A Novel Methodology for Estimating State-Of-Charge of Li-Ion Batteries Using Advanced Parameters Estimation
Abstract
:1. Introduction
2. Dynamic Model of Li-Ion Battery
2.1. Li-Ion Battery Equivalent Circuit
2.2. Parameters Estimation of Li-Ion Battery
2.2.1. Recursive Least Square Estimator with Variable Forgetting Factor
2.2.2. Multiple Forgetting Factors Recursive Least Square Estimator
3. Estimation of SOC
4. Case Study System and Experiment Setup
5. Results and Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Arora, P.; Doyle, M.; White, R.E. Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium-Ion Batteries Using Carbon-Based Negative Electrodes. Promot. Educ. 1999, 146, 3543–3553. [Google Scholar] [CrossRef]
- Chaturvedi, N.A.; Klein, R.; Christensen, J.; Ahmed, J. Algorithms for Advanced Battery-Management Systems. IEEE Control Syst. 2010, 30, 49–68. [Google Scholar] [CrossRef]
- Corno, M.; Bhatt, N.; Savaresi, S.M.; Verhaegen, M. Electrochemical Model-Based State of Charge Estimation for Li-Ion Cells. IEEE Trans. Control Syst. Technol. 2015, 23, 117–127. [Google Scholar] [CrossRef]
- Doyle, M.; Fuller, T.F.; Newman, J.S. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 1993, 140, 1526–1533. [Google Scholar] [CrossRef]
- Gao, L.; Liu, S.; Dougal, R.A. Dynamic lithium-ion battery model for system simulation. IEEE Trans. Compon. Packag. Technol. 2002, 25, 495–505. [Google Scholar]
- Sepasi, S.; Ghorbani, R.; Liaw, B.Y. Inline state of health estimation of lithium-ion batteries using state of charge calculation. J. Power Sources 2015, 299, 246–254. [Google Scholar] [CrossRef]
- Einhorn, M.; Conte, F.V.; Kral, C.; Fleig, J. Comparison, Selection, and Parameterization of Electrical Battery Models for Automotive Applications. IEEE Trans. Power Electron. 2012, 28, 1429–1437. [Google Scholar] [CrossRef]
- Saxena, S.; Raman, S.R.; Saritha, B.; John, V. A novel approach for electrical circuit modeling of Li-ion battery for predicting the steady-state and dynamic I–V characteristics. Sādhanā 2016, 41, 479–487. [Google Scholar]
- Zhang, H.; Chow, M.Y. Comprehensive dynamic battery modeling for PHEV applications. In Proceedings of the Power and Energy Society General Meeting, Providence, RI, USA, 25–29 July 2010; pp. 1–6. [Google Scholar]
- Chen, M.; Rincon-Mora, G.A. Accurate electrical battery model capable of predicting runtime and I-V performance. IEEE Trans. Energy Convers. 2006, 21, 504–511. [Google Scholar] [CrossRef]
- Chen, Z.; Fu, Y.; Mi, C.C. State of Charge Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering. IEEE Trans. Veh. Technol. 2013, 62, 1020–1030. [Google Scholar] [CrossRef]
- Stefanopoulou, A. Recursive least squares with forgetting for online estimation of vehicle mass and road grade: Theory and experiments. Veh. Syst. Dyn. 2005, 43, 31–55. [Google Scholar]
- Xia, B.; Wang, H.; Tian, Y.; Wang, M.; Sun, W.; Xu, Z. State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter. Energies 2015, 8, 5916–5936. [Google Scholar] [CrossRef]
- Bhuvana, V.P.; Unterrieder, C.; Huemer, M. Battery Internal State Estimation: A Comparative Study of Non-Linear State Estimation Algorithms. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Beijing, China, 15–18 October 2013; pp. 1–6. [Google Scholar]
- Hu, X.; Sun, F.; Zou, Y. Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer. Energies, 2010, 3, 1586–1603. [Google Scholar] [CrossRef]
