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Abstract: To alleviate traffic congestion and traffic-related environmental pollution caused by the
increasing numbers of private cars, public transport (PT) is highly recommended to travelers.
However, there is an obvious contradiction between the diversification of travel demands and
simplification of PT service. Customized bus (CB), as an innovative supplementary mode of PT service,
aims to provide demand-responsive and direct transit service to travelers with similar travel demands.
But how to obtain accurate travel demands? It is passive and limited to conducting online surveys,
additionally inefficient and costly to investigate all the origin-destinations (ODs) aimlessly. This paper
proposes a methodological framework of extracting potential CB routes from bus smart card data to
provide references for CB planners to conduct purposeful and effective investigations. The framework
consists of three processes: trip reconstruction, OD area division and CB route extraction. In the OD
area division process, a novel two-step division model is built to divide bus stops into different areas.
In the CB route extraction process, two spatial-temporal clustering procedures and one length constraint
are implemented to cluster similar trips together. An improved density-based spatial clustering of
application with noise (DBSCAN) algorithm is used to complete these procedures. In addition, a
case study in Beijing is conducted to demonstrate the effectiveness of the proposed methodological
framework and the resulting analysis provides useful references to CB planners in Beijing.

Keywords: public transport service; customized bus; route planning; bus smart card data; improved
DBSCAN algorithm

1. Introduction

With the rapid economic development, hyper-motorization and expanding urban areas have
contributed to various traffic-related problems, including traffic congestion, degraded levels of
transit, traffic fatalities and injuries, and serious environmental pollution. To effectively mitigate
such adverse effects, an efficient, reliable, and reasonable-priced public transport (PT) system is
urgently needed [1,2]. The traditional PT service as well as a series of related policies do solve
these traffic-related problems more or less, whereas the more and more diverse and characteristic
travel demands of travelers are increasingly not being satisfied. In recent years, the development
of information and tele-communication technology provides the possibility to build an integrated
information sharing platform for transit operators and users. A new innovative mode of public
transport services, called customized bus (CB), has been launched and implemented successfully [3].

The most distinctive feature of CB is customization. Passengers specify travel requests with their
origins, destinations, and desired pickup or delivery times through interactive online information
platforms, such as the Internet, telephones and smartphone apps. Then, the CB operator aggregates
similar travel demands and publishes candidate bus routes for users to reserve seats, so CB is a
demand-responsive transit system. Users participate in various planning activities and have a great
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influence on the eventually launched CB routes. Different from conventional bus transport systems, the
aim of which is to serve majority of the travelers, CB provides advanced, attractive, and user-oriented
service to specific passenger groups with similar travel demands, especially commuters [4]. The CB
service is an innovative transport service between conventional buses and taxis in terms of the degree
of user participation in operational planning activities, the level of services, and operating cost.
CB system generally provides direct and one person one seat transit services, which have no or very
few immediate stops as well as multiple stops in the origin and destination areas. Meanwhile, it has the
characteristics of fixed stops, fixed vehicles, fixed timetables, fixed prices, fixed passengers, yet flexible
route segments. In view of these characteristics, the ticket price of customized buses is more expensive
than that of conventional buses, but cheaper than taxis. With the advantages of traffic congestion
reduction, traffic safety improvement, better travel experience, and environmental friendliness, the CB
system is actively promoted and has become very popular in more and more cities around the world,
such as Beijing and Lisbon [4–6].

Since customized buses are a new successful public transport mode, the existing regulations and
models for conventional buses, e.g., [1,2,7], are not suitable for the CB system. Scientific and systematic
methodologies for CB policy making, planning programming, operation and dispatch must be carried
out. So far, scholars have conducted a great many studies of this burgeoning service. Liu, et al. provided
a systematic analysis of CB practice, elaborated the steps and suggestions for planning and management
and measured the operational performance compared with other travel modes [3,4]. Chang and
Schonfeld compared this flexible route subscription bus system with fixed route conventional buses [8].
Potts, et al. provided a guide for planning and operating flexible transport services [9]. Vine, et al.
used a general framework to forecast the market potential and impacts of carsharing systems [10].
Lorimier and El-Geneidy sought to find the determine factors affecting vehicle usage [11]. However all
the aforementioned studies just concentrate on theoretical analysis rather than specific methods.

