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Abstract: Accurate electrical load forecasting is of great significance to help power companies in
better scheduling and efficient management. Since high levels of uncertainties exist in the load
time series, it is a challenging task to make accurate short-term load forecast (STLF). In recent years,
deep learning approaches provide better performance to predict electrical load in real world cases.
The convolutional neural network (CNN) can extract the local trend and capture the same pattern,
and the long short-term memory (LSTM) is proposed to learn the relationship in time steps. In this
paper, a new deep neural network framework that integrates the hidden feature of the CNN model
and the LSTM model is proposed to improve the forecasting accuracy. The proposed model was
tested in a real-world case, and detailed experiments were conducted to validate its practicality and
stability. The forecasting performance of the proposed model was compared with the LSTM model
and the CNN model. The Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE)
and Root Mean Square Error (RMSE) were used as the evaluation indexes. The experimental results
demonstrate that the proposed model can achieve better and stable performance in STLE.

Keywords: short-term load forecast; long short-term memory networks; convolutional neural
networks; deep neural networks; artificial intelligence

1. Introduction

Demand Response Management (DRM) is one of the main features in smart grid that helps
to reduce power peak load and variation [1]. The DRM controls the electricity consumption at
the customer side and targets at improving energy-efficiency and reducing cost [2]. Accurate load
forecasting has been more essential after deregulation of electricity industry [3]. It can minimize the
gap between electricity supply and demand, while any error in the forecasting brings additional costs.
In 1985, it was estimated that a 1% increase in forecasting error increases the associated operating costs
of up to 10 million pounds every year in the thermal British power system [4]. Power companies are
beginning to work with experts to explore models obtaining more accurate results in load forecasts.
For instance, the National Grid in the United Kingdom (UK) is currently working with DeepMind [5,6],
a Google-owned Al team, to predict the power supply and demand peaks in the UK based on the
information from smart meters and incorporating weather-related variables. Therefore, precise load
forecast is expected to reduce operation costs, optimize utilities and generate profits.

Energies 2018, 11, 3493; doi:10.3390/en11123493 www.mdpi.com/journal/energies


http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/11/12/3493?type=check_update&version=1
http://dx.doi.org/10.3390/en11123493
http://www.mdpi.com/journal/energies

Energies 2018, 11, 3493 20f 13

Load forecasting in energy management systems (EMS) can be categorized into four types
according to different length of forecast interval [7]: (1) very short-term load forecasting (VSTLF)
forecasts load for few minutes; (2) short-term load forecasting (STLF) forecasts load from 24 h to one
week; (3) medium-term load forecasting (MTLF) forecasts load more than one week to few months;
and (4) long-term load forecasting (LTLF) forecasts load longer than one year. In this paper, we focus
on STLE. STLF is essential for controlling and scheduling of the power system in making everyday
power system operation, interchange evaluation, security assessment, reliability analysis and spot price
calculation [8,9], which leads to the higher accuracy requirement rather than long-term prediction.

The STLF problem has been tackled with various methods. These methods can be loosely
categorized into two groups, namely traditional and computational intelligence methods. Statistical
methods are most frequently used in early literature, including multiple linear regression [10,11],
exponential smoothing [12], and the autoregressive integrated moving average (ARIMA) [13].
However, due to the inherent non-linear and the high requirement of the original time sequences of
the electrical load data, these methods perform poorly in the STLE

