accessed on 5 February 2016).
- Kortright, R.; Wakefield, S. Edible backyards: A qualitative study of household food growing and its contributions to food security. Agric. Hum. Values 2011, 28, 39–53. [Google Scholar] [CrossRef]
- Wakefield, S.; Yeudall, F.; Taron, C.; Reynolds, J.; Skinner, A. Growing urban health: Community gardening in South East Toronto. Health Promot. Int. 2007, 22, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Tomkins, M. Making Space for Food: Everyday Community Food Gardening and Its Contribution to Urban Agriculture; University of Brighton: Brighton, UK, 2014. [Google Scholar]
- Clavin, A. Realising ecological sustainability in community gardens: A capability approach. Local Environ. 2011, 16, 945–962. [Google Scholar] [CrossRef]
- Fuller, R.A.; Irvine, K.N. Interactions between people and nature in urban environments. In Urban Ecology; Cambridge University Press: Cambridge, UK, 2010; p. 134. [Google Scholar]
- Alkon, A.H. Growing resistance: Food, culture and the mo’ better foods farmers’ market. Gastronomica 2007, 7, 93–99. [Google Scholar] [CrossRef]
- Buckingham, S. Women (re)construct the plot: The regen(d)eration of urban food growing. Area 2005, 37, 171–179. [Google Scholar] [CrossRef]
- Starr, A. Local food: A social movement? Cult. Stud. Crit. Methodol. 2010, 6, 479–490. [Google Scholar] [CrossRef]
- Johnson, M. Food and Culture Among Bolivia Aymara. Symbolic Expressions of Social Relations; Almquist & Wiksell International: Stockholm, Sweden, 1986; Volume 7. [Google Scholar]
- Rogers, G.A. Kai and Kava in Niutoputapu: Social Relations, Ideologies and Contexts in a Rural Tongan Community; The University of Auckland: Auckland, New Zealand, 1975. [Google Scholar]
- Testart, A.; Forbis, R.G.; Hayden, B.; Ingold, T.; Perlman, S.M.; Pokotylo, D.L.; Rowley-Conway, P.; Stuart, D.E. The significance of food storage among hunter-gatherers: Residence patterns, population densities, and social inequalities. Curr. Anthropol. 1982, 23, 523–537. [Google Scholar] [CrossRef]
- Counihan, C.M. Bread as world: Food habits and social relations in modernizing Sardinia. Anthropol. Q. 1984, 57, 47–59. [Google Scholar] [CrossRef]
- Connor, M.; Armitage, C.J.; Conner, M. The Social Psychology of Food; Open University Press: Buckingham, UK, 2002. [Google Scholar]
- Hine, R.; Peacock, J.; Pretty, J. Care farming in the UK: Contexts, benefits, and links with therapeutic communities. Ther. Commun. 2008, 29, 245–260. [Google Scholar]
- Annerstedt, M.; Wahrborg, P. Nature-assisted therapy: Systematic review of controlled and observational studies. Scand. J. Soc. Med. 2011, 39, 371–388. [Google Scholar] [CrossRef] [PubMed]
- Dijk, E.; Nijholt, A.; van Erp, J.B.; Kuyper, E.; van Wolferen, G. Audio-tactile stimuli to improve health and well-being: A preliminary position paper. In Proceedings of the Symposium on Haptic and Audio-Visual Stimuli: Enhancing Experiences and Interaction, Amsterdam, The Netherlands, 7 July 2010. [Google Scholar]
- Gallace, A.; Spence, C. The science of interpersonal touch: An overview. Neurosci. Biobehav. Rev. 2010, 34, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Essick, G.K.; McGlone, F.; Dancer, C.; Fabricant, D.; Ragin, Y.; Phillips, N.; Jones, T.; Guest, S. Quantitative assessment of pleasant touch. Neurosci. Biobehav. Rev. 2010, 34, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, R.I. The social role of touch in humans and primates: Behavioural function and neurobiological mechanisms. Neurosci. Biobehav. Rev. 2010, 34, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Moss, H. Early environmental effects: Mother-child relations. In Perspectives in Child Psychology; Spencer, T., Kass, N., Eds.; McGraw-Hill: New York, NY, USA, 1970; pp. 2–34. [Google Scholar]
- Passman, R. Providing attachment objects to facilitate learning and reduce distress: Effects of mothers and security blankets. Dev. Psychol. 1977, 13, 25–28. [Google Scholar] [CrossRef]
- Schaffer, H.; Emerson, P. The development of social attachment in infancy. Monogr. Soc. Res. Child Dev. 1964, 94, 29. [Google Scholar] [CrossRef]
- Harlow, H. The heterosexual affectional system in monkeys. Am. Psychol. 1962, 16, 1–19. [Google Scholar] [CrossRef]