In 2017, Ma, et al. proposed a methodological framework, including large-scale travel demand
data processing, CB line OD area division, CB line OD area pairing, and a line selection model, for CB
network design [12], but the travel demands, the basis of network planning, used in the paper were
collected through an online survey. This is a passive approach for both the planners and operators and
it suffers the following problems: (1) The dataset is unilateral and limited as it only contains the travel
demands of certain passengers who participate in the survey; (2) the accuracy and reliability of data
cannot be guaranteed because of the arbitrariness and low threshold of participating in this survey;
(3) it becomes changeless once the users submit their travel demands, which may result in the increase
of invalid data; (4) it is very tedious, inefficient, and costly to plan CB routes by analyzing the survey
data manually. Therefore, discovering similar travel demands and planning CB routes more reliably
and cost-efficiently is a popular topic [13].

Traffic big data availability has brought significant changes to urban intelligent transportation
systems. As an important component of traffic big data, bus smart card data (SCD) plays an
irreplaceable role in urban public transport systems because of its wide coverage, high reliability, easy
accessibility, and low cost [14]. In this paper, a “from point to line” framework for route extraction is
proposed by analyzing trip characteristics based on the bus SCD. Specifically, this framework includes
three parts. First, trips are reconstructed from the transaction records of the bus SCD. Then, all the
bus stops are divided into several traffic areas by a two-step division model, in which the adopted
radiuses are different according to the spatial distribution features of bus stops. Lastly, similar trips
are gathered together to generate a large amount of trip flows, of which the regularity are further
investigated to identify regular routes. The route length constraint must be satisfied at the same time
to extract potential CB routes. Models of last two parts are described in detail and the framework
is employed in a case study in Beijing. The result of this research provides a method of extracting
potential CB routes and helps CB operators conduct purposeful and effective surveys or investigations.

The remainder of this paper is organized as follows: Section 2 first presents a general overview of
the entire framework and emphasizes the two major processes conducted in this study. Section 3 then
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provides the details of methodology about how to divide origin-destination (OD) areas and extract CB
routes using the reconstructed trips, followed by an experiment conducted in Beijing to illustrate the
framework in Section 4. The paper concludes by summarizing the research of findings and suggesting
directions for future research in Section 5.

2. Framework Description

This section explains the main ideas of the complete framework, including the purpose of
each process. Generally speaking, the framework consists of three parts: trip reconstruction,
origin-destination (OD) area division and CB route extraction. A flow chart of the framework is
illustrated in Figure 1.
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A perfect smart card transaction would contain user smart card ID, bus line ID, boarding and
alighting stops and times, riding date, etc., but because of the charging purpose of Automatic Fare
Collection (AFC) systems [14], the data directly produced from AFC is incomplete. The complete
and essential information must be obtained using a number of appropriate methods from bus SCD
records, bus GPS data and schedule tables if necessary, as well as some static databases, such as bus
stop information and bus line information. Trips, including one or several transactions, must be
reconstructed by identifying transfer behaviors from the successive transactions of each user. A series
of studies have been done to process the data obtained from AFC system, to infer origin and destination
locations, and to estimate transfer points. Chapleau and Chu proposed a multistep method to identify
and revise incorrect or suspicious observations and provide suitable origin-destination travel data [15].
Trépanier et al. built a model to estimate the alighting location for passengers who only need to be
validated when boarding [16]. Munizaga and Palma presented a methodology for building public
transport OD matrices from SCD and GPS data [17]. The mentioned methods are really just the tip of
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the iceberg, please see Pelletier et al. [14] for a detailed literature review. Due to the various types of
AFC systems, the bus SCD structures in different systems are not uniform, targeted method must be
used depending on the specific data structure. In view of the existence of numerous related references,
the process of trip reconstruction will not be elaborated too much in this paper.

