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Abstract: Voltage sag state estimation on the basis of a limited number of installed monitors is
essential to dividing the responsibility for the voltage sag and taking corresponding measurements
for improvement in voltage quality. Therefore, a deep learning methodology via bidirectional
WaveNet for the voltage sag state estimation is proposed in this paper. The presented method can
simultaneously estimate voltage sag state at non-monitored buses via limited monitors. Especially,
the proposed deep learning method using the bidirectional WaveNet is designed to explore the
long-term and long-range temporal dependencies in both the forward and backward directions. In
this way, only by using original measured voltages through monitors, high accuracy for voltage
sag state estimation can be achieved without restructured or redesign of the raw monitored data.
An excellent advantage of the presented algorithm is that it can be implemented without system
parameters or operating conditions or any other prior information. The presented methodology was
verified by the IEEE 30-bus benchmark system. The experimental results illustrated that the accuracy
of the voltage sag state estimation results was over 99.83%. Furthermore, a comparison among
different models, including the bidirectional GRU-based model, one-way WaveNet-based model, and
bidirectional WaveNet-based model, was also conducted. The results illustrated that the proposed
bidirectional WaveNet-based model achieved the highest accuracy and quickest convergence speed.

Keywords: power quality; voltage sag; state estimation; deep learning; bidirectional WaveNet

1. Introduction

Due to the fact of increasing access to sensitive loads of the power grid, voltage sag
is attracting more attention from both industry and academia [1]. Actually, voltage sag
is considered one of the most serious power quality problems [2]. Both voltage sag state
estimation (VSSE) and voltage sag level assessment (VSLA) are essential for designing a
mitigation plan, evaluating the economic cost, verifying the responsible parties, and taking
corresponding measurements for improving voltage quality. Especially, the VSLA can
be regarded as a statistical measure of VSSE, where VSSE is usually denoted by voltage
amplitude or voltage range, and VSLA is normally represented by the System Average
Interruption Frequency Index (SARFI). In other words, VSLA can be easily predicted as
long as a VSSE result is achieved. Therefore, research on VSSE calculation is of great
importance.

In general, the VSSE problem can be mainly divided into the following two categories:
model-based estimation and data-based estimation.

In the model-based estimation method, fault type and fault position should be deter-
mined first through circuit analysis, followed by VSSE [3–7]. For example, in [3], the VSSE
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is achieved via Bayesian inference, where some prior information, including fault position
and other power system parameters or operating conditions, is necessary. It is observed
that the model-based VSSE method can obtain voltage sag magnitude [4]. However, for
such approaches, network parameters or operating conditions, such as system topology,
line impedance, fault type, fault location, and fault impedance, are strongly required [5,6].
Moreover, as mentioned in [7], the estimation performance is severely dependent on the
selection and number of fault positions.

In fact, huge numbers of monitors or measurement equipment have already been
distributed in modern power system and, therefore, massive data have been accumu-
lated [8]. Unfortunately, above presented model-based estimation method cannot fully take
advantage of the abundant information implied among historical measurement records
or data. Hence, recent research has shown a trend of solving the VSSE problem by using
measured voltages, which denotes the data-based method for VSSE solution [9–11].

Theoretically, for a power system, monitors or measurements could be placed at all
nodes, under which case every voltage sag state at each node can be estimated directly.
However, it is not feasible for economic causes. It is common that only limited monitors
could be installed at specific nodes. Therefore, it would be of great use to realize VSSE at
non-monitored buses with these accessible monitored voltages via limited number [12].
This is just the purpose of our work to be solved in this paper, which can obtain the VSSE
of the whole power system only by using measured data via limited monitors.

Different from the above model-based method, in the data-based estimation method,
the VSSE problem can be processed only by using the available measured voltages from
monitors or data acquisition system without requiring any information on network param-
eters or operating conditions. The data-based method can effectively avoid the difficulty
in locating fault positions. Given fault probabilities, for most approaches in recent liter-
atures, probabilistic analysis has been implemented. For instance, in [9], a probabilistic
analysis based on the correlation among the System Average RMS Frequency Index (such
as SARFI-90 or SARFI-70) was proposed, where the System Average RMS Frequency Index
at different buses were estimated. Apparently, probabilistic analysis was more suitable
for VSLA, rather than VSSE. The main reason lies in the fact that the dynamics between
voltage sag states at different times cannot be fully captured in this way. Actually, the
VSSE results constantly varied from time to time. Hence, temporal characteristics should
be involved for accurate VSSE, which is also difficult for a model-based method since the
underlying physics is unknown. This is just where deep learning finds its role for the VSSE
solution. Deep learning can fully learn the sequential feature from measured data without
requiring any simplifications or assumptions of the system’s physical model. In [10], a
VSSE approach based on deep learning is proposed to estimate voltage ranges for six sag
categories regardless of fault location or characteristics. However, it has been verified that
the selection of input features into deep neural networks, as well as the construction or
format of the input data, greatly impacts estimation results. In addition, for each deep learn-
ing model in [10], the VSSE result at only one specific bus, rather than multiple interesting
buses, can be analyzed simultaneously.