Computational intelligence methods have achieved great success and are widely used in
load forecasting based on the non-linear learning and modeling capability, including clustering
methods [14], fuzzy logic system [15], support vector machine (SVM) [16,17] and artificial neural
networks [18]. In [19], a methodology based on artificial neural networks methods reinforced by an
appropriate wavelet denoising algorithm is implemented to obtain short-term load forecasting, and
the results show that the proposed method greatly improves the accuracy. Recently, deep learning
frameworks have gained a particular attention [20]. Compared to shallow learning, deep learning
usually involves a larger number of hidden layers, which makes the model able to learn more complex
non-linear patterns [21]. As a deep learning framework with powerful learning ability to capture
the non-stationary and long-term dependencies forecasting horizon [22], recurrent neural networks
(RNNSs) are effective methods for load forecasting in power grids. In [23], A novel pooling-based deep
RNN is applied for household load forecast and achieves preliminary success. Compared with the
state-of-the-art techniques in household load forecasting, the proposed method outperforms ARIMA
by 19.5%, SVR by 13.1% and RNN by 6.5% in terms of RMSE. In [24], a new load forecasting model that
incorporates one-step-ahead concept into RNN model is proposed. The performance in high or low
demand regions is outstanding, which proves that the proposed electricity loads forecasting model can
extract tinier fluctuations in different region than the other models. However, the vanishing gradient
point is a problem for RNNs to improve the performance. To solve this problem, the long short-term
memory (LSTM) and gated recurrent units (GRU), which variants of RNNs, have been proposed and
perform well in long-term horizon forecasting based on the past data [25-27]. In [28],the proposed
LSTM-based method is capable of forecasting accurately the complex electric load time series with a
long forecasting horizon by exploiting the long-term dependencies. The experiments show that the
proposed method performs better in complex electrical load forecasting scenario.. In [29], a method for
short-term load forecasting with multi-source data using gated recurrent unit neural networks, which
are used for extracting temporal features with simpler architecture and less convergence time in the
hidden layers, is proposed. The average MAPE can be low as 10.98% for the proposed method, which
outperforms other current methods, such as BPNNs, SAEs, RNNs and LSTM.

In addition to the above representative methods, the convolutional neural networks (CNNS)
have been widely applied in the field of prediction. CNN can capture local trend features and
scale-invariant features when the nearby data points typically have strong relationship with each
other [30]. The pattern of the local trend of the load data in nearby hours can be extracted by CNN.
In [31], a new load forecasting model that uses the CNN structure is presented and compared with
other neural networks. The results show that MAPE and CV-RMSE of proposed algorithm are 9.77%
and 11.66%, which are the smallest among all models. The experiments prove that the CNN structure is
effective in the load forecasting and the hidden feature can be extracted by the designed 1D convolution
layers. Based on the above literature, LSTM and CNN are both demonstrated to provide high accuracy
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prediction in STLF due to their advantages to capture hidden features. Therefore, it is desired to
develop a hybrid neural network framework that can capture and integrate such various hidden
features to provide better performance.

This paper proposes a new deep learning framework based on LSTM and CNN. More specifically,
it consists of three parts: the LSTM module, the CNN module and the feature-fusion module.
The LSTM module can learn the useful information for a long time by the forget gate and memory cell,
and CNN module is utilized to extract patterns of local trend and the same pattern which appears in
different region. The feature-fusion module is used to integrate these hidden features and make the
final prediction. The proposed CNN-LSTM model was developed and applied to predict a real-word
electrical load time series. Additionally, several methods were implemented to be compared to our
proposed model. To prove the validity of the proposed model, the CNN module and the LSTM module
were also tested independently. Furthermore, the test dataset was divided into several partitions to
test the stability of the proposed model. In summary, this paper proposes a deep learning framework
that can effectively capture and integrate the hidden feature of the CNN model and the LSTM model
to achieve higher accuracy and stability. From the experiments, the proposed CNN-LSTM model takes
advantage of each components and achieves higher accuracy and stability in STLFE.

The major contributions of this paper are: (1) a high precision STLF deep learning framework,
which can integrate the hidden feature of the CNN model and LSTM model; (2) demonstrating
the superiority of the proposed deep learning framework in real-word electrical load time series
by comparisons with several models; (3) validating the practicality and stability of the proposed
CNN-LSTM model in several partitions of test dataset; snf (4) a research direction in time sequence
forecasting based on the integration of the hidden features of the LSTM and CNN model.

The rest of this paper is structured as follows: In Section 2, the RNN, LSTM, and CNN are introduced.
In Section 3, the proposed CNN-LSTM neural network framework is proposed. In Section 4, the proposed
model is applied to forecast the electrical load in a real-world case. Additionally, comparisons and
analysis are provided. In Section 5, the discussion of the result is shown. Finally, we draw the conclusion
in Section 6.