The origin and destination locations of trips are all fixed bus stops, which are set for passengers
boarding and alighting a bus, and very few bus stops indeed have only boarding or alighting
passengers. Therefore, this paper holds the idea that the set of trip origins and the set of trip destinations
share the same bus stop dataset. The dataset is created by merging the origin and destination stops
together and removing duplicate bus stops. Due to the wide range of stop densities in different regions,
it is unsuitable to divide these bus stops using a uniform radius which may result in undesirable
division with several areas being too large or too small. Accordingly, a two-step division model is built.
First, dividing all the stops into different areas using a relatively large radius. Then, a smaller radius is
adopted to subdivide the oversize areas generated in the first step, that is areas having too many stops
or too large coverage. The final areas obtained can be grouped into four categories: (1) origin area of
CB routes; (2) destination area of CB routes; (3) origin and destination areas of CB routes; (4) nothing
to do with CB routes. The OD area division lays the foundation for CB route extracting, together with
which this process will be elaborated further in Section 3.

Customized buses, popularly known as a PT mode, serve specific passenger groups with
similar travel demands, namely nearby origin stops, nearby destination stops, and close riding times.
After area division, nearby origin and destination stops means trips with the same origin area and the
same destination area. Close riding time, in addition, means that the riding time interval between two
trips is within the acceptable waiting time for passengers. For trips in one day, clustering all similar
trips together to get a large number of trip flows, each of which contains at least a certain number of
travel demands. In consideration of the continuity of CB service, another clustering procedure for
trip flows in a multiday period is then conducted to distinguish regular routes. These two successive
clustering procedures all have the characteristic of considering three distance thresholds related to
spatial and temporal dimensions, i.e., origin area, destination area, and riding time, instead of a single
one. Finally, the minimum length of CB routes is limited according to the features of the CB system.
At this point, the potential CB routes are obtained.

3. Methodology

The key research contents of this paper are twofold: OD area division and CB route extraction.
The former builds a two-step division model solved by using the same clustering algorithm twice and
the latter mainly includes two spatial-temporal clustering procedures: trip clustering and trip flow
clustering, therefore the clustering algorithm is the core method of the whole study. This section will
describe the methodology and procedures in detail.

3.1. DBSCAN Algorithm

For dividing origin-destination areas and extracting customized bus routes efficiently and effectively,
clustering analysis is a key technology. The density-based spatial clustering of application with noise
(DBSCAN) algorithm is designed to discover the clusters and the outliers of arbitrary shape [18].
The number of clusters does not need to be defined in DBSCAN algorithm and the result is robust
with respect to the sequence of data. This density-based algorithm is therefore adopted in this paper.

The main idea of the DBSCAN algorithm is that for each point of a cluster, the neighborhood
of a given radius has to contain at least a minimum number of points. Thus, two parameters need
to be defined by the DBSCAN algorithm: distance threshold (ε) and the minimum number of points
(MinPts). If a sample record falls within the ε distance, this record will be included into an existing
cluster. If the number of records in a final cluster is less than MinPts, then these records are marked
as noise. With these two parameters, the DBSCAN algorithm calculates the connected relationship
between samples iteratively, forming result clusters.
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3.2. OD Area Division

Origin-destination areas are important components of bus routes and the division result directly
influences the subsequent route planning. The previous section has pointed out that a two-step division
model is built to balance the scope of areas in different regions. Each division step is completed by the
DBSCAN algorithm and the difference between the two steps is the selected value of distance threshold.

In this process, when using DBSCAN algorithm, ε defines the density-reachable range of each
stop and MinPts limits the minimum number of bus stops in one area. In reality, customized buses are
allowed to have only one boarding stop if there are enough passengers starting their trips from this
location, and also the alighting stop. Based on the fact that bus stops usually exist in pairs for opposite
directions, the minimum number of stop MinPts is therefore set to two. In other words, an area must
have at least two bus stops.