A deep learning method based on bidirectional WaveNet (Bi-WaveNet) is proposed
for a VSSE solution in this paper. The corresponding contributions are listed as follows:

• A deep learning architecture via Bi-WaveNet was designed to explore the long-term
and long-range temporal dependencies in both the forward and backward directions;

• Original measured voltages through limited monitors, without restructuring of the
raw monitored data, can be directly used for feature extractions with high accuracy;

• Only with a single model, the VSSE results at multiple non-monitored buses can be
simultaneously estimated;

• The effectiveness of the Bi-WaveNet-based algorithm was further compared with
other methods including the one-way WaveNet-based method and the Bi-GRU-based
method. The results illustrated that the Bi-WaveNet-based model could achieve the
highest accuracy and quickest convergence speed.
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The remaining sections of this paper are conducted as follows. In Section 2, the VSSE
problem is described; then, the reason for choosing WaveNet is introduced, followed by
the proposed architecture. In Section 3, the corresponding experimentation is conducted
to examine the model’s performance. Finally, the discussion and conclusion are drawn in
Sections 4 and 5, respectively.

2. Proposed Method

In this section, the definition of the VSSE problem discussed in this paper is firstly
described. Then, the reason of choosing WaveNet is given, followed by a brief introduction
to WaveNet and Bi-WaveNet. Finally, the presented deep learning methodology via Bi-
WaveNet is demonstrated.

2.1. Problem Description

Voltage sag is defined as power-quality issues with voltage amplitude being 0.9~0.1 p.u.
of the nominal value for a period of 0.5~30 cycles. In power system, monitors cannot be
installed at all buses for economic causes, and only limited meters are assembled at specific
buses. Therefore, as illustrated in Figure 1, only by using measured voltages from limited
monitors, the VSSE result at non-monitored buses can be simultaneously estimated.
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Figure 1. The illustration of the VSSE problem.

In detail, the VSSE problem discussed here is defined to classify the voltage magni-
tudes at non-monitored buses into several classes with specific voltage magnitude ranges.
Moreover, in the IEEE Std 1668TM-2017, a histogram of data collected from the DPQII
study illustrates that voltage sag magnitude is less likely to fall in the range of (0 p.u.,
–0.5 p.u.) [13]. Hence, the VSSE result is classified into the same category if the voltage
magnitude range of (0 p.u., 0.5 p.u.). Meanwhile, referring to [10], the VSSE result was
uniformly divided into 5 intervals if the voltage magnitude was greater than or equal to
0.5 p.u. Therefore, the VSSE result was generally classified into 6 categories.

In Figure 2, a color scale was also adopted to clearly mark different categories. As
demonstrated in Figure 2, it can be observed that the VSSE result was classified into
Category 1 (colored by red), if the voltage magnitude at the non-monitored bus was greater
than or equal to 0.9 p.u. Similarly, the VSSE result was classified into Category 2 (colored
by yellow-green), if the voltage magnitude range at the non-monitored bus was [0.8 p.u.,
0.9 p.u.). The VSSE result is classified into Category 3 (colored by green), if the voltage
magnitude range at the non-monitored bus is [0.7 p.u., 0.8 p.u.). The VSSE result is classified
into Category 4 (colored by blue), if the voltage magnitude range at the non-monitored bus
is [0.6 p.u., 0.7 p.u.). The VSSE result is classified into Category 5 (colored by purple), if the
voltage magnitude range at the non-monitored bus is [0.5 p.u., 0.6 p.u.). And, the VSSE
result is classified into Category 6 (colored by rose-red), if the voltage magnitude range at
the non-monitored bus is (0 p.u., 0.5 p.u.).
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Figure 2. The definition of the VSSE result.

In essence, the VSSE problem is aimed at establishing the nonlinear relationship be-
tween given the input and the expected output, where the given input is the measured volt-
age from limited meters and the expected output is the VSSE results of the non-monitored
buses. Furthermore, an important characteristic of this problem is that the VSSE result can
be solved directly from voltage measurement without requiring any prerequisites such as
system parameters, and operating condition.

2.2. Reason for Choosing WaveNet

As previously mentioned, some model-based estimation methods have been proposed
to solve the VSSE problem. However, much prior network information (such as fault
impedance, fault type, and fault position) is required, whereas these detailed network
parameters cannot be obtained easily or directly in most cases.

In fact, the measured voltages via monitors naturally own time series characteristics,
while the standard RNN (recurrent neural network) can analyze time series data [14].
Theoretically, the RNN also can be used to solve the VSSE problem, whereas, in practice,
long-range temporal dependencies are required for the VSSE solution. In fact, if a standard
RNN is employed to handle long sequences, it may face vanishing/exploding gradients
difficulty, leading to very slow training [15,16]. To solve this problem, some variants
of standard RNNs, including the LSTM (long short-term memory) and the GRU (gated
recurrent unit) are presented. In detail, the LSTM cell owns three gates (including the input
gate, forget gate, and output gate), and the GRU cell contains two gates (including the
update gate and reset gate) [17,18]. Hence, compared with the standard RNN, the LSTM
cell and GRU cell commonly achieve better performances: the training converge rate will
be faster and temporal dependencies will be considered longer [19]. Note that the LSTM or
GRU can alleviate rather than avoid vanishing/exploding gradients problem. Hence, it
is still impossible for them to handle even moderately long-term or long-range temporal
dependencies. The main reason lies in the fact that for standard RNN or LSTM and GRU,
every recurrent neuron receives both the input vector and the output from a previous
time step.