2. Methodologies of Artificial Neural Networks

This section provides brief backgrounds on several artificial neural networks, including RNN,
LSTM, and CNN.

2.1. RNN

RNN is a kind of artificial neural network shown to have a strong ability to capture the hidden
correlations occurring in data in applications for speech recognition, natural language processing and
time series prediction. It is particularly suitable for modeling sequence problems by operating on input
information as well as a trace of previously acquired information due to recurrent connections [32].
As shown in Figure 1, the mapping of one node S; and the output O; can be represented as:

St =f(UxX;+W xS 1) (1)

Or =g(V x &) 2)

where S; is the memory of the network at time t; U, W and V are the share weight matrix in each
layer; X; and O; represents the input and the output at time t; and f(.) and g(.) represent the
nonlinear function.
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Figure 1. A simple recurrent neural network structure.

Unlike the weight connection established between the layers in the basic neural network, RNN
can use the internal state (memory) to process sequence of inputs [33]. The hidden state captures
the information at the previous point time, and the output is derived from the current time and
previous memories. RNN performs well when the output is close to its associated inputs because
the information of the previous node is passed to the next node. In theory, RNN is also able to deal
with long dependencies. However, in practical applications, RNN cannot memorize the previous
information well when the time interval is long due to the gradient vanishing problem. To solve these
weaknesses and enhance the performance of the RNN, a special type of RNN architecture called LSTM
was proposed.

2.2. LSTM

To overcome the aforementioned disadvantages of traditional RNNs, LSTM combines short-term
memory with long-term memory through the gate control. As shown in the Figure 2, a common unit
consists of a memory cell, an input gate, an output gate, and a forget gate. The input X; at time t is
selectively saved into cell C; determined by the input gate, and the state of the last moment cell C;_; is
selectively forgotten by the forget gate. Finally, the output gate controls which part of the cell C; is
added to the output h;.

ht
A

Ci1 Ct
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Y
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Figure 2. Inner structure of LSTM.
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The calculation of the input gate i; and forget gate f; can be, respectively, expressed as:
ir = o(Wi x [ht—1,4,] + i) ®)

fr = o(Wg X [h—1,x,] + by) (4)

where W; and Wy are the weight matrices, ;1 is the output of the previous cell, x; is the input, and b;
and by are the bias vectors.
The next step is to update the cell state C;, which can be computed as:

Ct = fr x Ci1 + iy x (tanh (W X [hy—1, x¢] + bc)) )

where W, is the weight matrix, b, is the bias vector, and C;_1 is the state of the previous cell.
The output gate o; and the final output ; can be expressed as:

0t = O'(Wo X [htfl,xt] + bo) (6)

ht =0 X tanh(Ct) (7)

where W, is the weight matrix and b, is the bias vector.

2.3. CNN

CNN is a kind of deep artificial neural networks. CNN is most commonly applied to deal
with tasks in which data have high local correlation, such as visual imagery, video prediction,
and text categorization. It can capture when the same pattern appears in different regions. CNN
requires minimal preprocessing by using a variation of multilayer perceptrons, and is effective
at dealing with high-dimensional data based on their shared-weights architecture and translation
invariance characteristics.

CNN usually consists of convolutional layers, pooling layers and fully-connected layers.
Convolutional layers apply a convolution operation to the input. The purpose of the convolution
operation is to extract different features of the input, and more layers can iteratively extract complex
features from the last feature. As shown in Figure 3, each convolutional layer is composed of several
convolutional units, and the parameters of each convolution units are optimized by a back propagation
algorithm. Generally, features with a large dimension are obtained after the convolutional layer, which
need to be dimension-reduced. Pooling layers combine the outputs of neuron clusters at one layer into
a single neuron in the next layer. Fully-connected layer, which combines all local features into global
features, is used to calculate the final result.

Figure 3. The one-dimensional convolutional layer.