With the increase of ε distance, the number of areas decreases while the range of most areas enlarges.
To determine the value of ε, a concept called “Stop Isolation (SI)” is put forward to characterize the alienation
of one certain stop to surrounding stops. β− SI of one stop is calculated by averaging the distances between
the object stop and every other stop located within a radius of β around this stop. Moreover, β− SI is set to
β if the distance from the object stop to the nearest stop is greater than β, as expressed in (1):

β− SIi =


1

n−1

n
∑

j=1
dij j ∈ Ci, n > 1

β, n = 1
(1)

where Ci denotes the stop set located within the radius of β around stop i, dij denotes the distance
between stop i and j, and n denotes the number of stops in Ci. To balance the number and range
variability of areas, this paper suggests that the more isolated the stop is, the larger the ε distance is.
Absolutely, the ε distance must be in a reasonable interval and it can be calculated as (2):

εi = εmin + f (β− SIi)× (εmax − εmin) (2)

where εmax, εmin denote the maximum and minimum acceptable density-reachable range respectively,
and f (β− SIi) is a positive correlation function with a value that falls between 0 and 1.

When the value of the two parameters are determined, the two-step division process is as follows:

Step 1: Input the bus stop dataset created by merging the unique origin and destination
stops together.

Step 2: Randomly select one stop that is flagged as unvisited from the dataset. If the stop belongs to
a certain cluster, flag this stop as visited and put the neighborhood of it into the same cluster.
Otherwise, flag this stop as visited and form a new cluster for it. Then put the neighborhood
of this stop into the new cluster.

Step 3: Repeat step 2 until all the stops in the dataset are flagged as visited and then go to step 4.
Step 4: For each cluster, if there is only one stop, delete this cluster. Otherwise, the cluster

is confirmed.
Step 5: Pick out clusters containing a huge number of stops. Reset all the stops in these clusters and create

a subset of the stop dataset. Regard the subset as a new stop dataset and repeat step 1 to step 3.
Step 6: Output all the confirmed clusters and the process ends.

3.3. CB Route Extracting

3.3.1. Trip Clustering

As the trip info has been constructed, multiple trip flows can be further identified through
clustering trips with similar spatial and temporal characters together. An improved DBSCAN algorithm
is chosen to be used for this purpose.
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Operating customized buses may cost a lot for the transit authority and the direct revenue is fare
paid by passengers. There must be a certain number or proportion of transit riders to keep the buses
running. That is MinPts, the minimum number of trips in one cluster.

Unlike the ordinary DBSCAN algorithm used in the OD area division process, the distance
threshold ε in the trip clustering procedure extends from one spatial distance to three distance attributes
related to spatial and temporal dimensions, which are origin distance, destination distance, and riding
time interval. Only when the three attributes meet their respective constraints at the same time can the
trips be judged within ε distance. There are two alternative time points, boarding time and alighting
time, to represent the riding time of one trip. Considering the boarding time is more controllable by
passenger while the alighting time must satisfy the scheduled time, riding time in this section, as well
as in the following, is referred to as the alighting time of one trip.

So far, the two parameters of improved DBSCAN algorithm are illustrated. The extension of ε

distance influences the step of finding neighborhoods of trips. Symbols Ok, Dk, Tk are employed to
notate origin stop, destination stop, and riding time of trip k respectively. Thus, the spatial-temporal
neighborhood of trip k, denoted by Nε(k) is a set of trips expressed by (3):

Nε(k) =
{

p ∈ D : dist
(
Ok, Op

)
≤ co

k, dist
(

Dk, Dp
)
≤ cd

k ,
∣∣Tk − Tp

∣∣ ≤ ct

}
(3)

where D is the trip dataset, co
k and cd

k denote the density-reachable range of origin and destination
stops of trip k respectively, ct denotes acceptable waiting time for passengers, and dist(·, ·) calculates
the Euclidean distance of two spatial points.