Different from the RNN or the LSTM and GRU, the WaveNet has been proposed to
avoid vanishing/exploding gradients problem. It is composed of dilated causal convolu-
tional layers enlarging the receptive field by skipping input with a certain step [20]. In fact,
the WaveNet has already been confirmed that it is powerful for modeling very long-term
temporal dependencies on time series tasks [21]. Therefore, in this paper, the WaveNet was
chosen to solve the VSSE problem.
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2.3. WaveNet and Bi-WaveNet

The WaveNet network models the joint probability of sequential data as a product of
conditional probabilities as follows [22]:

p(x) =
T
Π

t=1
p( xt| x1, x2, . . . . . . , xt−1) (1)

where x, denoted by x = {x1, x2, . . . . . . , xt}, is a sequence of data, and T is the total number
of input sampling.

The main ingredient of WaveNet are causal convolutions in Figure 3. Obviously,
since WaveNet models do not have recurrent connections, it can efficiently avoid the
vanishing/exploding gradient problem and typically train faster than the standard RNN
and LSTM or GRU, especially when applied to very long sequences. However, for the
WaveNet model with convolutional layers, many layers or large filters are required to
increase the receptive field. Hence, the dilated causal convolutional layers were further
applied by skipping input values with a certain step.
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Figure 3. Causal convolutional layers.

In Figure 4, a stack of dilated causal convolutional layers with the dilation being
{1, 2, 4, 8} and the filter length being 2 are demonstrated. Moreover, the residual block is
illustrated in Figure 5 based on dilated causal convolutional layers. The one-way WaveNet
architecture is illustrated in Figure 6. Especially, in the one-way WaveNet, the residual block
and skip connections were employed throughout the network to speed up convergence
and enable training of much deeper models.
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Although the one-way WaveNet in Figure 6 can process long-term dependencies with
high training efficiency, it only has access to learn sequential data through forward direction
instead of forward and backward passes, leading to low accuracy for the VSSE results.

In order to solve this problem, a Bi-WaveNet is presented. The Bi-WaveNet is a bi-
directional form of one-way WaveNet that learns the input sequence in both the forward
and backward directions via forward network and backward network, respectively. Note
that the backward residual structure is the same as the forward residual structure. To be
specific, if the input sequence data are denoted as {v1, v2, . . . . . . , vt}, where t is the length
of a sequence in one batch, the forward WaveNet network flows in the forward direction
and calculates the forward hidden state {hf1, hf2, . . . . . . , hft}. Meanwhile, the input {v1,
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v2, . . . . . . , vt} is reversed to {vt, . . . . . . , v2, v1}, and then the backward WaveNet network
flows in the backward direction and calculates the backward hidden state {hb1, hb2, . . . . . . ,
hbt}. Then, the final output of the Bi-WaveNet, as presented in Equation (2), is achieved
according to the hidden states {hf1, hf2, . . . . . . , hft} and {hb1, hb2, . . . . . . , hbt}.[

h f 1, h f 2, . . . . . . , h f t
hb1, hb2, . . . . . . , hbt

]
(2)

In this paper, the Bi-WaveNet was adopted to explore long-term information in both
backward and forward directions from the monitored voltage. As we illustrate later, this
helps extract deep futures to improve the final accuracy of the VSSE results.
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2.4. Proposed Bi-WaveNet Model for VSSE Solutions

As demonstrated in Figure 7, the deep learning architecture of a Bi-WaveNet-based
model was proposed for VSSE solutions. In the following illustration, a detail example is
demonstrated for specific process.



Energies 2022, 15, 2273 7 of 17

Energies 2022, 15, x FOR PEER REVIEW 7 of 17 
 

 

2.4. Proposed Bi-WaveNet Model for VSSE Solutions 
As demonstrated in Figure 7, the deep learning architecture of a Bi-WaveNet-based 

model was proposed for VSSE solutions. In the following illustration, a detail example is 
demonstrated for specific process. 

 
Figure 7. The architecture of the Bi-WaveNet-based model. 

In general, the input for the Bi-WaveNet-based model is the measured data via mon-
itor 1, 2, ……, m at the monitored buses, and the output is the VSSE results for the non-
monitored buses. If the total number of the non-monitored buses to be estimated is n, it is 
common that m < n. Here, the three-phase voltage magnitude at each monitored node are 
required. At time k, the Bi-WaveNet-based model input is Vk, as presented in the following 
Equation (3). The corresponding output is Sk, as illustrated in Equation (5). The proposed 
Bi-WaveNet is responsible for establishing the nonlinear and deep relationship between 
the input Vk and the output Sk. 

