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Abstract: Wildfires in North America, particularly in western states, have caused
widespread environmental, economic, social, and health impacts. Smoke from these fires
travels long distances, spreading pollutants and worsening the air quality across continents.
Vulnerable groups, such as children, the elderly, and those with preexisting conditions,
face heightened health risks, as do firefighters working in extreme conditions. Wildfire
firefighters are of particular concern as they are fighting fires in extreme conditions with
minimal protective equipment. This study examined wildfire smoke during July–August
2021, when intense fires in Canada and the western U.S. led to cross-continental smoke
transport and caused significant impacts on the air quality across North America. Using
the GEOS-Chem model, we simulated the transport and distribution of PM2.5 (particulate
matter with a diameter of 2.5 µm or smaller), identifying significant carcinogenic risks for
adults, children, and firefighters using dosimetry risk methodologies established by the
U.S. EPA. Significant carcinogenic risks for adult, child, and firefighter populations due to
exposure to PM2.5 were identified over the two-month period of evaluation. The findings
emphasize the need for future studies to assess the toxic chemical mixtures in wildfire
smoke and consider the risks to underrepresented communities.

1. Introduction
Wildfires have been a significant issue in North America over the past several years,

impacting various regions, particularly the western states. Intercontinental wildfires have
far-reaching impacts that extend beyond the immediate areas affected by the flames. These
impacts can be environmental, economic, social, and health-related, and they can affect
regions far from the origin of the fires due to the movement of smoke and pollutants across
continents. The environmental impacts include air quality degradation, climate change,
a loss of biodiversity, and soil and water quality issues, thus affecting aspects of social,
economic, and human health [1–7].

Wildfire smoke can travel thousands of miles, affecting the air quality in regions far
from the fire source. This smoke contains particulate matter (PM), carbon monoxide, and
other toxic pollutants that can harm human health and ecosystems. Wildfires also release
significant amounts of carbon dioxide (CO2) and other greenhouse gasses, contributing to
global warming. The loss of forests also reduces the planet’s capacity to sequester carbon.
Fires can destroy habitats and threaten the survival of species. The recovery of ecosystems
can take decades, and some species may face extinction [4,8–10]. The removal of vegetation
can lead to soil erosion and the loss of nutrients [3,11]. Ash and debris can contaminate
water sources, affecting aquatic life and human water supplies.

In terms of economic and social impacts, wildfires can cause extensive damage to
homes, businesses, and infrastructure, leading to costly repairs and rebuilding efforts.
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Farmland and crops can be destroyed, causing economic losses for farmers and disruptions
in food supply chains. Popular tourist destinations affected by wildfires can see a decline
in visitors, impacting local economies dependent on tourism. An increased frequency and
severity of wildfires can lead to higher insurance premiums and greater financial risk for
insurance companies [12–19].

The social and health impacts of wildfires are far-reaching and pose significant long-
term health effects. Exposure to wildfire smoke can cause respiratory and cardiovascular
problems, particularly in vulnerable populations such as children, the elderly, and those
with preexisting health conditions. Wildfire firefighters are of particular concern as they
are fighting fires in extreme conditions with minimal protective equipment [2,16,20–24].
Additionally, mental and psychological health impacts have been observed, often attributed
to the disruption of daily life, the trauma associated with the loss of life and property, and
the long-term health effects that some individuals experience long after the flames are
extinguished [2,16,20–22,25–28]. Evacuations and the loss of homes can lead to significant
psychological stress and trauma for affected individuals and communities. The destruction
of infrastructure and homes can disrupt communities and lead to long-term displacement
and changes in population dynamics.

Large wildfires occurring in recent years have led to international and global impacts,
which could pose unforeseen long-term problems. Transboundary pollution such as smoke
and pollutants from wildfires can cross national borders, affecting neighboring countries
and even continents. This can lead to international tensions and the need for cross-border
cooperation on air quality management [14,29]. Additionally, large-scale wildfires can
influence global climate patterns, potentially affecting weather systems and contributing to
phenomena such as El Niño and La Niña [30–38]. For example, the event of the 2019–2020
Australian bushfires is known as the “Black Summer,” with smoke from the fires traveling
across the Pacific Ocean and even affecting the air quality as far away as South America
and contributing to carbon emissions that impacted global climate patterns. The smoke
from the 2017 British Columbia wildfires spread across Canada and into the United States,
affecting the air quality in cities like Seattle, Portland, and even as far east as Denver.

Addressing the impacts of intercontinental wildfires and the human health risks
associated with exposure requires coordinated international efforts. Chemical exposure,
a part of the total human exposome, is a challenge to assess because of the abundance
of chemicals and their levels of exposure for each scenario. Risk assessment methods
provide a paradigm for assessing the risk to humans from exposure to these chemicals.
The Environmental Protection Agency (EPA) provides a paradigm for human health risk
assessment to assess exposure to chemicals in the environment. It uses risk assessment to
describe the nature and extent of risks to human health for various populations, including
workers and sensitive subpopulations. The risk assessment process is iterative and helps to
identify factors that play the most significant role in the calculated risk. The following is a
brief summation of the EPA paradigm for inhalation risk assessment.

The EPA’s Superfund Program updated its previous approach for determining the
risk from inhaled chemicals to be consistent with the inhalation dosimetry methodology
described in the Methods for Derivation of Inhalation Reference Concentrations and Appli-
cation of Inhalation Dosimetry [39]. The document provides risk assessors with guidance
that more consistently addresses the inhalation dosimetry methodology. Included in the
document are recommended processes consisting of a series of steps as well as recom-
mended equations. The guidance is intended to provide a recommended methodology for
consistently addressing the inhalation pathway in risk assessments for not only Superfund
sites but also across other sites with inhalation exposure. This guidance is readily applied
to any inhalation scenario, such as the scenarios highlighted in this study.
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This study focused on evaluating the risks associated with an intra-continental trans-
port event from wildfires occurring in July and August 2021, a major wildfire crisis since
2020 characterized by intense and widespread fires that severely impacted the air quality
across North America. The series of intense wildfires was driven by extreme drought
conditions and high temperatures. Wildfire smoke from Canada and the western U.S. was
carried by the jet stream and cross-continental winds and spread across the country, wors-
ening the air quality and visibility from the west to the east coasts. The enhanced smoke
exposure and health risks across the U.S. need an accurate quantification and assessment.
We specifically focused on PM with a diameter of 2.5 µm and smaller (PM2.5), which is
a key indicator of the air quality and has been the primary pollutant of health concern
from wildfires.

While much research has concentrated on local and regional impacts, this study fills a
critical gap by emphasizing the intra-continental transport of wildfire smoke across North
America, specifically examining how smoke from the western U.S. and Canada travels,
affecting vast regions far beyond the fire’s immediate vicinity, including the eastern U.S.
and Canada. This broad focus offers a more comprehensive understanding of wildfire
smoke’s geographic reach and provides a multi-country perspective that highlights the
cross-border implications policymakers, public health officials, and emergency responders
must consider. Additionally, while many studies have explored wildfire smoke’s health
effects or atmospheric dynamics independently, this study bridged that gap by integrating
advanced atmospheric modeling with health risk assessments, linking GEOS-Chem’s
high-resolution simulations with health exposure metrics to offer a holistic view of how
long-range smoke transport contributes to public health risks, particularly in regions
not traditionally considered at risk. Going beyond previous studies that estimated the
health impacts for specific areas, this research assessed the health risks for large populations,
especially in densely populated urban centers. The innovation of this study lies in its unique
interdisciplinary approach, combining atmospheric modeling and epidemiological data to
track the long-range transport of smoke and quantify its associated health risks, providing
a comprehensive analysis of exposure across large regions. By taking advantage of recent
large wildfires with significant cross-border effects, this study offers an unprecedented
multi-country perspective on the health impacts of wildfire smoke on a vast, diverse
population across North America [40–45].