Once the OD area division has been conducted, the two spatial distance constraints in (3) are
replaced to logical judgments, i.e., whether the origin stops of trip k and trip p are in the same area and
also the destination stops, like (4):

Nε(k) =
{

p ∈ D : Ao
k = Ao

p, Ad
k = Ad

p,
∣∣Tk − Tp

∣∣ ≤ ct

}
(4)

where Ao
k denotes the serial number of origin area of trip k and Ad

k denotes that of the destination area.
The process for retrieving the neighborhood trip k is shown in Figure 2.

Like trips, the generated trip flows also have three attributes: origin area, destination area, and riding
time. Here, the riding time of a trip flow is the average time of all the trips belonging to this trip flow.

3.3.2. Trip Flow Clustering

Trip flows in one day can be successfully identified using the above procedure, but the regularities
of these trip flows are still unknown. During a multiday period, the frequency of a certain trip flow is
an important indicator to judge whether or not to open a CB route on the trajectory of this trip flow.

Supposing all the trip flows in a multiday period make up a trip flow dataset. Clustering similar
trip flows in the dataset together, then one cluster represents a certain trip flow or a regular route and
the number of trip flows in the cluster means its frequency.

To achieve this goal, the improved DBSCAN algorithm is reasonably applied again with MinPts
equals to the minimum days in a multiday period made to be considered as “regularity”. Similar to
the trip clustering procedure, distance threshold ε in this procedure involves three attributes: origin
distance, destination distance, and riding time interval. On the basis of OD area division, the origin
and destination distances are also replaced by 0–1 judgements of whether in the same area. The specific
steps are not elaborated repeatedly here. As a result, regular routes are extracted.
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3.3.3. Length Limitation

Route length, as well as frequency, is another effective indicator to estimate the feasibility of a CB
route. If the travel distance is short, traditional buses can satisfy the travel demands of transit riders
with lower expenses, the slightly more frequent stops and longer transfer time are more likely to be
accepted by passengers in this condition. On the contrary, if the travel distance is long, customized
bus becomes a better choice with the advantages of no transfers, fewer stops, fewer travel time, more
comfort, economical to private car and so on. The length of potential CB route therefore should not
be too short. To calculate the route length, this paper first confirms the cluster center of each area.
As shown in (5), the longitude and latitude of cluster center of area m, denoted by Xm and Ym, are
passenger weighted average value of stops in the area:

(Xm, Ym) =

(
∑n

i=1 xiqi

∑n
i=1 qi

,
∑n

i=1 yiqi

∑n
i=1 qi

)
(5)

where xi, yi denote the longitude and latitude of stop i belonging to area m, respectively, qi denotes the
passenger volume of stop i, and n is the total number of stops in area m. The Euclidean distance from
the cluster center of origin area to the cluster center of destination area, given by (6), is defined as the
CB route length.
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lr =
√
(Xo − Xd)

2 + (Yo −Yd)
2 (6)

where lr denotes the length of route r, area o and area d are the origin and destination areas of route r,
respectively. lr should not be less than minimum route length constraint as (7):

lr > lmin (7)

where lmin is the minimum CB route length. After the three procedures, respectively meeting the
requirements of number of passengers, regularity, and route length, potential customized bus routes
are extracted.

4. Experiment

Beijing transit began to use a smart card system in May 2006 and the highly discounted fares
played a key role in the rapid popularization of smart cards. More than 90% of the transit riders paid
their trips with their smart cards in 2010 [19]. Due to the high reliability and generality of smart cards,
this paper applies the methodology of extracting CB routes in Beijing as a case study.

4.1. Data Description

Customized buses, in general, render services to travelers on weekdays. This paper regards five
working days in one week as a cycle. The bus smart card data, containing more than 36.7 million
transactions, is collected during a typical travel week, Monday 12 October to Friday 16 October 2015.
Figure 3 shows the daily temporal frequency distribution of transactions by the riding time. It visibly
presents two peak hours in the morning about 7:00–9:00 and in the afternoon about 17:00–19:00
respectively. More than half of the transactions happened in the two peak hours and these transactions
are applied as valid data to conduct the following analysis.
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Figure 3. Daily temporal frequency distribution of transactions.