1 2

1 2

1 2

1 2

[ , , , ]

   

k k k k T
m

Tk k k
a a am
k k k
b b bm
k k k
c c cm

V V V V

V V V
V V V
V V V

= ⋅⋅⋅⋅⋅⋅

 ⋅ ⋅⋅ ⋅ ⋅ ⋅
 

= ⋅⋅⋅⋅⋅⋅ 
 ⋅ ⋅⋅ ⋅ ⋅ ⋅ 

 (3)

where at time k, 1
kV , 2

kV , ……, 
k
mV  denote the measured voltage via monitor 1, 2, ……, 

m at the metered buses; 1
k
aV , 1

k
bV , and 1

k
cV  are the voltage amplitudes of phases a, b, and 

c collected by monitor 1, respectively; 2
k
aV , 2

k
bV , and 2

k
cV  are the voltage amplitudes of 

phases a, b, and c collected by monitor 2, respectively; and, similarly, 
k
amV , 

k
bmV , and 

k
cmV  

are the voltage amplitudes of phases a, b, and c collected by monitor m, respectively. 
Furthermore, each element in Equation (3) can be written as: 

_1 _ 2 _

_1 _ 2 _

_1 _ 2 _

[ , , , ]

[ , , , ]

[ , , , ]

k k k k T
am am am am T

k k k k T
bm bm bm bm T

k k k k T
cm cm cm cm T

V v v v

V v v v

V v v v

= ⋅ ⋅ ⋅ ⋅ ⋅⋅

= ⋅ ⋅ ⋅ ⋅ ⋅⋅

= ⋅ ⋅ ⋅ ⋅ ⋅⋅

 (4)

where T is called time steps, and it can be defined as the product of the number of sam-

pling points in one cycle and the number of periods; for monitor m, the _1
k
amV , _ 2

k
amV , 

……, _
k
am TV  denote the measured voltage magnitude of phase a at time steps 1, 2, ……, 

T; and similarly, the _1
k
bmV , _ 2

k
bmV , ……, and _

k
bm TV  denote the measured voltage mag-

nitude of phase b at time steps 1, 2, ……, and T; _1
k
cmV , _ 2

k
cmV , ……, and _

k
cm TV  denote the 

measured voltage magnitude of phase c at time steps 1, 2, ……, and T. 

Figure 7. The architecture of the Bi-WaveNet-based model.

In general, the input for the Bi-WaveNet-based model is the measured data via monitor
1, 2, . . . . . . , m at the monitored buses, and the output is the VSSE results for the non-
monitored buses. If the total number of the non-monitored buses to be estimated is n, it is
common that m < n. Here, the three-phase voltage magnitude at each monitored node are
required. At time k, the Bi-WaveNet-based model input is Vk, as presented in the following
Equation (3). The corresponding output is Sk, as illustrated in Equation (5). The proposed
Bi-WaveNet is responsible for establishing the nonlinear and deep relationship between
the input Vk and the output Sk.

Vk = [Vk
1 , Vk

2 , . . . . . . , Vk
m]

T

=

 Vk
a1

Vk
b1

Vk
c1

∣∣∣∣∣∣
Vk

a2
Vk

b2
Vk

c2

∣∣∣∣∣∣
. . . . . .
. . . . . .
. . . . . .

∣∣∣∣∣∣
Vk

am
Vk

bm
Vk

cm

T
(3)

where at time k, Vk
1 , Vk

2 , . . . . . . , Vk
m denote the measured voltage via monitor 1, 2, . . . . . . ,

m at the metered buses; Vk
a1, Vk

b1, and Vk
c1 are the voltage amplitudes of phases a, b, and c

collected by monitor 1, respectively; Vk
a2, Vk

b2, and Vk
c2 are the voltage amplitudes of phases

a, b, and c collected by monitor 2, respectively; and, similarly, Vk
am, Vk

bm, and Vk
cm are the

voltage amplitudes of phases a, b, and c collected by monitor m, respectively.
Furthermore, each element in Equation (3) can be written as:

Vk
am = [vk

am_1, vk
am_2, . . . . . . , vk

am_T ]
T

Vk
bm = [vk

bm_1, vk
bm_2, . . . . . . , vk

bm_T ]
T

Vk
cm = [vk

cm_1, vk
cm_2, . . . . . . , vk

cm_T ]
T

(4)

where T is called time steps, and it can be defined as the product of the number of sampling
points in one cycle and the number of periods; for monitor m, the Vk

am_1, Vk
am_2, . . . . . . ,

Vk
am_T denote the measured voltage magnitude of phase a at time steps 1, 2, . . . . . . , T;

and similarly, the Vk
bm_1, Vk

bm_2, . . . . . . , and Vk
bm_T denote the measured voltage magnitude

of phase b at time steps 1, 2, . . . . . . , and T; Vk
cm_1, Vk

cm_2, . . . . . . , and Vk
cm_T denote the

measured voltage magnitude of phase c at time steps 1, 2, . . . . . . , and T.