2. Methods
2.1. GEOS-Chem Modeling of Wildfire-Induced Aerosol Enhancements

We used GEOS-Chem, a global 3D chemical transport model (version 13.4.1; https:
//wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_13.4.1, last accessed on
17 April 2024) in this study to simulate the long-distance transport of wildfire smoke
that occurred in July and August of 2021 and the changes it induced in the concentrations
of PM2.5 over North America. The GEOS-Chem model was chosen for this study due to its
comprehensive capability to simulate atmospheric compositions from local to global scales.
We used GEOS-Chem in the off-line mode (i.e., GEOS-Chem Classic), driven by assimilated
meteorological data from the Goddard Earth Observation System (GEOS) of the NASA
Global Modeling and Assimilation Office (GMAO) on a rectilinear latitude–longitude grid,
to compute the horizontal and vertical transport. GEOS-Chem modeling accounts for pro-
cesses such as emissions, transport, deposition, radiation, chemistry, and aerosol dynamics,
integrating detailed meteorological data and pollutant emission inventories. Given the
large domain targeted in this study, the high-resolution output from GEOS-Chem allowed
for the accurate modeling of long-range smoke transport and its effects on the air quality,
which are crucial for assessing exposure and health risks.

https://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_13.4.1
https://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_13.4.1
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Particle constituents were also simulated, but their risk analysis was beyond the scope of
this study. Two sets of GEOS-Chem simulations were performed, with one simulation driven by
the Global Fire Emissions Database version 4.0 (GFED4) [46] and a parallel simulation without
fire emissions serving as a reference; thus, the differences between the two simulations with
and without fire emissions indicated the fire-induced enhancements in air pollutants. The
GFED4 provides global monthly and daily burned area data at a 0.25◦ spatial resolution from
2000 through to the present, with the data produced by combining 500 m MODIS burned area
maps with active fire data from the Tropical Rainfall Measuring Mission (TRMM) Visible and
Infrared Scanner (VIRS) and the Along Track Scanning Radiometer (ATSR) satellite sensors [46].
In addition, other emissions inventories such as global anthropogenic emissions from the
Community Emissions Data System version 2 (CEDSv2) as well as biogenic emissions from
the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) were
used, allowing the all-emission simulation to reproduce realistic atmospheric conditions that
were influenced by a range of sources [47,48]. For each scenario, we first performed a global
simulation at a 4◦ latitude × 5◦ longitude spatial resolution. The global results were then
used as boundary conditions in the downscaled nested simulation that covered the North
American domain, with a latitudinal range of [9.75, 60] and longitudinal range of [−130, −60]
at a 0.25◦ × 0.3125◦ resolution. The NASA Global Modeling and Assimilation Office (GMAO)’s
GEOS-FP (“forward-processing”) meteorological data product was used to drive the GEOS-
Chem meteorology. Global simulations included an extra spin-up year and nested simulations
used an extra spin-up month to generate reasonable initial physics and dynamics states for
each scenario.

Wildfires release a variety of trace gasses and PM into the atmosphere, many of which
have significant environmental and health impacts. GEOS-Chem incorporates the impacts
of processes such as advection, diffusion, and turbulent mixing on pollutant transport
across different model grids. We focused on the health risk of PM in this study. For
computational efficiency, we used the aerosol-only version of GEOS-Chem, with monthly
mean oxidants archived from a full-chemistry simulation, as described by Park et al. (2004)
and used in our previous wildfire study [49]. Building on previous studies, 35% of biomass
burning emissions by mass are distributed across the 10 sigma layers above the boundary
layer. This is especially relevant for large wildfires, such as those examined in this study,
which could result in a significant injection height [49–51]. The modeled results from this
all-emission simulation were compared with ground-based observational data from the
Interagency Monitoring of PROtected Visual Environments (IMPROVE) and AirNow in the
U.S. and the National Air Pollution Surveillance (NAPS) program in Canada for validation
and evaluation.

2.2. Human Health Risk Assessment

The historic guidance given in the EPA’s Risk Assessment Guidance for Superfund
(RAGS), Part A, outlines a previously recommended approach for conducting site-specific
baseline risk assessments for inhaled contaminants. According to the original RAGS
approach, the inhalation exposure estimate was typically derived in terms of a chronic,
daily “air intake” (mg/kg-day) using the following general approach. The intake of the
chemical was estimated as a function of the concentration of the chemical in air (CA),
the inhalation rate (IR), the body weight (BW), and the exposure scenario. Age-specific
values for the BW and IR were used when evaluating specific exposure scenarios (e.g.,
asthmatics) [52].

Table 1 presents the RAGS, Part A, equation for calculating the intake for the inhala-
tion exposure. Inhalation toxicity values were “converted” into similar units for the risk
quantification step. The cancer risk was estimated by multiplying the chronic daily intake
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of the chemical from the air by the “inhalation cancer slope factor” (CSFi); the hazard
quotient (HQ) for non-cancer effects was estimated by dividing the intake of the chemical
by an “inhalation reference dose” (RfDi) [52]. The approach outlined in RAGS, Part A, was
developed before the EPA issued the inhalation dosimetry methodology, which describes
the Agency’s refined recommended approach for interpreting inhalation toxicity studies in
laboratory animals or studies of the occupational exposure of humans to airborne chemicals.

Table 1. Risk Assessment Guidance for Superfund (RAGS), Part A, equation describing the estimation
of the inhalation exposure, Chapter 6, Exhibits 6–16, Pages 6–44.

Intake (mg/kg-day) = CA × IR × ET × EF × ED

BW × AT

CA = chemical concentration in air (mg/m3)

IR = inhalation rate (m3/hr)

ET = exposure time (hours/day)

EF = exposure frequency (days/year)

ED = exposure duration (years)

BW = body weight (kg)

AT = averaging time (days)

Updated inhalation dosimetry guidance from the EPA recommends that when estimat-
ing the risk via inhalation, risk assessors should use the concentration of the chemical in the
air as the exposure metric (e.g., mg/m3), rather than the inhalation intake of a contaminant
in the air based on the IR and BW (e.g., mg/kg-day).

The intake equation described above (RAGS, Part A, Exhibit 6–16) is not consistent
with the inhalation dosimetry methodology because the amount of the chemical that
reaches the target site cannot be described simply using ingestion rates and the body
weight. Rather, the complex interaction of the inhaled contaminant with the respiratory
tract is affected by many factors, such as the species-specific relationships of the exposure
concentrations (ECs) to the deposited/delivered doses in various parts of the airway
and lung and the physiochemical characteristics of the inhaled contaminant [53–56]. The
inhalation dosimetry methodology also considers the target site where the toxic effect occurs
(e.g., the respiratory tract or a location in the body remote from the portal of entry) when
applying dosimetric adjustments to experimental concentrations [39,57–59]. Therefore,
the RAGS, Part A, equation, illustrated in Table 1, is not recommended for estimating
the exposure to inhaled contaminants. In this study, we used the inhalation dosimetry
methodology recommended by the USEPA to evaluate the risk to adults, children, and
wildfire firefighters.

In general, a human health risk assessment is a four-step process including hazard
identification, toxicity assessment, exposure assessment, and risk characterization. The
purpose of hazard identification is to determine the chemicals of concern for the affected
population. Toxicity assessment is accomplished through the evaluation of dose–response
relationships, which is mainly performed through animal studies and their results are
generalized to humans. The evaluation of the exposure is accomplished using parameters
such as the amount and duration of exposure that are specific to the scenario of the exposure.
After analyzing data on the exposure and toxicity, the level of risk posed by the chemical
is determined and compared to acceptable levels set forth by the EPA, and appropriate
corrective measures are recommended in the risk characterization.
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After determining the concentration of chemicals in the air, and based on the exposure
patterns identified, the concentration of the exposure is then determined as follows.

A: Chronic and subchronic exposure:

EC =
(CA × ET × EF × ED)

AT
(1)

B: Acute exposure:
EC = CA (2)

EC: exposure concentration (µg/m3).
CA: contaminant concentration in the air (µg/m3).
ET: exposure time (hours/day).
EF: the exposure frequency, which indicates the number of exposure days per year
(days/year).
ED: exposure duration in years.
AT: average time (hours) (the period over which the exposure is averaged in terms of days;
ED (years) × 365 (days/year) × 24 (hours/day)).