- Harlow, H.; Zimmerman, R. Affectional responses in the infant monkey. Science 1959, 130, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Katcher, A.; Wilkins, G. Dialogue with animals: Its nature and culture. In The Biophilia Hypothesis; Kellert, S., Wilson, E., Eds.; Island Press: Washington, DC, USA, 1993; pp. 173–197. [Google Scholar]
- Shepard, P. The Others: How Animals Made Us Human; Island Press: Washington, DC, USA, 1996. [Google Scholar]
- Kahn, P.H.J. Developmental psychology and the biophilia hypothesis: Children’s affiliation with nature. Dev. Rev. 1997, 17, 1–61. [Google Scholar] [CrossRef]
- Kellert, S.; Wilson, E. The Biophilia Hypothesis; Island Press: Washington, DC, USA, 1993; p. 451. [Google Scholar]
- O’Brien, L.; Burls, A.; Brensten, P.; Hilmo, I.; Holter, K.; Haberling, D.; Pirnat, J.; Sarv, M.; Vilbaste, K.; McLoughlin, J. Outdoor education, life long learning and skills development in woodlands and green spaces: The potential links to health and well-being. In Forests, Trees and Human Health; Springer: Amsterdam, The Netherlands, 2011; pp. 343–372. [Google Scholar]
- O’Brien, L.; Murray, R. Forest school and its impact on young children: Case studies in Britain. Urban For. Urban Green. 2007, 6, 249–265. [Google Scholar] [CrossRef]
- Fjortoft, I. The natural environment as a playground for children: The impact of outdoor play activities in pre-primary school children. Early Child. Educ. J. 2001, 29, 111–117. [Google Scholar] [CrossRef]
- Friedmann, E.; Katcher, A.; Thomas, S.; Lynch, J.; Messent, P. Social interaction and blood pressure influence of animal companions. J. Nerv. Ment. Dis. 1983, 171, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Grossberg, J.; Alf, E. Interaction with pet dogs: Effects on human cardiovascular response. J. Delta Soc. 1985, 2, 20–27. [Google Scholar]
- Jenkins, J. Physiological effects of petting a companion animal. Psychol. Rep. 1986, 58, 21–22. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, E.; Katcher, A.; Meislich, D.; Goodman, M. Physiological response of people to petting their pets. Am. Zool. 1979, 19, 915. [Google Scholar]
- Katcher, A. Interactions between people and their pets: Form and function. In Interrelations between People and Pets; Fogle, B., Ed.; Charles C Thomas: Springfield, IL, USA, 1981; pp. 41–67. [Google Scholar]
- Vormbrock, J.K.; Grossberg, J.M. Cardiovascular effects of human-pet dog interactions. J. Behav. Med. 1988, 11, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C. Physiological responses of college students to a pet. J. Nerv. Ment. Dis. 1987, 175, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Barker, S.; Knisley, J.; McCain, N.; Best, A. Measuring stress and immune responses in health care professionals following interaction with a therapy dog: A pilot study. Psychol. Rep. 2005, 96, 713–729. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, E.; Thomas, S. Health benefits of pets for families. Marriage Fam. Rev. 1985, 8, 3–4. [Google Scholar] [CrossRef]
- Shiloh, S.; Sorek, G.; Terkel, J. Reduction of state-anxiety by petting animals in a controlled laboratory experiment. Anxiety Stress Coping Int. J. 2003, 16, 387–395. [Google Scholar] [CrossRef]
- Lafreniere, K.; Mutus, B.; Cameron, S.; Tannous, M.; Gianotti, M.; Abu-Zahra, H.; Laukkanen, E. Effects of therapeutic touch on biochemical and mood indicators in women. J. Altern. Complement. Med. 1999, 5, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Montagu, A. Touching; Harper and Row: New York, NY, USA, 1978. [Google Scholar]
- Spence, J.; Olson, M. Quantitative research on therapeutic touch—An integrative review of the literature 1985–1995. Scand. J.Caring Sci. 1997, 11, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, E.; Katcher, A.; Lynch, J.; Thomas, S. Animal companions and one year survival after discharge from a coronary care unit. Public Health Rep. 1980, 95, 307–312. [Google Scholar] [PubMed]
- Headey, B.; Grabka, M. Pets and human health in Germany and Australia: National longitudinal results. Soc. Indic. Res. 2007, 80, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Allen, K.; Blascovich, J.; Mendes, W. Cardiovascular reactivity and the presence of pets, friends, and spouses: The truth about cats and dogs. Psychosom. Med. 2002, 64, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.P.; Reid, C.M.; Jennings, G.L. Pet ownership and risk factors for cardiovascular disease. Med. J. Aust. 1992, 157, 298–301. [Google Scholar] [PubMed]