Sk = [Sk
bus.1, Sk

bus.2, . . . . . . , Sk
bus.n]

T
(5)

where Sk is the calculated VSSE results of the non-monitored buses 1~n at time k via the
Bi-WaveNet model (illustrated in Figure 7); in detail, at time k, the Sk

bus.1, Sk
bus.2, . . . . . . , and

Sk
bus.n are the VSSE results of the non-monitored buses 1~n, respectively.

To be specific, the shape of Vk is defined as [Batch_size, T, m × 3], where the Batch_size
denotes the number of periods for the measured voltage in one batch, and T refers to
the sampling points in one cycle. According to Figure 7, the Vk is directly fed into the
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bidirectional residual structure, where the Vk shall be reversed to Vk′ , according to the
following Equations (6) and (7).

Vk′ = [Vk
m, . . . . . . , Vk

2 , Vk
1 ]

T
(6)

Vk′
am = [vk

am_t, . . . . . . , vk
am_2, vk

am_1]
T

Vk′
bm = [vk

bm_t, . . . . . . , vk
bm_2, vk

bm_1]
T

Vk′
cm = [vk

cm_t, . . . . . . , vk
cm_2, vk

cm_1]
T

(7)

In detail, the Vk is sent to the forward residual structure, and then the forward hidden
state Hk

f =
{

h f 1, h f 2, . . . . . . , h f t

}
is obtained via the L layers’ forward residual structure.

Meanwhile, the Vk′ is introduced to the backward residual structure, and then the backward
hidden state Hk′ = {hbt, . . . . . . , hb2, hb1} is obtained via the L layers’ backward residual
structure. After, the Hk′ is further reversed to Hk

b = {hb1, hb2, . . . . . . , hbt}. Finally, the concat
transform is adopted to combine the Hk

f and the Hk
b according to Equation (2), which is

also regarded as the output of the bidirectional residual structure Ck. Here, the shape of
Ck is designed as [Batch_size, T, ndilated × 2], where ndilated denotes the number of dilated
convoluted layer’s neurons of forward residual structure or backward residual structure.

Ck =

[
h f 1, h f 2, . . . . . . , h f t
hb1, hb2, . . . . . . , hbt

]
(8)

After, the output Ck is further sent to the ReLU activation unit and the 1 × 1 convo-
lution layer, which has a size of 1 × 1 and a depth of 2 (bidirectional residual structure).
Here, the shape of Ck

conv1 (namely, the output of the 1 × 1 convolution layer in Figure 7),
is [Batch_size, T, n1D conv], where n1D conv represents the number of neurons of the 1 × 1
convolution layer.

Next, the output, Ck
conv1, is further sent to another ReLU activation unit and the 1 ×

1 convolution layer for nonlinear transformer. Here, the shape of Ck
conv2 is [Batch_size, T,

nbuses × ncategories], where nnodes is the number of the non-monitored buses to be estimated
in the whole power system, and the ncategories is the categories number indicating the VSSE
results. According to Figure 2, it is obvious that ncategories is equal to 6.

Then, the Reshape layer is adopted to shape Ck
conv2 to Rk, which has a shape that is

[Batch_size, T, nbuses, ncategories], as expected by SoftMax. Finally, the ncategories (namely, the
last dimension of Rk in Figure 7) is introduced to the SoftMax layer, where the Argmax
operation is employed to determine the VSSE results according to measurements via limited
monitors in the power system.

As a result, the VSSE results of the non-monitored buses can be directly estimated only
by using the measured voltage of the monitored buses. The whole flow chart for the VSSE
in practical field is demonstrated in Figure 8. The step-by-step procedure is illustrated
as follows.

Step 1: For monitored buses, the original three-phase voltages are acquired and
sampled to form a series of time sequence data, which is denoted as [Vk

1 , Vk
2 , . . . . . . , Vk

m] in
Equation (3). In our studies, all data were from simulations, whereas, in reality, the data
can be acquired from power quality monitors, voltage sensors, or other measurement units.

Step 2: The data [Vk
1 , Vk

2 , . . . . . . , Vk
m] are then divided into three parts: training

data, validation data, and testing data. The training data are employed to train presented
deep learning model as presented in Figure 7, where parameters or hyper-parameters are
optimized using the back-propagation through time strategy [23]. Note that this training
stage is an offline process. After, the validation data are applied to assess the whole
performance of the trained model. If the performance is satisfied, go on to next step for
online estimation with the new data. Otherwise, redefine the model and repeat the process
until a satisfactory performance is achieved.
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Step 3: Since the model has already be trained well with the optimized parameters or
hyper-parameters in Step 2, it can be applied directly in the practical field for estimating
voltage sag states [Sk

bus.1, Sk
bus.2, . . . . . . , Sk

bus.n) of non-monitored buses 1~n as described
in Equation (5). To be specific, the data [Vk

1 , Vk
2 , . . . . . . , Vk

m] are immediately sent to the
well-trained deep learning model as presented in Figure 7. Here, the [Vk

1 , Vk
2 , . . . . . . , Vk

m]
is batched and normalized, and then, the deep and the multi-aspect characteristics are
extracted automatically without requiring any prerequisites. It is necessary to mention
that the original measured voltages, without restructuring or redesigning, can be directly
used for VSSE estimation with high accuracy. The main reason lies in the fact that the
presented Bi-WaveNet-based model can explore the long-term and long-range temporal
dependencies in both the forward and backward directions.
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3. Experimentation and Results

In the following section, the performance of the proposed methodology through the
standard IEEE 30-bus system is presented, and meanwhile, the performance is analyzed
and compared with other methods or models.