4.2. Methodology Used in Beijing

4.2.1. Trip Reconstruction

From 28 December 2014, the flat fare structure of buses was abolished and all the buses were
switched to distance-related fare buses in Beijing. Passengers were forced to swipe their smart cards
when boarding and alighting with a severe penalty if they did not comply. The collected transactions
in this AFC system contains all the stop numbers and times of boarding and alighting, so it is relatively
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easy and reliable to reconstruct trips. An example of trip reconstruction is shown in Figure 4. It is
important to note that the filed names listed in both smart card data (SCD) and stop information base
(SIB) are partial information of the databases and are all transferred to comprehensible names.
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As shown in Figure 4, for one person in one day, matching line ID, boarding, and alighting stop
numbers in SCD and SIB can construct detailed transactions. The 2010 Beijing 4th Comprehensive
Transport Survey revealed that the average transfer time and in-vehicle travel time are 25.4 min and
40 min, respectively [20]. In consideration of the lack of subway smart car data and the low-probability
of two trips happening within 60 min during peak hours, a fixed 60 min interval is used in this study to
link several transactions into a trip. In other words, if the time interval of two consecutive transactions,
boarding time of latter transaction and the alighting time of previous transaction, is greater than
60 min, a new trip is generated; time interval less than 60 min is taken to represent a transfer activity.
The daily number of trips within the five days are shown in Table 1.

Table 1. Bus smart card data statistics.

Date Number of Trips Number of Non-Noise Trips Number of Trip Flows

12 October 3,061,963 1,498,210 2415
13 October 3,445,015 1,678,388 2855
14 October 3,409,252 1,656,289 2788
15 October 3,381,776 1,637,186 2722
16 October 2,867,636 1,362,541 2095

4.2.2. OD Area Division

Each trip has an origin stop and a destination stop. After trip reconstruction, about 16.2 million OD
pairs are collected. According to the coordinates, this study forms a fixed bus stop dataset containing
9676 bus stops by putting all the origin and destination stops together and eliminating duplicates.

As previously mentioned in Section 3.2, the DBSCAN algorithm is used and the value of MinPts in
this process is two. The ε distances are limited to 500 m–1000 m in the first step and 300 m–500 m in
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the second step. As for SI, this paper chooses the demarcation of the two steps, namely 500 m as the
measurement. To calculate the 500 m-Stop Isolation, take the stop A and stop B in Figure 5 for examples.Energies 2018, 11, x FOR PEER REVIEW  10 of 15 
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Figure 5. Examples of calculating 500 m-Stop Isolation. (a) Situation of stop A; (b) Situation of stop B.

In Figure 5a, there are four stops around stop A within the radius of 500 m. The average distance
from stop A to these four stops is 355 m. So the 500 m-SI of stop A is 0.355 km. In Figure 5b, the
shortest distance between stop B and other stops is larger than 500 m, the 500 m-SI of stop B is therefore
set to 0.5 km. Sorting the 500 m-Stop Isolation of all stops in ascending order, the values increase
approximately linearly as shown in Figure 6, and the value of R-squared is 0.95.
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Figure 6. Sorted 500 m-Stop Isolation of stops (solid line) and the increase curve (dotted line).