If the exposed population does not have a uniform activity pattern, like wildfire
firefighters, the following formula is used to calculate the exposure concentration in that
microenvironment for a specific time period:

ECj =
n

∑
i=1

(CAi × ETi × EFi)× EDj

AT j
(3)

where

ECj: average exposure concentration for a certain exposure period, j (µg/m3).
CAi: contaminant concentration in the air in the microenvironment i (µg/m3).
ETi: exposure time spent in microenvironment i (hours/days).
EFi: exposure frequency for microenvironment i (days/year).
EDj: exposure duration for exposure period j (years).
ATj: average time (hours) (the period over which the exposure is averaged in terms of days;
ED (years) × 365 (days/year) × 24 (hours/day)).

When the population is exposed to varying concentrations of chemicals over different
periods, the average concentration over the long term is calculated using the following
equation:

ECLT = ∑
(
ECj × EDi

)
AT

(4)

where

ECLT: long-term average exposure concentration (µg/m3).
ECj: average exposure concentration of the contaminant in the air for exposure period j
(µg/m3).
EDj: exposure duration in period j (years).
AT: averaging time (years).

The evaluation of the toxicity of a chemical substance is conducted using toxicity
reference benchmarks, namely the inhalation unit risk for carcinogens and the hazard
quotient for non-carcinogenic effects. After finding the inhalation unit risk (IUR), the
amount of carcinogenic risk of a substance is determined using the following formula:

Risk = EC × IUR (5)

where
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EC: exposure concentration (µg/m3).
IUR: carcinogenic unit risk (µg/m3).

For non-carcinogenic risk calculations, a hazard quotient (HQ) is calculated. The
hazard quotient represents the concentration below which there would be a negligible risk
of a non-carcinogenic effect.

HQ =
EC

Toxicity Value (i.e., R f C)× 1000 µg/mg
(6)

where

HQ (unitless) = hazard quotient.
EC (µg/m3) = exposure concentration.
Toxicity Value (mg/m3) = inhalation toxicity value (e.g., RfC) that is appropriate for the
exposure scenario (acute, subchronic, or chronic).

After calculating the risk for both carcinogens and non-carcinogens, the amount is
compared with the acceptable risk limits. For carcinogens, an acceptable risk level is defined
as less than 1 in 1 million persons developing cancer from exposure. For non-carcinogenic
risks, a sum of hazard quotients below 1 is considered acceptable.

3. Results
3.1. Model–Observation Comparison and Limitations of IMPROVE Observations

The GEOS-Chem-modeled results over the U.S. and southern Canada from the all-
emission simulation were evaluated against ground-based observations from the IMPROVE,
AirNow, and the NAPS. The PM2.5 concentrations measured at these observational sites
were compared with the modeled concentrations in the corresponding grid cells covering
the same geographical locations (Figure 1). The IMPROVE data are obtained every three
days, and the sampling sites cover most of the states in the U.S. The spatial distributions
of PM2.5 concentrations in July and August 2021, as observed by the IMPROVE, indicate
enhancements in the western, northern, and central U.S. regions, with the spatial pattern
of the enhancements captured by GEOS-Chem modeling, despite the model showing a
significant overestimation. Daily average AirNow and NAPS data from sites with both
PM2.5 and PM10 measurements were used, as comparing these two air pollution indices
helped ensure the data quality. For example, we excluded sites where the measured PM2.5

concentrations exceeded the PM10 levels. AirNow provides denser coverage across the
U.S. than the IMPROVE and better captures the spatial distribution of PM2.5 concentrations
compared to both the IMPROVE and NAPS.

The timeseries comparison of PM2.5 concentrations between the IMPROVE and GEOS-
Chem showed noticeable observation–model discrepancies, especially over August, where
GEOS-Chem simulated significant increases in PM2.5, much higher than the IMPROVE
observed values (Figure 2). While observations are typically used as benchmarks to val-
idate model results, it is important to note that IMPROVE sampling and measurements
could be constrained by their upper limit of detection. This limitation may become par-
ticularly relevant during periods of large wildfires when ambient concentration levels
experience sharp increases, potentially causing the filters to reach their maximum sampling
capacity. For example, at the IMPROVE Bliss State Park (BLIS) sampling site in South
Lake Tahoe, CA, on 29 August 2021, the GEOS-Chem-simulated PM2.5 concentrations
reached up to 491.15 µg/m3, whereas the IMPROVE measurements resulted in an error.
IMPROVE data also showed stable values under conditions of high pollution. At the BLIS
sampling site, another example is 8 August 2021, when the daily average GEOS-Chem
PM2.5 concentration reached 327.93 µg/m3, while the IMPROVE recorded 44.03 µg/m3 on
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the same day. A notable maximum GEOS-Chem PM2.5 concentration of 2414.65 µg/m3

was recorded on 29 August 2021, whereas the corresponding IMPROVE PM2.5 concentra-
tion was 47.99 µg/m3. This analysis underscores the need for caution when interpreting
IMPROVE observational data for extreme pollution events. However, this issue is not well
documented to our knowledge.
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Despite discrepancies between the GEOS-Chem-simulated PM2.5 concentrations and
IMPROVE observations, measurements from AirNow sites better reproduced the variations
in PM2.5 over July and August (Figure 2). In southern Canada, GEOS-Chem slightly
underestimated PM2.5 but captured its variability well, compared with NAPS observations.
It is important to note that while preliminary data quality assessments have been conducted,
AirNow data have not undergone full validation, which may introduce biases in the model–
observation comparison. Additionally, NAPS data products are subject to ongoing updates,
which could also contribute to model–observation discrepancies. However, we noted that
the modeled surface smoke from GEOS-Chem closely aligned with the magnitude and
distribution of and variation in near-surface smoke levels captured by the High-Resolution
Rapid Refresh Smoke (HRRR-Smoke) model across the U.S. and southern Canada over
the two months (https://rapidrefresh.noaa.gov/hrrr/HRRRsmokeold/, last accessed on
13 June 2024). By comparing the GEOS-Chem model results with multiple observational
datasets and the HRRR model, we could more reliably use the model results to assess the
health risks associated with the worsened air quality induced by wildfires. Given that
GEOS-Chem tended to underestimate PM concentrations compared to the AirNow and
NAPS datasets, our health risk assessments may have been biased low.

https://rapidrefresh.noaa.gov/hrrr/HRRRsmokeold/
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their corresponding GEOS-Chem grid cells (middle panel); and between NAPS and GEOS-Chem
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3.2. Evolution of Wildfire-Derived PM2.5

We calculated fire-induced enhancements in the PM2.5 based on the differences be-
tween the two GEOS-Chem simulations with and without fire emissions. The evolution
of the spatial distributions of the daily average wildfire-derived PM2.5 concentrations in
July and August are shown in Figure 3. During July and August 2021, a series of intense
wildfires across the western U.S., particularly in California, Oregon, and Washington, com-
bined with significant wildfire activity in Canada, particularly in British Columbia and
Alberta, led to the widespread intra-continental transport of smoke. These fires were fueled
by extreme drought conditions, high temperatures, and strong winds, creating a perfect
storm for large-scale smoke dispersion across North America.
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In the western U.S. and Canada, the areas closest to the wildfires, including the Pacific
northwest in the U.S. and western Canada, experienced the highest concentrations of PM2.5.
Cities like Vancouver, Seattle, and Portland recorded extremely poor air quality, with PM2.5

reaching hazardous levels for extended periods. The proximity of the fires led to dense
smoke and significantly reduced air quality across the region. As the smoke plumes from
both the U.S. and Canadian wildfires traveled eastward, states in the midwest, including
Colorado, Nebraska, and Illinois, as well as provinces like Manitoba and Ontario in Canada,
observed elevated PM2.5 levels. The convergence of smoke from multiple sources led to
widespread air quality degradation in these areas.