3.1. Data Set Description

As shown in Figure 9, the IEEE 30-bus system with six sources and 30 buses was
adopted to confirm the performance of our proposed model. Here, it should be mentioned
that both the number and placement of monitors are definitely important for satisfactory
VSSE results. Actually, the best VSSE results will be achieved if monitors are installed at
all buses. However, it is not economical and unfeasible in the practical field. It may be
reasonable to install only a limited number of meters to meet the requirement that the
whole power system is observable. Referring to [24], we chose 4 m for observability of
the whole power network, which were distributed at bus 2, bus 15, bus 21, and bus 25 (as
highlighted by red in Figure 9).
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In the following studied cases, all data were generated through MATLAB software
simulation, where fault impedance, fault type, and fault location could be considered [14].
For each simulation, fault resistance, ground resistance, sag duration, active power, and
reactive power were randomly changed within a certain range. In detail, the range of
the fault resistance was within [0.1 Ω, 10 Ω], the range of ground resistance was within
[0.01 Ω, 5 Ω], the range of sag duration was within [10 ms, 0.6 s], and the range for ac-
tive power and reactive power was within [0.95 p.u., 1.05 p.u.], respectively. Numerous
simulations were operated to generate the data set.

All data were then complementarily separated into three parts: training set, validation
data, and testing set. Here, 70% of the simulated data were adopted for model training.
After training, 20% of the simulated data were employed to access performance. Finally,
if the performance was satisfied, 10% of the simulated data were employed for testing.
Otherwise, the model should be redefined and the process repeated.

Since voltage sag is mostly caused by faults, the following faults, including single-line
grounded faults (SLGFs), line-to-line faults (LLFs), line-to-line grounded faults (LLFs),
three-phase faults (3PFs), were separately simulated at each line considering different fault
resistances, transition resistance, etc. Specifically, each sample in the data set consisted of a
given input and a corresponding output, where the input meant the input for the proposed
model, and it was represented by measured three-phase voltage at monitored buses via
monitors; meanwhile, the output denoted the output for the proposed model, and it was
represented by the voltage magnitude range at non-monitored buses. The input can be
regarded as a 12-dimensional vector (that is, 3 × 4 = 12), since 4 m were installed in the
IEEE 30-bus system. The output can be regarded as a 22-dimensional vector, if the VSSE at
the other 22 non-monitored buses (that is bus 3, bus 4, bus 6, bus 7, bus 9, bus 10, bus 12,
bus 14, bus 16, bus 17, bus 18, bus 19, bus 20, bus 22, bus 23, bus 24, bus 25, bus 26, bus 27,
bus 28, bus 29, and bus 30) were determined.

3.2. Verification for Effectiveness of the Proposed Model

In this paper, the method was examined using the TensorFlow software with Anaconda
Python 3.6.8 [23]. All tests were conducted on a workstation that was equipped with a GTX
1080 Ti × 2 graphics processing unit and an Intel i7-8700K processor.

It has already been confirmed that cross-validation is beneficial to alleviate or even
avoid model overfitting problems. In other words, cross-validation is useful for examining
generalization performance for new data [25]. Hence, in the following test, a five-fold
cross-validation methodology was adopted to verify the effectiveness of the presented deep
learning model in Figure 7. To be specific, all of the generated data set in Section 3.1. was
firstly separated into complementary subsets. Then, the above subsets were combined in
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different ways, where some parts were used to train the model, and the remaining parts
were employed to validate the model.

Furthermore, in order to evaluate the VSSE’s performance from the perspective of
quantitative analysis, Accuracy and Loss are defined in Equations (9) and (10).

Accuracy (%) =
Ncorrect

Ntotal
× 100 (9)

where Ncorrect is the number of correct VSSE results, and Ntotal is the number of total tests.

Loss = −
M

∑
i=1

L

∑
l=1

si
l log(ŝi

l) (10)

where M and L are the number of samples and VSSE categories, respectively. The si
l is equal

to 1 if the sample i is classified in correct class l; otherwise, it is equal to 0. The ŝi
l is the

output of SoftMax in Figure 7, and it can be regarded as the probability of sample i being
classified in category l. Obviously, the Loss will become 0, and the Accuracy will reach 100%
if the VSSE estimated results becomes close to real values.