So f (β− SIi) is formulated as a linear function and the range of 500 m-SI serves as a divisor to
ensure f (β− SIi) falls between 0 and 1 as in (8):

f (β− SIi) = (SIi − SImin)/(SImax − SImin) = 2× SIi (8)

Then according to (2), the ε distance in two steps are respectively calculated in kilometers using
(9) and (10):

ε1
i = 0.5 + SIi (9)

ε2
i = 0.3 + 0.4× SIi (10)
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The 9676 bus stops are divided into 1043 areas through the two-step division model. The result
is shown in Figure 7. In this figure, the points represent the bus stops located in Beijing which are
considered to be divided in this paper. Each color represents an area and points in different colors
belong to different areas.Energies 2018, 11, x FOR PEER REVIEW  11 of 15 
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4.2.3. CB Route Extracting

Numbering the OD areas divided in the previous procedure, the origin and destination stops of
trips then can be characterized by the area numbers. For simplicity and efficiency, trips with the same
origin and destination area numbers are not considered. This is because the trip distances are too short,
which violates the length constraint of CB route. As for riding time interval, this paper sets 30 min as
passengers acceptable waiting time, i.e., ct = 30 min.

The standard of recruiting passengers for a new CB route in Beijing requires the number of enrollment
to reach 100 [21]. According to this rule, this paper sets the value of MinPts as 100 in trip clustering
procedure. If there are more than 100 trips having the same origin areas, same destination areas, and close
riding times, clustering these trips together then form a trip flow. Trips not belonging to any cluster are
regarded as noise. Daily numbers of non-noise trips and trip flows can be seen in Table 1.

Gathering these 12,875 trip flows together, regular routes can be identified through the improved
DBSCAN algorithm. Trip flows belonging to the same cluster must have the same origin and
destination areas, and have riding times between them within 30 min. The value of MinPts can
be set to any value from one to five according to the definition of regularity. In this case study,
regularity is considered to be every day, which means MinPts is set to 5. After clustering, 1474 regular
routes are identified. As for the minimum length of a CB route, this paper sets the value of lmin to 8 km
as suggested by Ma et al. [12]. Finally, 249 potential customized bus routes are extracted, which are
possible to be recommended putting into operation after further investigation.

4.3. Discussion

In this section, the implications of method results within the context of Beijing are explored to gain
enlightenment for planning considerations of CB systems and verify the effectiveness of the proposed
method. The CB routes are divided into three classes for discussion.
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4.3.1. Routes in Urban and Inner Suburban Areas

The current CB network of Beijing is distributed in urban and inner suburban areas, including
Dongcheng, Xicheng, Haidian, Chaoyang, Fengtai, Shijingshan districts, and some large residential areas in
inner suburbs such as Tiantongyuan, Huilongguan, Guanzhuang, and Huangcun. To evaluate the method
proposed in this paper, potential CB routes extracted in these areas are brought out to compare with the
current scheme, which contains routes recruiting passengers as well as routes having been operated by
29 March 2018. Figures 8 and 9 show the CB routes of current scheme and potential scheme. In the figures,
the green lines and yellow lines represent CB routes in morning peak hours and afternoon peak hours
respectively. The thermodynamic circles are destination areas of the routes and the hotter the circle is, the
more passengers it attracts. The comparative results of the number, total length, and average length of
current and potential routes are presented specifically in Table 2. The coverage rate is represented by the
proportion of the intersection of the current scheme and the potential scheme to the current scheme.
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Compared with the current scheme, the total number of routes and the total length of operating
routes extracted in potential scheme are greater. Thus, the potential scheme can serve more passengers
and may have higher level of passenger service rate. In addition, the average length of potential
scheme is slightly shorter than that of current scheme. The coverage rate reaches about 80 percent,
demonstrating that the potential CB routes contains most of the current routes and the potential scheme
generated by using the method of this paper is basically consistent with the current scheme.
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Table 2. Beijing CB network contrast.