3. The Proposed Method

In this section, we describe our CNN-LSTM based hybrid deep learning forecasting framework
for STLEF. It is motivated by the combination of CNN and LSTM, which considers the local trend and
the long-term dependency of load data.
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3.1. The Overview of the Proposed Framework

The structure of the proposed hybrid deep neural network is shown in Figure 4. The inputs are
the information of the load value in the past few hours, and the outputs represent the prediction of the
future load values. The proposed framework mainly consists of a CNN module, a LSTM module and
a feature-fusion module.
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Figure 4. The proposed framework.

In the data preparation step, null values are checked and the load data are split into training and
test sets. Then, the origin data are transferred into two different datasets. The CNN module is used to
capture the local trend and the LSTM module is utilized to learn the long-term dependency. The two
hidden feature are concatenated in the feature-fusion module. The final prediction is generated after a
fully-connected layer. In the following, the detailed structure of each components is described.

In the CNN module, the main target is to capture the feature of the local trend. The inputs are the
standardized load datasets, and the outputs are the prediction of the trend in next few hours. The main
structure of the CNN module is performed by three convolution layers (Convl, Conv2, and Conv3).
Convolution layers are one-dimensional convolutions, and the activation function is the Rectified
Linear Unit (RELU). The hidden feature of the CNN module is constructed to integrate with the feature
of the LSTM module in the feature-fusion module.

The LSTM module is used to capture the long-term dependency. The inputs are reshaped for
LSTM structure, and the prediction target is the maximum value of the next few hours. The hidden
neurons of the output of the LSTM module are same as the CNN module.

After the process of the CNN module and the LSTM module, the outputs of the two modules are
concatenated in the merge layer of the feature-fusion module. The final prediction is generated after a
fully-connected layer.
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3.2. Model Evaluation Indexes

To evaluate the performance of the proposed model, the Mean Absolute Error (MAE), the Mean
Absolute Percentage Error (MAPE) and the Root Mean Square Error (RMSE) are employed. The error
measures are defined as follows:

1N~

MAE = N |(yr — vy 8)
L=1
1Y -

MAPE = — 9
NLZ:1|( ” )| )
1N~

RMSE = | — Y (yp —y1)? (10
NL:1

where N is the size of training or test samples, and yAL and y; are the predicted value and actual
value, respectively.

The MAE is the average of the absolute errors between the predicted values and actual values,
which reflects the actual predicted value error. The MAPE further considers the ratio between error
and the actual value. The RMSE represents the sample standard deviation of differences between the
predicted values and the actual observed values. The smaller are the values of MAE, MAPE and RMSE,
the better is the forecasting performance.

4. Experiments and Results

The proposed model was applied to forecast the electrical load in a real-world case. In this section,
the experiments are described in detail, and comparisons with LSTM, CNN and the proposed model
are also presented.

4.1. Datasets Description

In the experiment, the electric load dataset in the Italy-North Area provided by entsoe
Transparency Platform was used. The period of the particular dataset used in this paper is from
1 January 2015 to 31 December 2017. The data sampling was one hour. The electrical dataset contains a
total of 26,304 samples. In this study, the load data for first two years were chosen as the training set.
The test data were collected in 2017. An example of the test dataset is shown in Figure 5.

28,000

— actual lata

26,000

i

22,000

20,000

Load (MW)

18,000

16,000

14,000

12,000

10,000

200 400 600 800 1,000 1,200
Time (hour)

Figure 5. An example of the load data in test dataset.
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4.2. The Detailed Experimental Setting

The past 21 x 24 h load data were selected as the input variable of the model, and the output was
the load in the next 24 h. In the CNN module, the kernel sizes of the convolutional layer are 5, 3, and 3,
and the filter sizes are 16, 32, and 64. The feature maps are all activated by the Rectified Linear Unit
(ReLU) function. The hidden neuron of the LSTM module was set as 100. The sigmoid function was
chosen to be the active function of the fully-connected layer. The training process continued until the
MSE value had no improvement in 500 iterations or the maximal number of epochs was reached.