- Beetz, A.; Uvnas-Moberg, K.; Julius, H.; Kotrschal, K. Psychosocial and psychophysiological effects of human-animal interactions: The possible role of oxytocin. Front. Psychol. 2012, 3, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Uvnas-Moberg, K. The Oxytocin Factor. Tapping the Hormone of Calm, Love, and Healing; Da Capo Press: Cambridge, UK, 2003. [Google Scholar]
- Insel, T. The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron 2010, 65, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Odendaal, J. Animal-assisted therapy—Magic or medicine? J. Psychosom. Res. 2000, 49, 275–280. [Google Scholar] [CrossRef]
- Odendaal, J.; Meintjes, R. Neurophysiological correlates of affiliative behavior between humans and dogs. Vet. J. 2003, 165, 296–301. [Google Scholar] [CrossRef]
- Ditzen, B.; Schaer, M.; Gabriel, B.; Bodenmann, G.; Ehlert, U.; Heinrichs, M. Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biol. Psychiatry 2009, 65, 728–731. [Google Scholar] [CrossRef] [PubMed]
- Legros, J.; Chiodera, P.; Geenen, V. Inhibitory action of exogenous oxytocin on plasma cortisol in normal human subejcts: Evidence of action at the adrenal gland. Neuroendocrinology 1988, 48, 204–206. [Google Scholar] [CrossRef] [PubMed]
- Petersson, J.; Lundeberg, T.; Uvnas-Moberg, K. Short-term increase and long-term decrease of blood pressure in response to oxytocin-potentiating effect of female steroid hormones. J. Cardiovasc. Pharmacol. 1999, 33, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Neumann, I.; Wigger, A.; Torner, L.; Holsboer, F.; Landgraf, R. Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: Partial action within the paraventricular nucleus. J. Neuroendocrinol. 2000, 12, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Petersson, M.; Alster, P.; Lundeberg, T.; Uvnas-Moberg, K. Oxytocin increases nociceptive thresholds in a long-term perspective in female and male rats. Neurosci. Lett. 1996, 212, 87–90. [Google Scholar] [CrossRef]
- Petersson, M.; Eklund, M.; Uvnas-Moberg, K. Oxytocin decreases corticosterone and nociception and increases motor activity in OVX rats. Maturitas 2005, 51, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Neumann, I.; Kromer, S.; Toschi, N.; Ebner, K. Brain oxytocin inhibits the (re)activity of the hypothalamo-pituitary-adrenal axis in male rats: Involvement of hypothalamic and limbic brain regions. Regul. Pept. 2000, 96, 31–38. [Google Scholar] [CrossRef]
- Widstrom, A.; Winberg, J.; Werner, S.; Svensson, K.; Poloncec, B.; Uvnas-Moberg, K. Breast feeding-induced effects on plasma gastrin and somatostatin levels and their correlation with mild yield in lactating females. Early Hum. Dev. 1988, 16, 293–301. [Google Scholar] [CrossRef]
- Uvnas-Moberg, K. The gastrointestinal tract in growth and reproduction. Sci. Am. 1989, 261, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Barker, S.; Pandurangi, A.; Best, A. Effects of animal-assisted therapy on patients’ anxiety, fear, and depression before ECT. J. ECT 2003, 19, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Levinson, B. Pet Oriented Child Psychotherapy; Charles C. Thomas: Springfield, IL, USA, 1969. [Google Scholar]
- Beetz, A.; Kotrschal, K.; Hediger, K.; Turner, D.; Uvnas-Moberg, K. The effect of a real dog, toy dog and friendly person on insecurely attached children during a stressful task: An exploratory study. Anthrozoos 2011, 24, 349–368. [Google Scholar] [CrossRef]
- Souter, M.; Miller, M. Do animal-assisted activities effectively treat depression? A meta-analysis. Anthrozoos 2007, 20, 167–180. [Google Scholar] [CrossRef]
- Allen, K.; Shykoff, B.; Izzo, J. Pet ownership, but not ACE inhibitor therapy, blunts blood pressure responses to mental stress. Hypertension 2001, 38, 815–820. [Google Scholar] [PubMed]