The relationship between epochs and loss for VSSE is indicated in Figure 10. From
Figure 10, it can be seen that the Bi-WaveNet-based model (marked by the blue line)
converged gradually with a steady decreasing loss. In detail, for the Bi-WaveNet-based
model, the loss value achieved 5 × 10−6 with only 10 epochs required. Then, the loss value
approached to 10−8, which can be regarded as the best system performance. These results
demonstrate that not only the Bi-WaveNet-based model could be trained robustly, but it
could also achieve a relatively low loss.
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Further, Figure 11 shows the relationship between epoch and accuracy for the VSSE.
As illustrated in Figure 11, it can be observed that the accuracy was higher than 99.83%
for the Bi-WaveNet-based model (marked by the blue line). However, in [10], if phase
voltages va, vb, and vc were used directly as model inputs, the accuracy for the method
in [10] could only reach 17.7%. This is because, in Reference [10], the phase voltages must
be restructured before being fed into the CNN network so as to take advantage of the
structure recognition capacity in CNNs. Whereas, for our proposed Bi-WaveNet-based
network, good performance can be achieved even if the measured data, va, vb, and vc, are
adopted directly without restricting or design, reducing complexity.
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Moreover, further comparisons with other methods were also analyzed to examine
the performance of our presented methodology. In [9], a Bayesian filtering method was
proposed to solve the VSSE of non-monitored buses, whose accuracy was 97.7%, where
fault impedance, fault location, and other prerequisites were required. In order to reduce
the requirement of prior conditions for VSSE estimation, in [26], a voltage sag estimation
method by requiring system impedance was proposed. Whereas, for our proposed Bi-
WaveNet-based model, only by using the original measured voltages through limited
monitors, without any prerequisite or other information, the VSSE can be directly estimated
with accuracy achieving 99.83%.

In order to further confirm the performance of the presented Bi-WaveNet model, it
was compared to the bidirectional gated recurrent unit (Bi-GRU)-based model and the
one-way WaveNet-based model, respectively. As clearly demonstrated in Figures 10 and 11,
the following conclusions can be further drawn:

(1) From Figure 10, the loss with the proposed Bi-WaveNet model was less than that of the
model based on Bi-GRU and one-way WaveNet. Specifically, the minimum loss value
of the Bi-WaveNet model could achieve 1 × 10−8, whereas, the minimum loss value
of Bi-GRU model and one-way WaveNet could only achieve 5 × 10−4 and 1 × 10−5,
respectively. This means that the deep relationship or function between the monitored
voltage and VSSE results can be more accurately extracted by the Bi-WaveNet model,
consequently obtaining higher accuracy for VSSE. The main reason for this result is
that the Bi-WaveNet can process both forward and backward information;

(2) The accuracy of the one-way WaveNet-based model (marked by the red line) was
nearly 96%, approximately 4% lower than the Bi-WaveNet-based network (marked
by the blue line). This is because the Bi-WaveNet-based network can learn input
sequential data in both the forward and backward directions, leading to high accuracy.

(3) The accuracy of the Bi-GRU-based model was nearly 98% (marked by the purple line),
approximately 2% lower than the Bi-WaveNet-based network (marked by the blue
line). This was due to the fact that the WaveNet network, based on causal convolu-
tions (as illustrated in Figure 3) and dilated causal convolutions (as demonstrated
in Figure 4), can exhibit very large receptive fields to deal with long-range temporal
dependencies, resulting in high accuracy.

(4) Compared with the Bi-GRU (marked by the purple line) and one-way WaveNet
(marked by the red line), the convergence speed of the Bi-WaveNet-based model accel-
erated dramatically. This was because the proposed Bi-WaveNet consists of stacked
dilated causal convolution layers, and each causal convolutional layer can process
its input in parallel, making the proposed Bi-WaveNet avoid vanishing/exploding
gradient problems efficiently, leading to the fastest convergence rate.
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Furthermore, Figure 12 demonstrates a graphical illustration of the presented approach
if a three-phase grounded short circuit occurs at line 16 in an IEEE 30-bus system. Here,
in Figure 12a, the “N” denotes the measured residual voltage via meters at bus 2, bus 15,
bus 21, and bus 25 through simulation. Meanwhile, by using MATLAB/Simulink, the
“•” is the simulated voltage magnitude at other non-monitored buses (that is bus 3, bus
4, bus 6, bus 7, bus 9, bus 10, bus 12, bus 14, bus 16, bus 17, bus 18, bus 19, bus 20, bus 22,
bus 23, bus 24, bus 25, bus 26, bus 27, bus 28, bus 29, and bus 30). Furthermore, all these
simulated voltage magnitudes at non-monitored buses (denoted by “•”) can be divided
into six categories according to Figure 2, which can be considered as theoretical values.
Moreover, in Figure 12b, the point (denoted by “*”) is the theoretical category according to
Figure 12a, and the bar is the estimated category via our proposed model in Figure 7. From
Figure 12, it is obvious that the VSSE results at the non-monitored buses can be accurately
estimated via limited monitors in power system.
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Figure 12. The demonstrated result of proposed model: (a) the measured voltage magnitude via
meters and simulated voltage magnitude at other non-monitored buses; (b) the theoretical category
and estimated category of non-monitored buses.