In early July, wildfires in California, Oregon, British Columbia, and Alberta intensified,
producing large quantities of smoke. The smoke initially remained localized but began
spreading eastward by mid-July. The air quality in the western U.S. and Canada rapidly
deteriorated, with PM2.5 reaching unhealthy levels. During mid-July, the smoke continued
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to move eastward, with elevated PM2.5 levels detected across the central US and Canada.
During this time, the influence of the smoke extended into the Great Lakes region and
the central provinces of Canada, leading to hazy skies and moderate air quality concerns.
By late July, the smoke had reached the eastern states, affecting the air quality from the
midwest to the Atlantic coast and from Ontario to the maritime provinces. The PM2.5

concentrations in New York, Pennsylvania, and the mid-Atlantic region, as well as the
eastern provinces of Canada, such as Quebec and Nova Scotia, were even comparable to
the those of the western regions, significantly degrading the air quality.

The elevated concentrations of PM2.5 over eastern North America lasted until early
August as the wildfire activity persisted in both the U.S. and Canada, and the smoke
plumes continued to affect large areas of North America. The central and eastern regions
experienced recurring episodes of poor air quality as the smoke was transported repeatedly
across the continent. As the wildfire activity began to decline in mid-to-late August, the air
quality gradually improved. However, residual smoke lingered in the atmosphere, and
sporadic increases in PM2.5 levels were observed, especially during periods of strong winds
that re-entrained smoke particles into the air.

The persistently elevated PM2.5 levels in both July and August prompted health
advisories from the west to the eastern seaboard of both countries. Overall, the smoke
dispersion followed a pattern of episodic spikes in the PM2.5 levels, corresponding to
the peaks of wildfire activity in both the U.S. and Canada. In July, the smoke transport
was more concentrated, while in August, the combined effects of continued fires in both
countries led to widespread and persistent smoke, affecting large portions of North America
simultaneously.

3.3. Human Health Risk Associated with Fire-Derived PM2.5

Using the EPA Inhalation Risk Paradigm (RAGS Part F) to determine the empirical
health risk to evaluate the enhanced health risks across the nation for specific populations,
we evaluated the risk associated with PM2.5 exposure for the following groups:

◦ Adults.
◦ Children 0–16 years of age.
◦ Children 16–18 years of age.
◦ Firefighters.

The exposure factors used for each population group to calculate the exposure concen-
tration (Equation (1)) are presented in Table 2.

Table 2. Exposure factors used to calculate exposure concentrations for specific populations.

Adults Children
(0–16 Years Old)

Children
(16–18 Years Old) Firefighters

Exposure duration (ED)—years 80 16 3 30

Exposure frequency (EF)—days/year 350 350 350 350

Exposure time (ET)—hours/day 12 12 12 16

Averaging time (AT)—hours 700,800 140,160 26,280 262,800

Averaging time = ED in years × 365 days/year × 24 h/day.

After characterizing the exposure scenarios and estimating the exposure concentra-
tions as described above for each receptor at a site, the next step was selecting appropriate
inhalation toxicity values for each inhaled contaminant. Typically, for estimating cancer
risks, this involves identifying and evaluating the available published cancer potency
estimates, the inhalation unit risk factors (IURs). For estimating non-cancer risks or hazard
quotients, this typically involves identifying and evaluating reference values (RfCs) that
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match the characterization of the exposure scenario (i.e., acute, subchronic, or chronic
reference values).

These values are typically published in the Integrated Risk Information System (IRIS),
which is updated by the EPA. However, for PM, there are not any published IURs or RfCs.
This means that risk assessors must go to the scientific literature to evaluate dosimetry
studies and estimate preliminary toxicity values to estimate risk. With a lack of consen-
sus regarding the Reference Concentration (RfC) of PM2.5, we used the 5 µg/m3 RfC of
diesel particles (DPM) that has been established in the literature as a toxicity surrogate for
PM2.5 [60–62]. Similarly, the inhalation unit risk values were obtained from the literature
for PM2.5. The IUR for PM2.5 is 0.008 [9,15,63–65].

Additionally, when calculating the carcinogenic risk, age adjustments should be
considered for those carcinogens that have been determined to cause cancer by a mutagenic
mode of action, as it is possible that exposure to those carcinogens in early life may result in
higher lifetime cancer risks than a comparable adult exposure duration [66]. Some studies
have shown that PM can mutate cells, causing lung cancer [67,68]. In risk assessments
of the exposure to chemicals for which a mutagenic mode of action for carcinogenicity is
suspected or has been determined, one of the following generally guides the calculations:

(1) If chemical-specific data on susceptibility from early-life exposure are available for
the derivation of CSFs, those slope factors are used for risk characterization, and
Age-Dependent Adjustment Factors (ADAFs) are not applied.

(2) If chemical-specific data on susceptibility from early-life exposure are not available,
ADAFs are applied in calculating or estimating the risks associated with early-life
exposure [69]. If the latter case applies, as in this study, the Supplemental Guidance for
Assessing Susceptibility from Early-Life Exposure to Carcinogens [70] recommends
the following default ADAFs be applied in risk assessments:

• A 10-fold adjustment for exposure during the first 2 years of life;
• A 3-fold adjustment for exposure from 2 to <16 years of age;
• No adjustment for exposure after turning 16 years of age.

In such cases, Equation (5) is altered to include the ADAFs in the following way:

Risk = IUR × EC × ADAF (7)

For this study, the ADAF was conservatively set at 7. The average concentration of
fire-derived PM2.5 was 16.62 µg/m3 in July and 7.07 µg/m3 in August. The risks associated
with fire-sourced PM2.5 are presented in Figure 4.

In July, the non-carcinogenic risk was calculated to be above the acceptable limit of 1
for each receptor evaluated. Similarly, the carcinogenic risk was orders of magnitude above
the acceptable limit of one in one million (<1 × 10−6) in July. The carcinogenic risks were
elevated for all groups and, in particular, young children and wildfire firefighters were
at very high risk in the month of the active fires. In August, the risk profiles for the non-
carcinogenic risk were trending below the acceptable threshold. However, firefighters were
only slightly under the acceptable risk levels. All receptors were close to the unacceptable
risk threshold, indicating that susceptible populations (i.e., asthmatics) could still be facing
non-carcinogenic health effects. The carcinogenic risks in August remained significantly
higher than the acceptable limit for all groups, and once again these data indicate that young
children and wildfire firefighters were two particularly sensitive populations impacted,
even in August, when the fire activities were largely reduced compared to July.
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When comparing the present study to previous studies in the scientific literature, we
must look at comparable levels of exposure [71]. The comparative studies are sparse at
best; however, comparable levels of risk are associated with heavy smokers [72,73]. For
example, air quality index values (AQI) on a normal day in LA are between 50 and 60.
However, on a smoky day these values go up to 100–200, and during the LA wildfires
these values reached 400 and were above 500 many times. The risks associated with the
exposure to PM at an AQI of 100–200 are comparable to smoking a half-pack of cigarettes
a day (approximately 10–12 cigarettes), whereas an AQI of 400 is like smoking a pack
or more (23+ cigarettes) a day [74,75]. In a study evaluating the health risks of chronic
smoke exposure for wildland firefighters, 15 substances in smoke were evaluated. In that
study, only benzene and formaldehyde posed a cancer risk greater than 1 per million, while
only acrolein and respirable particulate matter exposure resulted in hazard indices greater
than 1.0. The estimated upper bound cancer risks ranged from 1.4 to 220 excess cancers
per million, and the non-cancer hazard indices ranged from 9 to 360, depending on the
exposure group [75]. Our study specifically evaluated the contribution of the risk from
fine particulate matter, not considering other toxic components in wildfire smoke, and the
risk associated with the particulate matter alone was as high as some of those seen in the
aforementioned study.

4. Conclusions
This study simulated the evolution of wildfire-induced aerosols and evaluated the im-

pact of wildfires on human health from fire-derived PM2.5 exposure during intra-continental
wildfire events that occurred in July and August 2021. The GEOS-Chem model was used,
and the model results were compared with observational datasets from the IMPROVE,
AirNow, and NAPS networks. Although observations are typically used as benchmarks to
validate model results, we found that IMPROVE sampling and measurements could be
constrained by their upper limit of detection, especially during periods of large wildfires
when ambient concentration levels experience sharp increases. However, the upper bounds
of IMPROVE measurements are not documented to our knowledge. Despite discrepancies
between the GEOS-Chem-simulated PM2.5 concentrations and IMPROVE observations,
the GEOS-Chem-modeled surface smoke closely aligned with near-surface smoke levels
simulated by the HRRR-Smoke model across the U.S. and southern Canada. In addition, the
GEOS-Chem-simulated PM2.5 concentrations closely matched those observed by AirNow in
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the U.S. However, over southern Canada, the PM2.5 concentrations were underestimated by
GEOS-Chem compared to NAPS data, though the general variability was well reproduced.