- Charnetski, C.; Riggers, S.; Brennan, F. Effect of petting a dog on immune system function. Psychol. Rep. 2004, 95, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Li, Q. Effect of forest bathing trips on human immune function. Environ. Health Prev. Med. 2010, 15, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Nakadai, A.; Matshushima, H.; Miyazaki, Y.; Krensky, A.; Kawada, T. Phytoncides (wood essential oils) induce human natural killer cell activity. Immunopharmacol. Immunotoxicol. 2006, 28, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Morimoto, K.; Nakadai, A.; Inagaki, H.; Katsumata, M.; Shimizu, T. Forest bathing enhances human natural killer activity and expression of anti-cancer proteins. Int. J. Immunopathol. Pharmacol. 2007, 20, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Morimoto, K.; Kobayashi, M.; Inagaki, H.; Katsumata, M.; Hirata, Y. Visiting a forest, but not a city, increases human natural killer activity and expression of anti-cancer proteins. Int. J. Immunopathol. Pharmacol. 2008, 21, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Morimoto, K.; Kobayashi, M.; Inagaki, H.; Katsumata, M.; Hirata, Y. A forest bathing trip increases human natural killer activity and expression of anti-cancer proteins in female subjects. J. Biol. Regul. Homeost. Agents 2008, 22, 45–55. [Google Scholar] [PubMed]
- Kawamoto, M.; Kawakami, K.; Otani, H. Effects of phytoncides on spontaneous activities and sympathetic stress responses in Wistar Kyoto and stroke-prone spontaneously hypertensive rats. Shimane J. Med. Sci. 2008, 25, 7–12. [Google Scholar]
- Cheng, W.-W.; Lin, C.-T.; Chu, F.-H.; Chang, S.-T.; Wang, S.-Y. Neuropharmacological activities of phytoncide released from Cryptomeria japonica. J. Wood Sci. 2009, 55, 27–31. [Google Scholar] [CrossRef]
- Hawkins, L.; Barker, T. Air ions and human performance. Ergonomics 1978, 21, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Hansell, C. An attempt to define ionisation of the air. In Proceedings of the International Conference on Ionisation of the Air, Philadelphia, PA, USA, 16–17 October 1961. [Google Scholar]
- Chalmers, J. Atmospheric Electricity; Pergamon Press: London, UK, 1957. [Google Scholar]
- Yamada, R.; Yanoma, S.; Akaike, M.; Tsuburaya, A.; Sugimasa, Y.; Takemiya, S.; Imada, T. Water-generated negative air ions activate NK cell and inhibit carcinogenesis in mice. Cancer Lett. 2006, 239, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Nakane, H.; Asami, O.; Yamada, Y.; Ohira, H. Effect of negative air ions on computer operation, anxiety and salivary chromogranin A-like immunoreactivity. Int. J. Psychophysiol. 2002, 46, 85–89. [Google Scholar] [CrossRef]
- Anderson, I. The influence of electrical fields on uptake of light gases in a model of man. Int. J. Biometeorol. 1965, 9, 149–160. [Google Scholar] [CrossRef]
- Maczynski, B.; Tyczka, S.; Mearecki, B.; Gora, T. Effect of the presence of man on the air ion density in an office room. Int. J. Biometeorol. 1971, 15, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Kornblueh, I.; Swope, S.; Davis, F. Natural ion levels in enclosed spaces. In Proceeding of the Congress on Lacustrine Climatology, Philadelphia, PA, USA, 20–23 May 1973. [Google Scholar]
- Hawkins, L. The influence of air ions, temperature and humidity on subjective wellbeing and comfort. J. Environ. Psychol. 1981, 1, 279–292. [Google Scholar] [CrossRef]
- Leech, J.; Burnett, R.; Nelson, W.; Aaron, S.; Raizenne, M. Outdoor air pollution epidemiologic studies. Am. J. Respir. Crit. Care 2000, 161, A308. [Google Scholar]
- Ling, X.; Jayaratne, R.; Morawska, L. Air ion concentration in various urban outdoor environments. Atmos. Environ. 2010, 44, 2186–2193. [Google Scholar] [CrossRef] [Green Version]
- Jayaratne, R.; Ling, X.; Morawska, L. Role of vegetation in enhancing radon concentration and ion production in the atmosphere. Environ. Sci. Technol. 2011, 45, 6350–6355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemeryuk, G. Salt migration into atmosphere during transpiration. Sov. Plant Physiol. 1970, 17, 673–679. [Google Scholar]
- Pawar, S.D.; Meena, G.; Jadhav, D. Air ion variation at poultry-farm, coastal, mountain, rural and urban sites in India. Aerosol Air Q. Res. 2012, 12, 440–451. [Google Scholar] [CrossRef]
- Mandija, F.; Bushati, J. Overview of measurements of air ion concentration under specific situations. In Proceedings of the ARSA-Advanced Research in Scientific Areas, Slovakia, 3–7 December 2012. [Google Scholar]