- Xu, J.; Mi, C.C.; Cao, B.; Deng, J. The State of Charge Estimation of Lithium-Ion Batteries Based on a Proportional-Integral Observer. IEEE Trans. Veh. Technol. 2014, 63, 1614–1621. [Google Scholar]
- Yu, Z.; Huai, R.; Xiao, L. State-of-Charge Estimation for Lithium-Ion Batteries Using a Kalman Filter Based on Local Linearization. Energies 2015, 8, 7854–7873. [Google Scholar] [CrossRef]
- Yan, X.; Yang, Y.; Guo, Q.; Zhang, H.; Qu, W. Electric vehicle battery SOC estimation based on fuzzy Kalman filter. In Proceedings of the International Symposium on Instrumentation & Measurement, Sensor Network and Automation, Toronto, ON, Canada, 23–24 December 2013; pp. 863–866. [Google Scholar]
- Plett, G.L. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1: Introduction and state estimation. J. Power Sources 2006, 161, 1356–1368. [Google Scholar] [CrossRef]
- Gao, M.; Liu, Y.; He, Z. Battery state of charge online estimation based on particle filter. In Proceedings of the International Congress on Image and Signal Processing, Shanghai, China, 15–17 October 2011; pp. 2233–2236. [Google Scholar]
- Li, W.; Liang, L.; Liu, W.; Wu, X. State of Charge Estimation of Lithium-Ion Batteries Using a Discrete-Time Nonlinear Observer. IEEE Trans. Ind. Electron. 2017, 64, 8557–8565. [Google Scholar] [CrossRef]
- Ljung, L. System Identification: Theory for the User; EPFL: Lausanne, Switzerland, 2012; Volume 16, pp. 9–11. [Google Scholar]
- Hardin, R.H.; Sloane, N.J.A. A new approach to the construction of optimal designs. J. Stat. Plan. Inference 1993, 37, 339–369. [Google Scholar] [CrossRef]
- Pukelsheim, F. Optimum Experimental Designs, with SAS by Anthony Atkinson, Alexander Donev, Randall Tobias. Int. Stat. Rev. 2007, 75, 413. [Google Scholar] [CrossRef]
- Sloane, N.J.A.; Hardin, R.H. Computer-Generated Minimal (and Larger) Response-Surface Designs: (I) The Sphere. In Design of Experiments; AT&T Bell Laboratories: Murray Hill, NJ, USA, 1991; pp. 767–779. [Google Scholar]
- Paleologu, C.; Benesty, J.; Ciochina, S. A practical variable forgetting factor recursive least-squares algorithm. In Proceedings of the International Symposium on Electronics and Telecommunications, Timisoara, Romania, 14–15 November 2014; pp. 1–4. [Google Scholar]
- Fraccaroli, F.; Peruffo, A.; Zorzi, M. A New Recursive Least-Squares Method with Multiple Forgetting Schemes. Mathematics 2015, 20, 20–28. [Google Scholar]
- Sipser, M. Introduction to the Theory of Computation: Preliminary Edition; Computer Science Press Ohio State University: Columbus, OH, USA, 1996; Volume 41, pp. 27–29. [Google Scholar]
Method | %RMSE (SOC) | Computational Time (s) |
---|---|---|
EKF | 4.48 | 0.41 |
UKF | 4.02 | 1.27 |
CKF | 3.31 | 0.88 |
PF | 3.05 | 10.43 (N = 300) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safwat, I.M.; Li, W.; Wu, X. A Novel Methodology for Estimating State-Of-Charge of Li-Ion Batteries Using Advanced Parameters Estimation. Energies 2017, 10, 1751. https://doi.org/10.3390/en10111751
Safwat IM, Li W, Wu X. A Novel Methodology for Estimating State-Of-Charge of Li-Ion Batteries Using Advanced Parameters Estimation. Energies. 2017; 10(11):1751. https://doi.org/10.3390/en10111751
Chicago/Turabian StyleSafwat, Ibrahim M., Weilin Li, and Xiaohua Wu. 2017. "A Novel Methodology for Estimating State-Of-Charge of Li-Ion Batteries Using Advanced Parameters Estimation" Energies 10, no. 11: 1751. https://doi.org/10.3390/en10111751