4.3. Experimental Results and Analysis

In this application, random forest (RF), decision tree (DT), DeepEnergy (DE) [28] and the proposed
CNN-LSTM model were implemented and tested in the prediction of the next 24 h load forecast.
Besides, the CNN module and the LSTM module were also extracted and tested to demonstrate
the superiority of our proposed model. The result obtained by the proposed CNN-LSTM model is
illustrated in Figure 6. To evaluate the performance and stability of the proposed model, the test dataset
was divided into eight partitions. The detailed experimental results of each model are illustrated in
Tables 1-3.

30,000

— actual lata
— forecast load

Load (MW)

5,000

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
Time (hour)

Figure 6. The forecast result using the proposed CNN-LSTM model for test data.
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Table 1. The experimental results in terms of Mean Absolute Error (MAE).

Test DT RF DE CNN LSTM CNN-LSTM

Test-1 669.3277  509.4035  467.4859  476.7259  480.7812 470.3272
Test-2 841.6884  664.7461 610.9937  730.0540  729.0658 537.0471
Test-3 1085.2633  981.2681  1160.7618 1055.0703  1140.5746 1018.6435
Test-4 986.4937 8519130  583.1347  753.4446  758.6537 495.8678
Test-5 1638.9530 1252.3642  880.7453  865.2113  1115.0330 858.6237
Test-6 7419390  614.0473  439.6090  620.5186  539.8259 455.3989
Test-7 769.4685 7183953  817.0670  892.1418  740.9322 741.5478
Test-8 1339.2667 1107.9678 1050.3163 1097.9277  1095.2742 959.7009
Test-avg 1009.0500 837.5132  751.2642  811.3868  825.0176 692.1446

Table 2. The experimental results in terms of Mean Absolute Percentage Error (MAPE).

Test DT RF DE CNN LSTM CNN-LSTM
Test-1 0.0332 0.0250 0.0236 0.0239  0.0249 0.0235
Test-2 0.0531 0.0414 0.0378 0.0465 0.0465 0.0327
Test-3 0.0686 0.0628 0.0726 0.0684 0.0734 0.0606
Test-4 0.0489 0.0425 0.0289 0.0371  0.0383 0.0244
Test-5 0.0977 0.0755 0.0531 0.0517 0.0669 0.0516
Test-6 0.0385 0.0314 0.0239 0.0336  0.0299 0.0241
Test-7 0.0428 0.0390 0.0447 0.0489 0.0411 0.0407
Test-8 0.0800 0.0658 0.0652 0.0672  0.0631 0.0594

Test-avg 0.0578 0.0479 0.0437 0.0472 0.0480 0.0396

Table 3. The experimental results in terms of Root Mean Square Error (RMSE).

Test DT RF DE CNN LSTM CNN-LSTM

Test-1 977.2206 755.5147  643.8908 627.4642 617.5835 612.4874
Test-2 1393.2847 1056.4105  907.0599  1146.4771 1119.7467 719.9939
Test-3 2070.3786  1880.0600 2102.2027 1906.8154 2054.4484 1859.0252
Test-4 1481.5294 1269.0204 753.5586  1027.8778 1109.1206 656.5774
Test-5 2364.5579 1876.6200 1323.3404 1295.1156 1569.6155 1340.6214
Test-6 1346.3700 1101.5862  585.0608 818.5694 798.6015 604.4891
Test-7 14445131 1373.6364 1669.9279 1624.9380 1487.9632 1467.0496
Test-8 2313.3100 1959.8469 1986.0953 1903.6605 1835.2911 1813.1891
Test-avg 1673.8955 1409.0869 1246.3920 1293.8648 1324.0463 1134.1791

As shown in Tables 1-3, the averaged MAE, MAPE and RMSE of the decision tree are the largest
in the six models. The performance of the deep neural networks is much better than the decision
tree and random forest. The results of the CNN module is a little better than the LSTM module,
while they are both higher than the DeepEnergy. Although the performance of the independent
CNN module and LSTM module is a little worse than the DeepEnergy, the proposed model, which
integrates these two modules, provides better result. The average indexes of the proposed CNN-LSTM
model are the minimum among all models: 692.1446, 0.0396 and 1134.1791. From the point of view of
these three indexes, t the proposed model can improve performance by at least 9% compared to the
DeepEnergy, 12% compared to the CNN module, and 14% compared to the LSTM module. Therefore,
it is proven that our proposed CNN-LSTM model can make more accurate forecast by integrating the
hidden feature of the CNN module and the LSTM module. According to the average indexes, it is
demonstrated that our proposed CNN-LSTM model can achieve the best performance in STLF.