- Davis, J. Review of scientific information on the effects of ionized air on human beings and animals. Aerosp. Med. 1963, 34, 35–42. [Google Scholar] [PubMed]
- Yates, A.; Gray, F.; Misiaszek, J.; Wolman, W. Air ions: Past problems and future directions. Environ. Int. 1986, 12, 99–108. [Google Scholar] [CrossRef]
- Krueger, A.; Andriese, P.; Kotaka, S. Small air ions: Their effect on blood levels of serotonin in terms of modern physical theory. Int. J. Biometeorol. 1968, 12, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Krueger, A. Air ions as biological agents—Fact or fancy, part I and II. Immol. Allergy Pract. 1982, 4, 129–140. [Google Scholar]
- Kellogg, E.I. Air ions: Their possible biological significance and effects. Electromagn. Biol. Med. 1984, 3, 119–136. [Google Scholar] [CrossRef]
- Fornof, K.; Gilbert, G. Stress and physiological, behavioral and performance patterns of children under varied air ion levels. Int. J. Biometeorol. 1988, 32, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Sulman, F.; Danon, A.; Pfeifer, Y.; Tal, E.; Weller, C. Urinalysis of patients suffering from climatic heat stress (Sharav). Int. J. Biometeorol. 1970, 14, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Sulman, F. Meteorological front movements and weather sensitivity. Arztliche Prax. 1971, 23, 998–999. [Google Scholar]
- Krueger, A. Are negative ions good for you? New Sci. 1973, 58, 668–670. [Google Scholar]
- Krueger, A.; Smith, R. The biological mechanisms of air ion action II, negative ion effects on the concentration and metabolism of 5-hydroxytryptamine in the mammalian respiratory tract. J. Gen. Physiol. 1960, 44, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Krueger, A. Are Air Ions Biologically Active? In Conference on Electrostatics; Electrostatics Society of America, University of Michigan: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Sulman, F.; Pfeifer, Y.; Superstine, E. Adrenal medullary exhaustion from tropical winds and its management. Isr. J. Med. Sci. 1973, 9, 1022–1027. [Google Scholar] [PubMed]
- Ryushi, T.; Kita, I.; Sakurai, T.; Yasumatsu, M.; Isokawa, M.; Aihara, Y.; Hama, K. The effect of exposure to negative air ions on the recovery of physiological responses after moderate endurance exercise. Int. J. Biometeorol. 1998, 41, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Sulman, F. Meteorological front movements and human weather sensitivity. Karger Gaz. 1974, 30, 1–6. [Google Scholar]
- Frey, A.; Granda, R. Human reactions to air ions: Experimental controls. In Proceedings of the International Conference of Ionization of Air, Philadelphia, PA, USA, 16–17 October 1961; pp. 1–8. [Google Scholar]
- Charry, J.M.; Hawkinshire, F.B.V. Effects of atmospheric electricity on some substrates of disordered social behavior. J. Personal. Soc. Psychol. 1981, 41, 185–197. [Google Scholar] [CrossRef]
- Terman, M.; Terman, J. Treatment of seasonal affective disorder with a high-output negative ionizer. J. Altern. Comlement. Med. 1995, 1, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Terman, M.; Terman, J.; Ross, D. A controlled trial of timed bright light and negative air ionization for treatment of winter depression. Arch. Gen. Psychiatry 1998, 55, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Goel, N.; Terman, M.; Terman, J.; Macchi, M.; Stewart, J. Controlled trial of bright light and negative air ions for chronic depression. Psychol. Med. 2005, 35, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Goel, N.; Etwaroo, G.R. Bright light, negative air ions and auditory stimuli produce rapid mood changes in a students population: A placebo-controlled study. Psychol. Med. 2006, 36, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Assael, M.; Pfeifer, Y.; Sulman, F. Influence of artificial air ionization on the human electroencephalogram. Int. J. Biometeorol. 1974, 18, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Silverman, D.; Kornblueh, I. Effect of artificial ionization of the air on electroencephalogram. Am. J. Phys. Med. 1957, 36, 352–358. [Google Scholar] [PubMed]