Indicator Current Scheme Potential Scheme Coverage Rate

Morning Peak
Hour

Number of Routes 89 108 79.78%
Total Length (km) 1378.045 1455.673 77.08%

Average Length (km) 15.484 13.478 —

Afternoon Peak
Hour

Number of Routes 60 82 85.00%
Total Length (km) 916.723 1045.696 84.81%

Average Length (km) 15.279 12.752 —

Day Peak Hour
Number of Routes 149 190 81.88%
Total Length (km) 2294.768 2501.369 80.17%

Average Length (km) 15.401 13.165 —

It can be seen from Figures 8 and 9 that in addition to Guomao, Jinrongjie, Zhongguancun,
and Wangjing, Anzhen and Guanganmen also attract a large number of passengers in the morning
peak hours. Meanwhile, the destination areas in the afternoon peak hours are relatively scattered.
Routes from Guomao to Tongzhou, from Jinrongjie to Huilongguan, and Huangcun has the largest
number of passengers. Note that both, the number of passengers to Jinrongjie in the afternoon peak
hours, mainly from Guomao, is considerable. This is because Jinrongjie is an old prosperous living as
well as shopping and business region. In general, the methodology proposed in this paper is feasible
and effective for extracting CB routes.

4.3.2. Connections between Outer Suburban and Urban Areas

Another small group of clients CB serves is passengers who take round trips between outer suburban
and urban areas. Because the distances of these routes are long, even some more than 50 km, travelling
comfort becomes more important to passengers. The function of this class of CB service is somewhat
similar to suburban lines of traditional buses with the advantages of providing door-to-door and one
person one seat services. In this paper, 51 potential CB routes connecting outer suburban and urban areas
are extracted using the method proposed in this paper, in which 28 are in the morning peak hours and 23 in
the afternoon peak hours. As shown in Figure 10, the green arrow and the yellow arrow represent routes in
morning peak hours and afternoon peak hours respectively. The arrow direction indicates travel direction.
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It is easy to see the trip characteristics of these long distance travel passengers, basically travelling
to urban areas in the morning and returning to outer suburban areas in the afternoon. Because people
living in outer suburban, especially in large residential areas, need to take roundtrips for commuting
in workdays, it is not hard to understand this phenomenon. Among the outer suburban areas, Yanjiao,
Longquan, and Liangxiang towns are the three areas with the most passengers taking roundtrips
between outer suburban and urban areas.

4.3.3. Routes in Outer Suburban Areas

According to this method, eight potential CB routes in Yanqing and Changping districts are
extracted which meet the requirements of passenger number, regularity, and route length. But there is no
known research showing whether the customized bus system is feasible in towns. Further investigation
is needed to evidence the practicability of CB routes in towns.

5. Conclusions

The purpose of this study was to extract potential CB routes and then provide references for CB
operators to conduct purposeful and effective investigation activities when planning CB network.
A whole methodological framework, containing trip reconstruction, OD area division, and CB route
extraction processes, was presented to achieve this goal based on bus smart card data. The proposed
method introduced the idea of “from point to line” into the framework and concentrated on the “point”
division and “line” clustering. In the OD area division process, a two-step division model was built
in view of the uneven distribution of bus stops, which was characterized by the concept of “stop
isolation” proposed in this paper. The DBSCAN algorithm was utilized twice to successfully divide
the bus stops into different areas. In the CB route extraction process, identifying and clustering similar
trips together was the core idea. The potential CB routes must satisfy three requirements: the number
of passengers, regularity, and route length. An improved DBSCAN algorithm was used, in which the
distance threshold extended from one spatial distance to three distance attributes related to spatial and
temporal dimensions.

Taking Beijing as a case study, the results showed that the potential CB scheme planned using
the proposed methodology had nearly 80% coincidence with the current CB scheme, thus proving the
framework presented in this paper was feasible and reasonable. Besides, the potential CB scheme has
more routes and longer total route distance than the current scheme. The result analysis of the case
study provided references to the CB operator when planning CB network in Beijing. However it should
be considered whether the parameter values are available for other cities when planning CB networks
using the method introduced in this paper. Furthermore, as a personalized and exclusive service, the
CB system needs to have the guarantee of passenger volume and market competitive advantages.
In future research, the comparison with other public transport modes should be quantified to decide
if a certain new CB route is necessary to open. Finally, only the areas and directions of potential CB
routes are determined is this paper. If a certain route is planned to be operated, the specific boarding
and alighting stops of the route must be confirmed.
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