Through GEOS-Chem modeling, we could effectively identify elevated PM levels
induced by wildfires. The persistently elevated levels of PM2.5 throughout July and August
necessitated health advisories across both the U.S. and Canada, from the west coast to the
eastern seaboard. The pattern of smoke dispersion revealed episodic spikes in particulate
matter, aligning closely with periods of intensified wildfire activity in both countries. Specif-
ically, July exhibited more concentrated smoke transport, whereas August saw a broader
and more persistent impact due to ongoing fires. This widespread and prolonged smoke ex-
posure underscores the need for ongoing vigilance and public health measures to mitigate
the health risks associated with elevated particulate matter levels across North America.

Due to the significant impacts from intra-continental wildfire smoke transport on
human health and considering the anticipated variations in wildfire compositions due to
climate change, there is a pressing need to better understand and address these health risks.
Our study identified substantial carcinogenic risks associated with exposure to PM2.5 over
a two-month period for various populations, including adults, children, and firefighters.
These risks were five orders of magnitude higher in some cases (e.g., for children 0–16 yo)
than the acceptable cancer risk threshold of one in one million persons. The findings
highlight that young children and wildfire firefighters are particularly sensitive groups, un-
derscoring the necessity for targeted interventions and preventive measures. Additionally,
the limitations of IMPROVE observations are further highlighted in the risk assessment
results. If IMPROVE observations are underestimating the actual concentrations of PM2.5 in
the atmosphere, the associated health risk derived based on this observational data could be
underestimated. As previously noted, the observed variations in the maximum concentra-
tions across all IMPROVE sites over the two-month period suggest that high-smoke events
may not be fully captured. Consequently, risk estimates derived from these data might
significantly underrepresent the adverse health effects experienced by exposed individuals.

5. Future Work
Understanding the dynamics of chemical adsorption onto particulate matter during

wildfires is crucial for developing effective strategies to protect both human health and
the environment. This further illustrates the need to study wildfire compositions and the
predicted changes that atmospheric movement and climate change may bring, which could
further elevate human health risks.

Future studies must prioritize incorporating mixture toxicology to assess the health
impacts of chemicals adsorbed onto particulate matter produced during wildfires, as
well as evaluating the risks posed to underrepresented communities residing in areas
affected by wildfires. Sensitive subpopulations stand to endure greater impacts than the
general populations evaluated in this study. Characterizing contaminants more robustly
using advanced modeling techniques, such as those used in this study, will enable better
predictions of changes in wildfire particulate and chemical compositions over time, and
developing improved methods to incorporate risk assessments for all receptors, including
sensitive subpopulations, will significantly enhance our ability to protect both human
health and the environment.

Author Contributions: Conceptualization, E.D.B. and Y.L.; methodology, E.D.B. and Y.L.; valida-
tion, E.D.B. and Y.L.; formal analysis, E.D.B., Y.L., A.F., N.J. and E.G.; investigation, E.D.B. and
Y.L.; resources, E.D.B. and Y.L.; data curation, Y.L.; writing—original draft preparation, E.D.B. and
Y.L.; writing—review and editing, E.D.B. and Y.L.; visualization, E.D.B., Y.L., A.F., N.J. and E.G.;
supervision, E.D.B. and Y.L.; project administration, E.D.B. and Y.L. All authors have read and agreed
to the published version of the manuscript.



Int. J. Environ. Res. Public Health 2025, 22, 226 15 of 18

Funding: This research received no external funding.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Acknowledgments: The IMPROVE is a collaborative association of state, tribal, and federal agencies
and international partners. The US Environmental Protection Agency is the primary funding source,
with contracting and research support from the National Park Service. The Air Quality Group at the
University of California, Davis, is the central analytical laboratory, with ion analysis provided by the
Research Triangle Institute and carbon analysis provided by the Desert Research Institute. NAPS
data were obtained from the Government of Canada Open Data Portal at open.canada.ca (accessed
on 30 November 2024). The GEOS data used in this study/project were provided by the Global
Modeling and Assimilation Office (GMAO) at the NASA Goddard Space Flight Center.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Babic, S.; Cizmek, L.; Marsavelski, A.; Malev, O.; Pflieger, M.; Strunjak-Perovic, I.; Popovic, N.T.; Coz-Rakovac, R.; Trebse, P.

Utilization of the zebrafish model to unravel the harmful effects of biomass burning during Amazonian wildfires. Sci. Rep. 2021,
11, 2527. [CrossRef] [PubMed]

2. Duncan, S.; Reed, C.; Spurlock, T.; Sugg, M.M.; Runkle, J.D. Acute Health Effects of Wildfire Smoke Exposure During a Compound
Event: A Case-Crossover Study of the 2016 Great Smoky Mountain Wildfires. Geohealth 2023, 7, e2023GH000860. [CrossRef]
[PubMed]

3. Kertesz, M.; Aszalos, R.; Lengyel, A.; Onodi, G. Synergistic effects of the components of global change: Increased vegetation
dynamics in open, forest-steppe grasslands driven by wildfires and year-to-year precipitation differences. PLoS ONE 2017, 12,
e0188260. [CrossRef] [PubMed]

4. Paul, M.J.; LeDuc, S.D.; Boaggio, K.; Herrick, J.D.; Kaylor, S.D.; Lassiter, M.G.; Nolte, C.G.; Rice, R.B. Effects of Air Pollutants from
Wildfires on Downwind Ecosystems: Observations, Knowledge Gaps, and Questions for Assessing Risk. Environ. Sci. Technol.
2023, 57, 14787–14796. [CrossRef] [PubMed]

5. Reardon, S. Raging wildfires send scientists scrambling to study health effects. Nature 2018, 561, 157–158. [CrossRef]
6. Haque, M.K.; Azad, M.A.K.; Hossain, M.Y.; Ahmed, T.; Uddin, M.; Hossain, M.M. Wildfire in Australia during 2019-2020, Its

impact on health, biodiversity and environment with some proposals for risk management: A review. J. Environ. Prot. 2021, 12,
391–414. [CrossRef]

7. Sultan, Y.E.D.; Pillai, K.R.A. Wild Fires and Climate Change: Health, Air Quality, Wild Fires and Causes in India. Indones. J. Soc.
Environ. Issues (IJSEI) 2023, 4, 72–80. [CrossRef]

8. Ganz, T.R.; DeVivo, M.T.; Kertson, B.N.; Roussin, T.; Satterfield, L.; Wirsing, A.J.; Prugh, L.R. Interactive effects of wildfires,
season and predator activity shape mule deer movements. J. Anim. Ecol. 2022, 91, 2273–2288. [CrossRef]

9. Puig-Girones, R.; Santos, X.; Bros, V. Long-interval effects of wildfires on the functional diversity of land snails. Sci. Total Env.
2023, 876, 162677. [CrossRef]

10. Smolyakov, B.S.; Makarov, V.I.; Shinkorenko, M.P.; Popova, S.A.; Bizin, M.A. Effects of Siberian wildfires on the chemical
composition and acidity of atmospheric aerosols of remote urban, rural and background territories. Environ. Pollut. 2014, 188,
8–16. [CrossRef]

11. Ribeiro, J.; Marques, J.E.; Mansilha, C.; Flores, D. Wildfires effects on organic matter of soils from Caramulo Mountain (Portugal):
Environmental implications. Environ. Sci. Pollut. Res. Int. 2021, 28, 819–831. [CrossRef] [PubMed]

