Multiple Exciton Generation Solar Cells: Numerical Approaches of Quantum Yield Extraction and Its Limiting Efficiencies
Abstract
:1. Introduction
2. Theory
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Green, M.A. Third generation photovoltaics: Solar cells for 2020 and beyond. Phys. E Low-Dimens. Syst. Nanostruct. 2002, 14, 65–70. [Google Scholar] [CrossRef]
- Nozik, A.J. Quantum dot solar cells. Phys. E Low-Dimens. Syst. Nanostruct. 2002, 14, 115–120. [Google Scholar] [CrossRef]
- Luque, A.; Martí, A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 1997, 78, 5014–5017. [Google Scholar] [CrossRef]
- Jacak, J.E.; Jacak, W.A. Routes for Metallization of Perovskite Solar Cells. Materials 2022, 15, 2254. [Google Scholar] [CrossRef]
- Kolodinski, S.; Werner, J.H.; Wittchen, T.; Queisser, H.J. Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells. Appl. Phys. Lett. 1993, 63, 2405–2407. [Google Scholar] [CrossRef]
- Werner, J.H.; Kolodinski, S.; Queisser, H.J. Novel optimization principles and efficiency limits for semiconductor solar cells. Phys. Rev. Lett. 1994, 72, 3851–3854. [Google Scholar] [CrossRef]
- Werner, J.H.; Brendel, R.; Queisser, H.J. New upper efficiency limits for semiconductor solar cells. In Proceedings of the IEEE 1st World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, USA, 5–9 December 1994; pp. 1742–1745. [Google Scholar]
- Werner, J.H.; Brendel, R.; Queisser, H.J. Radiative efficiency limit of terrestrial solar cells with internal carrier multiplication. Appl. Phys. Lett. 1995, 67, 1028–1030. [Google Scholar] [CrossRef]
- Brendel, R.; Werner, J.H.; Queisser, H.J. Thermodynamic efficiency limits for semiconductor solar cells with carrier multiplication. Sol. Energy Mater. Sol. Cells 1996, 41–42, 419–425. [Google Scholar] [CrossRef]
- De Vos, A.; Desoete, B. On the ideal performance of solar cells with larger-than-unity quantum efficiency. Sol. Energy Mater. Sol. Cells 1998, 51, 413–424. [Google Scholar] [CrossRef]
- Schaller, R.D.; Sykora, M.; Pietryga, J.M.; Klimov, V.I. Seven Excitons at a Cost of One: Redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett. 2006, 6, 424–429. [Google Scholar] [CrossRef]
- Beard, M.C.; Ellingson, R.J. Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion. Laser Photonics Rev. 2008, 2, 377–399. [Google Scholar] [CrossRef]
- Kroupa, D.M.; Pach, G.F.; Vörös, M.; Giberti, F.; Chernomordik, B.D.; Crisp, R.W.; Nozik, A.J.; Johnson, J.C.; Singh, R.; Klimov, V.I.; et al. Enhanced Multiple Exciton Generation in PbS|CdS Janus-like Heterostructured Nanocrystals. ACS Nano 2018, 12, 10084–10094. [Google Scholar] [CrossRef]
- Marri, I.; Ossicini, S. Multiple exciton generation in isolated and interacting silicon nanocrystals. Nanoscale 2021, 13, 12119. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, H.M.; Fischer, S.; Prezhdo, O.V. Decoherence-induced surface hopping. J. Chem. Phys. 2012, 136, 22A545. [Google Scholar] [CrossRef] [PubMed]
- Beard, M.C.; Midgett, A.G.; Law, M.; Semonin, O.E.; Ellingson, R.J.; Nozik, A.J. Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett. 2009, 9, 836–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrler, B.; Musselman, K.P.; Böhm, M.L.; Morgenstern, F.S.F.; Vaynzof, Y.; Walker, B.J.; MacManus-Driscoll, J.L.; Greenham, N.C. Preventing Interfacial Recombination in Colloidal Quantum Dot Solar Cells by Doping the Metal Oxide. ACS Nano 2013, 7, 4210–4220. [Google Scholar] [CrossRef] [PubMed]