In order to further evaluate the performance of the proposed model in Figure 7, another
set of 2400 new samples, which has never been used before, was employed. The confusion
matrix is demonstrated in Figure 13, with an overall accuracy of 99.92%. Moreover, as
clearly shown in Figure 13, we can further analyze the distribution of faulted estimation
of the VSSE results. It was obvious that four out of the six categories can be estimated
with 100% accuracy; meanwhile, the VSSE accuracies of the other two categories were both
99.75%. In detail, the first row of Figure 13 suggests that for the true category T1, there
should be, in total, 399 + 1 = 400 voltage sags located within the voltage magnitude range



Energies 2022, 15, 2273 14 of 17

being greater than or equal to 0.9 p.u. However, 399 out of 400 were correctly recognized,
and the other one was in the fault estimated range [0.8 p.u., 0.9 p.u.). The fifth column
in Figure 13 indicates that for the estimated category E5, the voltage magnitude range
was [0.5 p.u., 0.6 p.u.), the estimated voltage magnitude ranges were accurately recognized
with 99.75% certainty: ( 400

400+1 × 100% = 99.75%). Here, in 0.25% ( 1
400 × 100% = 0.25%) of

the tests, the true VSSE result should be (0 p.u., 0.5 p.u.), which deviated from the estimated
range [0.5 p.u., 0.6 p.u.).
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3.3. A Comparison among Different Monitor Placement

The fundamental condition for satisfactory VSSE performance of proposed model in
Figure 7, is that the measured voltages input [Vk

1 , Vk
2 , . . . . . . , Vk

m] via monitors 1~m, as
described in Equation (3), can detect all sag in the estimated power system. In other words,
only a limited number of monitors are distributed at some specific buses to satisify the
requirement of observability. In our work, the methodology in [24] is chosen as reference
for monitor placement. Moreover, the impacts of different monitor placement on accuracy
of VSSE results are verified, as demonstrated in Table 1.

Table 1. The accuracy for different monitor placement.

Monitor Placement Number of Monitors Accuracy of VSSE Result (%)

18, 24, 25 3 63.21
15, 22, 25 3 75.90
15, 22, 27 3 86.33

2, 15, 21, 25 4 99.83
2, 15, 18, 21, 25 5 99.87
2, 15, 16, 21, 25 5 99.91

2, 5, 15, 16, 21, 25 6 99.95

As apparently illustrated in Table 1, the following conclusions can be drawn:

(1) In general, along with increasing the number of monitors, the accuracy of the VSSE
results improved sharply. The main reason lies in the fact that more monitors means
redundant data and sufficient information;

(2) However, once the number of monitors attains a certain value, the accuracy of the
VSSE results improves slowly, even if the number further increases. Therefore, there
should be a balance between installation costs, computational burden, accuracy, and
complexity. Here, we chose the number of monitors to be four;

(3) Both the number of monitors and the detailed allocation of them are equally important.
For the allocation of 18, 24, and 25 and the allocation of 15, 22, and 25, different
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allocations with the same number of monitors produced different accuracies in the
VSSE results. Whereas, for the placement 2, 15, 16, 21, and 25 and the placement 2,
15, 18, 21, and 25, it was observed that different allocations with the same number of
monitors achieved similar accuracies in the VSSE results. This is because the detailed
placement of monitors should be distributed to ensure the observability of the whole
power network;

(4) For monitor placement 18, 24, and 25, the accuracy of the VSSE results was unsatis-
factory. The reason lies in the fact that this monitor placement could not ensure the
whole system’s observability, resulting in missing data and insufficient information.

4. Discussion

The VSSE problem was solved from the perspective of data-driven methods, where
a deep learning architecture based on the Bi-WaveNet was adopted. In this way, only by
directly using original measured voltages through monitors, high accuracy for a VSSE
solution can be achieved without restructuring or designing the raw monitored data. The
accuracy and robustness were examined in the IEEE 30-bus system. However, there are
still some aspects regarding the applicability needed to be further discussed:

(1) Since abundant high-quality data may be a little difficult to be collected, deep learning
methodology depending on small amounts of data will be studied in our future work;

(2) The monitor placement is important for satisfactory VSSE results. In the further
studies, efficient monitor placement, including the number of monitors and their best
allocations, will be considered.

5. Conclusions

In this paper, a data-driven approach to estimating voltage sag state in sparsely moni-
tored power systems was presented. In the approach, a deep learning architecture using a
bidirectional WaveNet model was proposed, where long-term and long-range temporal
dependencies in both the forward and backward directions were explored. Furthermore,
the effectiveness and viability of the proposed model were confirmed. The following
conclusions can be drawn:

(1) Only by using measured original voltages via limited monitors, the proposed deep
learning architecture via bidirectional WaveNet can simultaneously estimate voltage
sag states at multiple non-monitored buses without any prior conditions;

(2) The experiments on IEEE 30-bus system confirmed that the performance of the pre-
sented model was satisfactory. The accuracy of the VSSE result was over 99.83%;

(3) A comparison among different models, including a bidirectional GRU-based model,
a one-way-WaveNet-based model, and a bidirectional WaveNet-based model, was
also conducted. The results indicate that the proposed bidirectional WaveNet-based
model achieved the highest accuracy and quickest convergence speed.

(4) A comparison among different monitor placements was demonstrated. It illustrated
that the optimal number of monitors and their best placement to ensure observability
of the power network is a basic requirement to achieve satisfactory accuracy.
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