12. Cardil, A.; Rodrigues, M.; Ramirez, J.; de-Miguel, S.; Silva, C.A.; Mariani, M.; Ascoli, D. Coupled effects of climate teleconnections
on drought, Santa Ana winds and wildfires in southern California. Sci. Total Environ. 2021, 765, 142788. [CrossRef] [PubMed]

13. Guil, F.; Soria, M.A.; Margalida, A.; Perez-Garcia, J.M. Wildfires as collateral effects of wildlife electrocution: An economic
approach to the situation in Spain in recent years. Sci. Total Environ. 2018, 625, 460–469. [CrossRef]

14. Kelly, F.J.; Fussell, J.C. Global nature of airborne particle toxicity and health effects: A focus on megacities, wildfires, dust storms
and residential biomass burning. Toxicol. Res. 2020, 9, 331–345. [CrossRef]

15. Pope, C.A., 3rd; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality,
and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [CrossRef]

16. Reid, C.E.; Jerrett, M.; Tager, I.B.; Petersen, M.L.; Mann, J.K.; Balmes, J.R. Differential respiratory health effects from the 2008
northern California wildfires: A spatiotemporal approach. Environ. Res 2016, 150, 227–235. [CrossRef]

17. Auer, M.R.; Hexamer, B.E. Income and Insurability as Factors in Wildfire Risk. Forests 2022, 13, 1130. [CrossRef]
18. Hazra, D.; Gallagher, P. Role of insurance in wildfire risk mitigation. Econ. Model. 2022, 108, 105768. [CrossRef]

https://doi.org/10.1038/s41598-021-81789-1
https://www.ncbi.nlm.nih.gov/pubmed/33510260
https://doi.org/10.1029/2023GH000860
https://www.ncbi.nlm.nih.gov/pubmed/37869265
https://doi.org/10.1371/journal.pone.0188260
https://www.ncbi.nlm.nih.gov/pubmed/29149208
https://doi.org/10.1021/acs.est.2c09061
https://www.ncbi.nlm.nih.gov/pubmed/37769297
https://doi.org/10.1038/d41586-018-06123-8
https://doi.org/10.4236/jep.2021.126024
https://doi.org/10.47540/ijsei.v4i1.789
https://doi.org/10.1111/1365-2656.13810
https://doi.org/10.1016/j.scitotenv.2023.162677
https://doi.org/10.1016/j.envpol.2014.01.017
https://doi.org/10.1007/s11356-020-10520-w
https://www.ncbi.nlm.nih.gov/pubmed/32820446
https://doi.org/10.1016/j.scitotenv.2020.142788
https://www.ncbi.nlm.nih.gov/pubmed/33109375
https://doi.org/10.1016/j.scitotenv.2017.12.242
https://doi.org/10.1093/toxres/tfaa044
https://doi.org/10.1001/jama.287.9.1132
https://doi.org/10.1016/j.envres.2016.06.012
https://doi.org/10.3390/f13071130
https://doi.org/10.1016/j.econmod.2022.105768


Int. J. Environ. Res. Public Health 2025, 22, 226 16 of 18

19. Li, H.; Su, J. Mitigating wildfire losses via insurance-linked securities: Modeling and risk management perspectives. J. Risk Insur.
2024, 91, 383–414. [CrossRef]

20. Caamano-Isorna, F.; Figueiras, A.; Sastre, I.; Montes-Martinez, A.; Taracido, M.; Pineiro-Lamas, M. Respiratory and mental health
effects of wildfires: An ecological study in Galician municipalities (north-west Spain). Environ. Health 2011, 10, 48. [CrossRef]

21. Rossiello, M.R.; Szema, A. Health Effects of Climate Change-induced Wildfires and Heatwaves. Cureus 2019, 11, e4771. [CrossRef]
[PubMed]

22. Vicedo-Cabrera, A.M.; Esplugues, A.; Iniguez, C.; Estarlich, M.; Ballester, F. Health effects of the 2012 Valencia (Spain) wildfires
on children in a cohort study. Environ. Geochem Health 2016, 38, 703–712. [CrossRef]

23. Padamsey, K.; Wallace, R.; Liebenberg, A.; Cross, M.; Oosthuizen, J. Fighting fire and fumes: Risk awareness and protective
practices among Western Australian firefighters. Int. J. Wildland Fire 2024, 33, WF23147. [CrossRef]

24. Fullagar, H.H.K.; Schwarz, E.; Richardson, A.; Notley, S.R.; Lu, D.; Duffield, R. Australian firefighters perceptions of heat stress,
fatigue and recovery practices during fire-fighting tasks in extreme environments. Appl. Ergon. 2021, 95, 103449. [CrossRef]

25. Cherry, N.; Haynes, W. Effects of the Fort McMurray wildfires on the health of evacuated workers: Follow-up of 2 cohorts. CMAJ
Open 2017, 5, E638–E645. [CrossRef]

26. Coelho, L.; Afonso, M.; Jesus, F.; Campos, I.; Abrantes, N.; Goncalves, F.J.M.; Serpa, D.; Marques, S.M. Effects of Eucalypt ashes
from moderate and high severity wildfires on the skin microbiome of the Iberian frog (Rana iberica). Environ. Pollut. 2022, 313,
120065. [CrossRef]

27. Ducy, E.M.; Stough, L.M. Psychological effects of the 2017 California wildfires on children and youth with disabilities. Res. Dev.
Disabil. 2021, 114, 103981. [CrossRef]

28. Hong, J.S.; Hyun, S.Y.; Lee, J.H.; Sim, M. Mental health effects of the Gangwon wildfires. BMC Public Health 2022, 22, 1183.
[CrossRef]

29. Barros, A.M.G.; Day, M.A.; Spies, T.A.; Ager, A.A. Effects of ownership patterns on cross-boundary wildfires. Sci. Rep. 2021, 11,
19319. [CrossRef]

30. Withey, K.; Berenguer, E.; Palmeira, A.F.; Espirito-Santo, F.D.B.; Lennox, G.D.; Silva, C.V.J.; Aragao, L.; Ferreira, J.; Franca, F.;
Malhi, Y.; et al. Quantifying immediate carbon emissions from El Nino-mediated wildfires in humid tropical forests. Philos. Trans.
R. Soc. Lond. B Biol. Sci. 2018, 373, 20170312. [CrossRef]

31. Millimeter, A. Climate change: Wildfires burn more US forest. Nature 2016, 538, 292–293. [CrossRef]
32. Adelaine, S.A.; Sato, M.; Jin, Y.; Godwin, H. An Assessment of Climate Change Impacts on Los Angeles (California USA)

Hospitals, Wildfires Highest Priority. Prehosp. Disaster Med. 2017, 32, 556–562. [CrossRef] [PubMed]
33. Han, Y.; An, Z.; Marlon, J.R.; Bradley, R.S.; Zhan, C.; Arimoto, R.; Sun, Y.; Zhou, W.; Wu, F.; Wang, Q.; et al. Asian inland wildfires

driven by glacial-interglacial climate change. Proc. Natl. Acad. Sci. USA 2020, 117, 5184–5189. [CrossRef]
34. Running, S.W. Climate change. Is global warming causing more, larger wildfires? Science 2006, 313, 927–928. [CrossRef]
35. Schimel, D.S.; Corley, J.C. Climate change and western wildfires. Ecol. Appl. 2021, 31, e02452. [CrossRef]
36. Stevens-Rumann, C.S.; Kemp, K.B.; Higuera, P.E.; Harvey, B.J.; Rother, M.T.; Donato, D.C.; Morgan, P.; Veblen, T.T. Evidence for

declining forest resilience to wildfires under climate change. Ecol. Lett. 2018, 21, 243–252. [CrossRef]
37. Woo, S.H.L.; Liu, J.C.; Yue, X.; Mickley, L.J.; Bell, M.L. Air pollution from wildfires and human health vulnerability in Alaskan

communities under climate change. Env. Res. Lett. 2020, 15, 094019. [CrossRef]
38. Xu, R.; Yu, P.; Abramson, M.J.; Johnston, F.H.; Samet, J.M.; Bell, M.L.; Haines, A.; Ebi, K.L.; Li, S.; Guo, Y. Wildfires, Global Climate

Change, and Human Health. N. Engl. J. Med. 2020, 383, 2173–2181. [CrossRef]
39. United States Environmental Protection Agency (USEPA). Methods for Derivation of Inhalation Reference Concentrations and

Application of Inhalation Dosimetry; EPA/600/8-90/066F, 1994,Environmental Criteria Assessment Office, Office of Health
and Environmental Assessment, Office of Research and Development. Available online: https://www.epa.gov/risk/methods-
derivation-inhalation-reference-concentrations-and-application-inhalation-dosimetry (accessed on 24 January 2025).