- Ip, A.H.; Thon, S.M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Levina, L.; Rollny, L.R.; Carey, G.H.; Fischer, A.; et al. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 2012, 7, 577–582. [Google Scholar] [CrossRef]
- Li, H.; Zhitomirsky, D.; Dave, S.; Grossman, J.C. Toward the Ultimate Limit of Connectivity in Quantum Dots with High Mobility and Clean Gaps. ACS Nano 2016, 10, 606–614. [Google Scholar] [CrossRef]
- Kershaw, S.V.; Rogach, A.L. Carrier Multiplication Mechanisms and Competing Processes in Colloidal Semiconductor Nanostructures. Materials 2017, 10, 1095. [Google Scholar] [CrossRef]
- Beard, M.C. Multiple Exciton Generation in Semiconductor Quantum Dots. J. Phys. Chem. Lett. 2011, 2, 1282–1288. [Google Scholar] [CrossRef] [PubMed]
- Nair, G.; Bawendi, M.C. Carrier multiplication yields of CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy. Phys. Rev. B 2007, 76, 081304. [Google Scholar] [CrossRef] [Green Version]
- Schaller, R.D.; Petruska, M.A.; Klimov, V.I. Effect of electronic structure on carrier multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals. Appl. Phys. Lett. 2005, 87, 253102. [Google Scholar] [CrossRef] [Green Version]
- Schaller, R.D.; Pietryga, J.M.; Klimov, V.I. Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit. Nano Lett. 2007, 7, 3469–3476. [Google Scholar] [CrossRef] [Green Version]
- Hanna, M.C.; Nozik, A.J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 2006, 100, 074510. [Google Scholar] [CrossRef]
- Klimov, V.I. Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication. Appl. Phys. Lett. 2006, 89, 123118. [Google Scholar] [CrossRef] [Green Version]
- Su, W.A.; Shen, W.Z. A statistical exploration of multiple exciton generation in silicon quantum dots and optoelectronic application. Appl. Phys. Lett. 2012, 100, 071111. [Google Scholar] [CrossRef] [Green Version]
- Hokins, R.F. (Ed.) Chapter 2–Delta Functions: Introduction to Generalized Functions. In The Dirac Delta Function, 2nd ed.; Woodhead Publishing: Sawston, UK, 2011; pp. 26–46. ISBN 9781904275398. [Google Scholar] [CrossRef]
- Aliukov, S.; Alabugin, A.; Osintsev, K. Review of Methods, Applications and Publications on the Approximation of Piecewise Linear and Generalized Functions. Mathematics 2022, 10, 3023. [Google Scholar] [CrossRef]
- Beard, M.C.; Johnson, J.C.; Luther, J.M.; Nozik, A.J. Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140412. [Google Scholar] [CrossRef]
- Semonin, O.S.; Luther, J.; Choi, S.; Chen, H.-Y.; Gao, J.; Nozik, A.; Beard, M. Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell. Science 2011, 334, 1530–1533. [Google Scholar] [CrossRef]
- Davis, N.; Böhm, M.L.; Tabachnyk, M.; Wisnivesky-Rocca-Rivarola, F.; Jellicoe, T.C.; Ducati, C.; Ehrler, B.; Greenham, N.C. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat. Commun. 2015, 6, 8259. [Google Scholar] [CrossRef] [Green Version]
- Böhm, M.L.; Jellicoe, T.C.; Tabachnyk, M.; Davis, N.; Wisnivesky-Rocca-Rivarola, F.; Ducati, C.; Ehrler, B.; Bakulin, A.A.; Greenham, N.C. Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%. Nano Lett. 2015, 15, 7987–7993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodwin, H.; Jellicoe, T.; Davis, N.; Böhm, M. Multiple exciton generation in quantum dot-based solar cells. Nanophotonics 2018, 7, 111–126. [Google Scholar] [CrossRef]
- Kurzweg, U.H. Available online: https://mae.ufl.edu/uhk/HEAVISIDE.pdf (accessed on 1 November 2020).