Meanwhile, it is also evident the our proposed model is stable. In the eight partitions of the test
dataset, the results of the proposed model prove the superiority compared to the other forecasting
methods. For a better visualization, the results of six models in the eight partitions are also illustrated
in Figures 7-9. As shown in Figures 7-9, the curves that denote the proposed CNN-LSTM model are
approximately the minimum among all partitions. Specifically, the MAE, MAPE and RMSE of the
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proposed model are the minimum in half of the eight test partitions, i.e., Test-2, Test-4, Test-7 and
Test-8. In the other four partitions, the proposed model also provides accurate forecast result. The
MAPE and RMSE of the proposed model are also the minimum in Test-1 and Test-3, and the MAE
is only higher than DeepEnergy in Test-1 and random forest in Test-3. Although the performance of
the proposed model is not the best in Test-5 and Test-6, it is still one of the best three results. On the
other hand, the performances of the independent CNN module and LSTM module are not stable. The
MARPE of the LSTM module is the largest in Test-3, while it is good in Test-7 and Test-8. The CNN
module has good performance in Test-1 and Test-5, while it performs the worst in Test-7. It is obvious
that the proposed model has good performance in all eight partitions, which proves that the proposed
CNN-LSTM model can improve the stability of the load forecast.

1800 T T T T T

— DT

— RF
1600

— DE

— CNN
1400 — LSTM

CNN-LSTM

1200

1000

800

600

400 L
0 1 2 3 4 5 6 7
MAE
Figure 7. The comparison of the MAE in the six models.
0.10 T
— DT
0.09} — RF
— DE
0.08f — CNN
LSTM
CNN-LSTM | |

MAPE

Figure 8. The comparison of the MAPE in the six models.
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Figure 9. The comparison of the RMSE in the six models.

5. Discussion

Deep learning methods, such as CNN and LSTM, are widely used in many applications.In this
study, CNN and LSTM provide more accurate results than random forest and decision tree. In aspect
of the LSTM model, it can learn useful information in the historical data for a long period by the
memory cell, while the useless information will be forgotten by the forget gate. According to the result,
the LSTM module can make accurate load forecast by exploiting the long-term dependencies. On the
other hand, the CNN model can extract patterns of local trend and capture the same pattern, which
appears in different regions. The experiments also show that the CNN structure is effective in the load
forecast. To further improve the accuracy and stability of the load forecast, a new deep neural network
framework, which integrates the the CNN module and the LSTM module is proposed in this paper.
In the experiments, our proposed CNN-LSTM model achieves the best performance among all models.
Furthermore, the test dataset is divided into eight partitions to test the stability of the proposed model.
The independent CNN module and LSTM module perform well in some partitions and poor in others,
while the proposed model has good performance in all partitions. It demonstrates that the proposed
model has better stability than independent module. The results prove that the integration of the
hidden features of CNN model and LSTM model is effective in load forecast and can improve the
prediction stability. This paper gives a new research direction in time sequence forecasting based
on the integration of LSTM and CNN. Future studies can attempt to further improve the accuracy
of the short-term electrical load forecast by more effective way to integrate the hidden features of
LSTM and CNN.

6. Conclusions

This paper proposes a multi-step deep learning framework for STLF. The proposed model is
based on the LSTM module, the CNN module and the feature-fusion module. The performance of the
proposed model was validated by experiment with a real-world case of the Italy-North Area electrical
load forecast. In addition, several partitions of test datasets were tested to verify the performance
and stability of the proposed CNN-LSTM model. According to the results, the proposed model has
the lowest values of MAE, MAPE and RMSE. The experiments demonstrate the superiority of the
proposed model, which can effectively capture the hidden features extracted by the CNN module
and LSTM module. The result shows a new research direction to further improve the accuracy and
stability of the load forecast by integrating the hidden features of LSTM and CNN.
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