40. Dickinson, G.N.; Miller, D.D.; Bajracharya, A.; Bruchard, W.; Durbin, T.A.; McGarry, J.K.P.; Moser, E.P.; Nuñez, L.A.; Pukkila,
E.J.; Scott, P.S.; et al. Health Risk Implications of Volatile Organic Compounds in Wildfire Smoke During the 2019 FIREX-AQ
Campaign and Beyond. Geohealth 2022, 6, e2021GH000546. [CrossRef]

41. Aguilera, R.; Corringham, T.; Gershunov, A.; Leibel, S.; Benmarhnia, T. Fine Particles in Wildfire Smoke and Pediatric Respiratory
Health in California. Pediatrics 2021, 147, e2020027128. [CrossRef]

42. O’Neill, S.M.; Diao, M.; Raffuse, S.; Al-Hamdan, M.; Barik, M.; Jia, Y.; Reid, S.; Zou, Y.; Tong, D.; West, J.J.; et al. A multi-analysis
approach for estimating regional health impacts from the 2017 Northern California wildfires. J. Air Waste Manag. Assoc. 2021, 71,
791–814. [CrossRef] [PubMed]

43. Thilakaratne, R.; Hoshiko, S.; Rosenberg, A.; Hayashi, T.; Buckman, J.R.; Rappold, A.G. Wildfires and the Changing Landscape of
Air Pollution-related Health Burden in California. Am. J. Respir. Crit. Care Med. 2023, 207, 887–898. [CrossRef] [PubMed]

https://doi.org/10.1111/jori.12449
https://doi.org/10.1186/1476-069X-10-48
https://doi.org/10.7759/cureus.4771
https://www.ncbi.nlm.nih.gov/pubmed/31363452
https://doi.org/10.1007/s10653-015-9753-5
https://doi.org/10.1071/WF23147
https://doi.org/10.1016/j.apergo.2021.103449
https://doi.org/10.9778/cmajo.20170047
https://doi.org/10.1016/j.envpol.2022.120065
https://doi.org/10.1016/j.ridd.2021.103981
https://doi.org/10.1186/s12889-022-13560-8
https://doi.org/10.1038/s41598-021-98730-1
https://doi.org/10.1098/rstb.2017.0312
https://doi.org/10.1038/538292d
https://doi.org/10.1017/S1049023X17006586
https://www.ncbi.nlm.nih.gov/pubmed/28606202
https://doi.org/10.1073/pnas.1822035117
https://doi.org/10.1126/science.1130370
https://doi.org/10.1002/eap.2452
https://doi.org/10.1111/ele.12889
https://doi.org/10.1088/1748-9326/ab9270
https://doi.org/10.1056/NEJMsr2028985
https://www.epa.gov/risk/methods-derivation-inhalation-reference-concentrations-and-application-inhalation-dosimetry
https://www.epa.gov/risk/methods-derivation-inhalation-reference-concentrations-and-application-inhalation-dosimetry
https://doi.org/10.1029/2021GH000546
https://doi.org/10.1542/peds.2020-027128
https://doi.org/10.1080/10962247.2021.1891994
https://www.ncbi.nlm.nih.gov/pubmed/33630725
https://doi.org/10.1164/rccm.202207-1324OC
https://www.ncbi.nlm.nih.gov/pubmed/36520960


Int. J. Environ. Res. Public Health 2025, 22, 226 17 of 18

44. Yu, P.; Xu, R.; Li, S.; Yue, X.; Chen, G.; Ye, T.; Coêlho, M.; Saldiva, P.H.N.; Sim, M.R.; Abramson, M.J.; et al. Exposure to
wildfire-related PM2.5 and site-specific cancer mortality in Brazil from 2010 to 2016: A retrospective study. PLoS Med. 2022, 19,
e1004103. [CrossRef] [PubMed]

45. Magzamen, S.; Gan, R.W.; Liu, J.; O’Dell, K.; Ford, B.; Berg, K.; Bol, K.; Wilson, A.; Fischer, E.V.; Pierce, J.R. Differential
Cardiopulmonary Health Impacts of Local and Long-Range Transport of Wildfire Smoke. Geohealth 2021, 5, e2020GH000330.
[CrossRef]

46. Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation
global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [CrossRef]

47. Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases
and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions.
Geosci. Model Dev. 2012, 5, 1471–1492. [CrossRef]

48. Hoesly, R.M.; Smith, S.J.; Feng, L.; Klimont, Z.; Janssens-Maenhout, G.; Pitkanen, T.; Seibert, J.J.; Vu, L.; Andres, R.J.; Bolt, R.M.;
et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System
(CEDS). Geosci. Model Dev. 2018, 11, 369–408. [CrossRef]

49. Li, Y.; Mickley, L.J.; Liu, P.; Kaplan, J.O. Trends and spatial shifts in lightning fires and smoke concentrations in response to
21st century climate over the national forests and parks of the western United States. Atmos. Chem. Phys. 2020, 20, 8827–8838.
[CrossRef]

50. Fischer, E.V.; Jacob, D.J.; Yantosca, R.M.; Sulprizio, M.P.; Millet, D.B.; Mao, J.; Paulot, F.; Singh, H.B.; Roiger, A.; Ries, L.; et al.
Atmospheric peroxyacetyl nitrate (PAN): A global budget and source attribution. Atmos. Chem. Phys. 2014, 14, 2679–2698.
[CrossRef]

51. Park, R.J.; Jacob, D.J.; Field, B.D.; Yantosca, R.M.; Chin, M. Natural and transboundary pollution influences on sulfate-nitrate-
ammonium aerosols in the United States: Implications for policy. J. Geophys. Res. Atmos. 2004, 109, 1–17. [CrossRef]

52. United States Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund Volume I, Human Health Evaluation
Manual (Part A); Office of Emergnacy and Remedial Response: Washington, DC, USA, 1989.

53. Andersen, M.; Sarangapani, R.; Gentry, R.; Clewell, H.; Covington, T.; Frederick, C.B. Application of a hybrid CFD-PBPK nasal
dosimetry model in an inhalation risk assessment: An example with acrylic acid. Toxicol. Sci. 2000, 57, 312–325. [CrossRef]
[PubMed]

54. Ginsberg, G.L.; Foos, B.P.; Firestone, M.P. Review and analysis of inhalation dosimetry methods for application to children’s risk
assessment. J. Toxicol. Environ. Health A 2005, 68, 573–615. [CrossRef] [PubMed]

55. Kuempel, E.D.; Sweeney, L.M.; Morris, J.B.; Jarabek, A.M. Advances in Inhalation Dosimetry Models and Methods for Occu-
pational Risk Assessment and Exposure Limit Derivation. J. Occup. Environ. Hyg. 2015, 12 (Suppl. 1), S18–S40. [CrossRef]
[PubMed]

56. Sun, S.; Zheng, N.; Wang, S.; Li, Y.; Hou, S.; An, Q.; Chen, C.; Li, X.; Ji, Y.; Li, P. Inhalation Bioaccessibility and Risk Assessment of
Metals in PM(2.5) Based on a Multiple-Path Particle Dosimetry Model in the Smelting District of Northeast China. Int. J. Environ.
Res. Public Health 2022, 19, 8915. [CrossRef]

57. Foos, B.; Marty, M.; Schwartz, J.; Bennett, W.; Moya, J.; Jarabek, A.M.; Salmon, A.G. Focusing on children’s inhalation dosimetry
and health effects for risk assessment: An introduction. J. Toxicol. Environ. Health A 2008, 71, 149–165. [CrossRef]