- Zhu, L.; Lee, K.-H.; Yamaguchi, M.; Akiyama, H.; Kanemitsu, Y.; Araki, K.; Kojima, N. Analysis of nonradiative recombination in quantum dot solar cells and materials. Prog. Photovolt. Res. Appl. 2019, 27, 971–977. [Google Scholar] [CrossRef]
- Lee, J.; Honsberg, C.B. Numerical Analysis of the Detailed Balance of Multiple Exciton Generation Solar Cells with Nonradiative Recombination. Appl. Sci. 2020, 10, 5558. [Google Scholar] [CrossRef]
- Lee, J. Multiple Exciton Generation Solar Cells: Numerical Approaches of Quantum Yield Extraction and its Limiting Efficiencies. arXiv 2021, arXiv:2101.01525. [Google Scholar]
Without fNR | With fNR | ||||
---|---|---|---|---|---|
Eg (eV) | η (%) | fNR | Eg (eV) | η (%) | |
IQY (σ = 0.004) | 0.77 | 44.6 | N/A | N/A | N/A |
σ = 0.1, Eth = 2.03 Eg | 1.01 | 41.5 | 0.40 | 1.01 | 40.1 |
σ = 0.1, Eth = 2.4 Eg | 1.03 | 34.5 | 0.040 | 1.14 | 30.8 |
σ = 0.2, Eth = 2.8 Eg | 1.20 | 31.8 | 0.020 | 1.31 | 28.3 |
σ = 0.3, Eth = 3.1 Eg | 1.28 | 31.2 | 0.0133 | 1.37 | 27.6 |
σ = 0.4, Eth = 3.4 Eg | 1.30 | 31.0 | 0.01 | 1.39 | 27.3 |
σ = 0.5, Eth = 3.5 Eg | 1.31 | 31.0 | 0.008 | 1.40 | 27.2 |
With fNR | |||
---|---|---|---|
σ1 = 2 × 10−3 | fNR | Eg (eV) | η (%) |
σ = 0.01, Eth = 2.03 Eg | 0.200 | 1.20 | 34.7 |
σ = 0.1, Eth = 2.4 Eg | 0.020 | 1.30 | 29.1 |
σ = 0.2, Eth = 2.8 Eg | 0.010 | 1.37 | 27.6 |
σ = 0.3, Eth = 3.1 Eg | 0.0067 | 1.39 | 27.1 |
σ = 0.4, Eth = 3.4 Eg | 0.005 | 1.41 | 26.8 |
σ = 0.5, Eth = 3.5 Eg | 0.004 | 1.42 | 26.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Ahn, C.-H. Multiple Exciton Generation Solar Cells: Numerical Approaches of Quantum Yield Extraction and Its Limiting Efficiencies. Energies 2023, 16, 993. https://doi.org/10.3390/en16020993
Lee J, Ahn C-H. Multiple Exciton Generation Solar Cells: Numerical Approaches of Quantum Yield Extraction and Its Limiting Efficiencies. Energies. 2023; 16(2):993. https://doi.org/10.3390/en16020993
Chicago/Turabian StyleLee, Jongwon, and Chi-Hyung Ahn. 2023. "Multiple Exciton Generation Solar Cells: Numerical Approaches of Quantum Yield Extraction and Its Limiting Efficiencies" Energies 16, no. 2: 993. https://doi.org/10.3390/en16020993
APA StyleLee, J., & Ahn, C.-H. (2023). Multiple Exciton Generation Solar Cells: Numerical Approaches of Quantum Yield Extraction and Its Limiting Efficiencies. Energies, 16(2), 993. https://doi.org/10.3390/en16020993