- Sulman, F.G.; Levy, D.; Lunkan, L.; Pfeifer, Y.; Tal, E. Absence of harmful effects of protracted negative air ionization. Int. J. Biometeorol. 1978, 22, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Wehner, A. Special review—Electro-aerosol therapy. Am. J. Phys. Med. 1962, 41, 24–40. [Google Scholar] [CrossRef]
- Kornblueh, I. Aeroionotherapy of burns. In Bioclimatology, Biometeorology and Aeroionotherapy; Gualtierotti, R., Kornblueh, I., Sirtori, E., Eds.; Carolo Erba Foundation: Milan, Italy, 1968. [Google Scholar]
- Ucha Udabe, R.; Kertesc, R.; Franceschetti, L. Use of negative ions in illnesses of the nervous system. In Bioclimatology, Biometeorology and Aeroionotherapy; Gualtierotti, R., Kornblueh, I., Sirtori, E., Eds.; Carlo Erba Foundation: Milan, Italy, 1968. [Google Scholar]
- Frey, A. Modification of the conditioned emotional response by treatment with small negative air ions. J. Comp. Physiol. Psychol. 1967, 63, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, J.; Jackson, D.; Perkins, L. Effects of ionized air on stress behavior. Med. Res. Eng. 1967, 6, 25–28. [Google Scholar] [PubMed]
- Olivereau, J.; Lambert, J. Effects of ions on some aspects of learning and memory of rats and mice. Int. J. Biometeorol. 1981, 25, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Ashiba, M.; Matsushima, J. Influences of the air lacking light ions and the effect of its artificial ionization upon human beings in occupied rooms. Jpn. J. Med. Sci. Biol. 1939, 3, 1–12. [Google Scholar]
- Chizhevsky, A. On the Shore of the Universe. Unexplainable Phenomenon; Mysl’: Moscow, Russia, 1995; pp. 41–73. [Google Scholar]
- Goldstein, N.; Archavskaya, T. Is atmospheric superoxide vitally necessary? Accelerated death of animals in a quasi-neutral electric atmosphere. Z. Naturforsch 1997, 52, 396–404. [Google Scholar]
- Sigel, S. Bio-Psychological Influences of Air Ions in Men: Effects on 5-Hydroxytryptoamine (5HT) and Mood; University California: San Francisco, CA, USA, 1979. [Google Scholar]
- Soyka, F.; Edwards, A. The Ion Effect; Bantam: New York, NY, USA, 1976. [Google Scholar]
- Tom, G.; Poole, M.; Galla, J.; Berrier, J. The influence of negative air ions on human performance and mood. Hum. Factors 1981, 23, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Wang, W.; Krafft, T.; Li, Y.; Zhang, F.; Yuan, F. Effects of several environmental factors on longevity and health of the human population of Zhongxiang, Hubei, China. Biol. Trace Elem. Res. 2010, 143, 702–716. [Google Scholar] [CrossRef] [PubMed]
- Strachan, D. Hay fever, hygeine, and household size. Br. Med. J. 1989, 299, 1259–1260. [Google Scholar] [CrossRef]
- Rook, G.; Raison, C.L.; Lowry, C.A. Can we vaccinate against depression? Drug Discov. Today 2012, 17, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Grenham, S.; Clarke, G.; Cryan, J.; Dinan, T. Brain-gut-microbe communication in health and disease. Front. Physiol. 2011, 2, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Rook, G. The changing microbial environment, Darwinian medicine and the hygeine hypothesis. In The Hygeine Hypothesis and Darwinian Medicine; Rook, G., Ed.; Birkhauser Verlag AG: Basel, Switzerland, 2010; pp. 1–28. [Google Scholar]
- Matthews, D.M.; Jenks, S.M. Ingestion of Myobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav. Process. 2013, 96, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Rook, G.; Raison, C.; Lowry, C. Microbial ‘old friends’, immunoregulation and socioeconomic status. Clin. Exp. Immunol. 2014, 177, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gil, S.R.; Pop, M.; DeBoy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science 2006, 312, 1355–1359. [Google Scholar] [CrossRef] [PubMed]
- Luckey, T. Introduction to intestinal microecology. Am. J. Clin. Nutr. 1972, 25, 1292–1294. [Google Scholar] [PubMed]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.; Manichanh, C. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Mahowald, M.; Ley, R.; Lozupone, C.; Hamady, M.; Martens, E. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 2007, 5, e156. [Google Scholar] [CrossRef] [PubMed]