58. Foos, B.; Sonawane, B. Overview: Workshop on children’s inhalation dosimetry and health effects for risk assessment. J. Toxicol.
Environ. Health A 2008, 71, 147–148. [CrossRef]

59. Jarabek, A.M.; Menache, M.G.; Overton, J.H., Jr.; Dourson, M.L.; Miller, F.J. Inhalation reference dose (RfDi): An application of
interspecies dosimetry modeling for risk assessment of insoluble particles. Health Phys. 1989, 57 (Suppl. 1), 177–183. [CrossRef]

60. Cipoli, Y.A.; Furst, L.; Feliciano, M.; Alves, C. Respiratory deposition dose of PM2.5 and PM10 during night and day periods at
an urban environment. Air Qual. Atmos. Health 2023, 16, 2269–2283. [CrossRef]

61. de Oliveira, B.F.; Ignotti, E.; Artaxo, P.; Saldiva, P.H.; Junger, W.L.; Hacon, S. Risk assessment of PM(2.5) to child residents in
Brazilian Amazon region with biofuel production. Environ. Health 2012, 11, 64. [CrossRef]

62. Li, F.; Xiao, M.; Zhang, J.; Yang, J.; Zhu, L. Health risk assessment on tunnel workers’ exposure to PM10 based on triangular fuzzy
numbers. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2017.

63. Greene, N.A.; Morris, V.R. Assessment of public health risks associated with atmospheric exposure to PM2.5 in Washington, DC,
USA. Int. J. Environ. Res. Public Health 2006, 3, 86–97. [CrossRef]

64. Levy, J.I.; Greco, S.L.; Spengler, J.D. The importance of population susceptibility for air pollution risk assessment: A case study of
power plants near Washington, DC. Environ. Health Perspect. 2002, 110, 1253–1260. [CrossRef] [PubMed]

65. Mbazima, S.J. Health risk assessment of particulate matter 2.5 in an academic metallurgy workshop. Indoor Air 2022, 32, e13111.
[CrossRef] [PubMed]

66. Barton, H.A.; Cogliano, V.J.; Flowers, L.; Valcovic, L.; Setzer, R.W.; Woodruff, T.J. Assessing susceptibility from early-life exposure
to carcinogens. Environ. Health Perspect. 2005, 113, 1125–1133. [CrossRef]

https://doi.org/10.1371/journal.pmed.1004103
https://www.ncbi.nlm.nih.gov/pubmed/36121854
https://doi.org/10.1029/2020GH000330
https://doi.org/10.1002/jgrg.20042
https://doi.org/10.5194/gmd-5-1471-2012
https://doi.org/10.5194/gmd-11-369-2018
https://doi.org/10.5194/acp-20-8827-2020
https://doi.org/10.5194/acp-14-2679-2014
https://doi.org/10.1029/2003JD004473
https://doi.org/10.1093/toxsci/57.2.312
https://www.ncbi.nlm.nih.gov/pubmed/11006361
https://doi.org/10.1080/15287390590921793
https://www.ncbi.nlm.nih.gov/pubmed/15901090
https://doi.org/10.1080/15459624.2015.1060328
https://www.ncbi.nlm.nih.gov/pubmed/26551218
https://doi.org/10.3390/ijerph19158915
https://doi.org/10.1080/15287390701597871
https://doi.org/10.1080/15287390701597855
https://doi.org/10.1097/00004032-198907001-00022
https://doi.org/10.1007/s11869-023-01405-1
https://doi.org/10.1186/1476-069X-11-64
https://doi.org/10.3390/ijerph2006030010
https://doi.org/10.1289/ehp.021101253
https://www.ncbi.nlm.nih.gov/pubmed/12460806
https://doi.org/10.1111/ina.13111
https://www.ncbi.nlm.nih.gov/pubmed/36168227
https://doi.org/10.1289/ehp.7667


Int. J. Environ. Res. Public Health 2025, 22, 226 18 of 18

67. Santibáñez-Andrade, M.; Chirino, Y.I.; González-Ramírez, I.; Sánchez-Pérez, Y.; García-Cuellar, C.M. Deciphering the Code
between Air Pollution and Disease: The Effect of Particulate Matter on Cancer Hallmarks. Int. J. Mol. Sci. 2019, 21, 136. [CrossRef]

68. Mehta, M.; Chen, L.C.; Gordon, T.; Rom, W.; Tang, M.S. Particulate matter inhibits DNA repair and enhances mutagenesis. Mutat.
Res. 2008, 657, 116–121. [CrossRef]

69. United States Environmental Protection Agency (USEPA). Guidelines for Carcinogenic Risk Assessment. EPA/630/P-03/001F,
2005, Risk Assessment Forum, Washington, DC. Available online: https://www.epa.gov/risk/guidelines-carcinogen-risk-
assessment (accessed on 24 January 2025).

70. United States Environmental Protection Agency (USEPA). Supplemental Guidance for Assessing Susceptibility from Early-
Life Exposure to Carcinogens, EPA/630/R-03/003F, 2005, Washington, DC. Available online: https://www.epa.gov/risk/
supplemental-guidance-assessing-susceptibility-early-life-exposure-carcinogens (accessed on 24 January 2025).

71. Navarro, K.M.; Kleinman, M.T.; Mackay, C.E.; Reinhardt, T.E.; Balmes, J.R.; Broyles, G.A.; Ottmar, R.D.; Naher, L.P.; Domitrovich,
J.W. Wildland Firefighter Smoke Exposure and Risk of Lung Cancer and Cardiovascular Disease Mortality. Environ. Res. 2019,
173, 462. [CrossRef]

72. Carreras-Sospedra, M.; Zhu, S.; MacKinnon, M.; Lassman, W.; Mirocha, J.D.; Barbato, M.; Dabdub, D. Air quality and health
impacts of the 2020 wildfires in California. Fire Ecol. 2024, 20, 6. [CrossRef]

73. Black, C.; Tesfaigzi, Y.; Bassein, J.A.; Miller, L.A. Wildfire Smoke Exposure and Human Health: Significant Gaps in Research for A
Growing Public Health Issue. Environ. Toxicol. Pharmacol. 2017, 55, 186. [CrossRef]

74. Gallagher, A. As wildfires spread across California, pharmacists’ role in the crisis proves essential. Pharm. Times 2025. Available
online: https://www.pharmacytimes.com/view/as-wildfires-grow-across-california-pharmacists-role-in-the-crisis-proves-
essential (accessed on 24 January 2025).

75. Booze, T.F.; Reinhardt, T.E.; Quiring, S.J.; Ottmar, R.D. A Screening-Level Assessment of the Health Risks of Chronic Smoke
Exposure for Wildland Firefighters. J. Occup. Environ. Hyg. 2004, 1, 296–305. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/ijms21010136
https://doi.org/10.1016/j.mrgentox.2008.08.015
https://www.epa.gov/risk/guidelines-carcinogen-risk-assessment
https://www.epa.gov/risk/guidelines-carcinogen-risk-assessment
https://www.epa.gov/risk/supplemental-guidance-assessing-susceptibility-early-life-exposure-carcinogens
https://www.epa.gov/risk/supplemental-guidance-assessing-susceptibility-early-life-exposure-carcinogens
https://doi.org/10.1016/j.envres.2019.03.060
https://doi.org/10.1186/s42408-023-00234-y
https://doi.org/10.1016/j.etap.2017.08.022
https://www.pharmacytimes.com/view/as-wildfires-grow-across-california-pharmacists-role-in-the-crisis-proves-essential
https://www.pharmacytimes.com/view/as-wildfires-grow-across-california-pharmacists-role-in-the-crisis-proves-essential
https://doi.org/10.1080/15459620490442500

	Introduction 
	Methods 
	GEOS-Chem Modeling of Wildfire-Induced Aerosol Enhancements 
	Human Health Risk Assessment 

	Results 
	Model–Observation Comparison and Limitations of IMPROVE Observations 
	Evolution of Wildfire-Derived PM2.5 
	Human Health Risk Associated with Fire-Derived PM2.5 

	Conclusions 
	Future Work 
	References