- Heijtz, R.; Wang, S.; Anuar, F.; Qian, Y.; Bjorkholm, B.; Samuelsson, A.; Hibberd, M.; Frossberg, H.; Pettersson, S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA 2011, 108, 3047–3052. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, K.; Kang, N.; Bienenstock, J.; Foster, J. Effects of intestinal microbiota on anxiety-like behavior. Commun. Integr. Biol. 2011, 4, 492–494. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, K.; Kang, N.; Bienenstock, J.; Foster, J. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 2011, 23, 255. [Google Scholar] [CrossRef] [PubMed]
- Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 2004, 558, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.; Grenham, S.; Scully, P.; Fitzgerald, P.; Moloney, R.; Shanahan, F.; Dinan, T.; Cryan, J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 2012, 18, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Rook, G.; Brunet, L. Give us this day our daily germs. Biologist 2002, 49, 145–149. [Google Scholar] [CrossRef]
- Hanski, I.; von Hertzen, L.; Fyhrquist, N.; Koskinen, K.; Torppa, K.; Laatikainen, T.; Karisola, P.; Auyinen, P.; Paulin, L.; Makela, M.J.; et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci. USA 2012, 109, 8334–8339. [Google Scholar] [CrossRef] [PubMed]
- McFall-Ngai, M.; Hadfield, M.; Bosch, T. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 2013, 110, 3229–3236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, M.; Dowd, S.; Galley, J.; Hufnagle, A.; Allen, R.; Lyte, M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav. Immun. 2011, 25, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Peen, J.; Schoevers, R.; Beekman, A.; Dekker, J. The current status of urban-rural differences in psychiatric disorders. Acta Psychiatr. Scand. 2010, 121, 84–93. [Google Scholar] [CrossRef] [PubMed]
- McDade, T.W.; Tallman, P.S.; Madimenos, F.C.; Liebert, M.A.; Cepon, T.J.; Sugiyama, L.S.; Snodgrass, J.J. Analysis of variability of high sensitivity C-reactive protein in lowland Ecuador reveals no evidence of chronic low-grade inflammation. Am. J. Hum. Biol. 2012, 24, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Bach, J. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 2002, 347, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Rook, G.; Lowry, C.; Raison, C.L. Microbial old friends, immunoregulation and stress resilience. Evol. Med. Public Health 2013, 2013, 46–64. [Google Scholar] [CrossRef] [PubMed]
- De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and Rural Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 14691–14696. [Google Scholar] [CrossRef] [PubMed]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Margris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Ege, M.J.; Mayer, M.; Normand, A.-C.; Genuneit, J.; Crookson, W.O.; Braun-Fahrlander, C.; Heederik, D.; Piarroux, R.; von Mutius, E. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 2011, 364, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Blackley, C. Experimental Researches on the Causes and Nature of Catarrhus Aestivus (Hay-Fever and Hay-Asthma); Bailliere Tindall and Cox: London, UK, 1873. [Google Scholar]
- Dalbeth, N.; Yeoman, S.; Dockerty, J.; Highton, J.; Robinson, E.; Tan, P.; Herman, D.; McQueen, F. A randomised placebo controlled trial of delipidated, deglycolipidated Mycobacterium vaccae as immunotherapy for psoriatic arthritis. Ann. Rheum. Dis. 2004, 63, 718–722. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.; Anderson, H.; Kaukel, E.; O’Byrne, K.; Pawlicki, M.; Von Pawel, J.; Reck, M. SRL172 (killed Mycobacterium vaccae) in addition to standard chemotherapy improves quality of life without affecting survival, in patients with advanced non-small-cell lung cancer: Phase III results. Ann. Oncol. 2004, 15, 906–914. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.; Saini, A.; Smith, I.; Webb, A.; Gregory, K.; Mendes, R.; Ryan, C.; Priest, K.; Bromelow, K.V.; Palmer, R.D.; et al. A randomized phase II study of SRL 172 (Mycobacterium vaccae) combined with chemotherapy in patients with advanced inoperable non-small-cell lung cancer and mesothelioma. Br. J. Cancer 2000, 83, 853. [Google Scholar] [CrossRef] [PubMed]
- Sneath, P.; Mair, N.; Sharpe, M.; Holt, J. Bergey’s Manual of Systematic Bacteriology; Williams and Wilkins: Baltimore, MD, USA, 1986; Volume 2. [Google Scholar]
- Gomez, A.; Mve-Obiang, A.; Vray, B.; Rudnicka, W.; Shamputa, I.; Portaels, F.; Meyers, W.; Fonteyne, P.-A.; Realini, L. Detection of phospholipase in nontuberculous mycobacteria and its possible role in hemolytic activity. J. Clin. Microbiol. 2001, 39, 1396–1401. [Google Scholar] [CrossRef] [PubMed]
- Kazda, J.; Pavlik, I.; Falkinham, J.; Hruska, K. The Ecology of Mycobacteria: Impact on Animals and Human’s Health; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Rook, G.; Brunet, L. Microbes, immunoregulation and the gut. Gut 2005, 54, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Leussis, M.; Bolivar, V. Habituation in rodents: A review of behavior neurobiology and genetics. Neurosci. Biobehav. Rev. 2006, 30, 1045–1064. [Google Scholar] [CrossRef] [PubMed]
- Cools, R.; Roberts, A.; Robbins, T. Serotonergic regulation of emotion and behavioural control responses. Trends Cognit. Sci. 2007, 12, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Maas, J.; Verheij, R.; Groenewegen, P.; de Vries, S.; Spreeuwenberg, P. Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health 2006, 60, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet 2008, 372, 1655–1660. [Google Scholar] [CrossRef]
- Shanahan, D.F.; Lin, B.B.; Gaston, K.J.; Dean, J.; Barber, E.; Fuller, R.A. Toward improved public health outcomes from urban nature. Am. J. Public Health 2015. [Google Scholar] [CrossRef] [PubMed]
- Lawton, E.; Brymer, E.; Clough, P.; Denovan, A. The relationship between the physical activity environment, nature relatedness, and the psychological well-being benefits of regular exercisers. Front. Psychol. 2017, 8, 1058. [Google Scholar] [CrossRef] [PubMed]
- Nisbet, E.K.; Zelenski, J.M.; Murphy, S.A. Happiness is in our nature: Exploring nature relatedness as a contributor to subjective well-being. J. Happiness Stud. 2011, 12, 303–322. [Google Scholar] [CrossRef]
- Yeh, H.; Stone, J.; Churchill, S.; Brymer, E.; Davids, K. Physical and emotional benefits of different exercise environments designed for treadmill running. Int. J. Environ. Res. Public Health 2017, 14, 752. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H.; Stone, J.; Churchill, S.; Wheat, J.; Brymer, E.; Davids, K. Physical, psychological and emotional benefits of green physical activity: An ecological dynamics perspective. Sports Med. 2016, 46, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Brymer, E.; Davids, K.; Mallabon, L. Understanding the psycholgical health and well-being benefits of physical activity in nature: An ecological dynamics analysis. Ecopsychology 2014, 6, 189–197. [Google Scholar]
Pathway | Knowledge Gaps |
---|---|
Sound | Which kinds of nature sounds are important; studies with visually-impaired individuals |
Smell | Study of smells emitted directly from plants; in situ studies; how natural smells affect preferences and memory |
Taste | Emotional effects of eating natural food; ability to distinguish natural food; cognitive effects of diet |
Touch | Non-animal nature touch; effects of petting different kinds of animals; touch-specific studies |
Phytoncides | Field studies; documenting fine-scale environmental distribution; how much is released from greenery, variation among plant species |
Negative Air Ions | Replicate and improve studies; environmental distribution; release from greenery; correlation between benefits and sensitivity |
Microorganisms | Relatively well-researched; connect variation in nature experiences with variation in microbiota |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, L.S.; Shanahan, D.F.; Fuller, R.A. A Review of the Benefits of Nature Experiences: More Than Meets the Eye. Int. J. Environ. Res. Public Health 2017, 14, 864. https://doi.org/10.3390/ijerph14080864
Franco LS, Shanahan DF, Fuller RA. A Review of the Benefits of Nature Experiences: More Than Meets the Eye. International Journal of Environmental Research and Public Health. 2017; 14(8):864. https://doi.org/10.3390/ijerph14080864
Chicago/Turabian StyleFranco, Lara S., Danielle F. Shanahan, and Richard A. Fuller. 2017. "A Review of the Benefits of Nature Experiences: More Than Meets the Eye" International Journal of Environmental Research and Public Health 14, no. 8: 864. https://doi.org/10.3390/ijerph14080864