Fault Diagnosis for PV Modules Based on AlexNet and Symmetrized Dot Pattern
Abstract
:1. Introduction
2. Sunlight Photovoltaic Module Platform Testing
2.1. Establishment of Solar Photovoltaic Module Experimental Platform Translation
2.2. Fault Models for Photovoltaic Modules
2.2.1. Normal Fault Type of Solar PV Modules (Type 1)
2.2.2. Poor Connection Fault Type of Solar PV Modules (Type 2)
2.2.3. Cracking Fault Type of Solar PV Modules (Type 3)
2.2.4. Bypass Diode Failure of Solar PV Modules (Type 4)
3. Methodology
3.1. Symmetrized Dot Pattern Coordinate Method
3.2. AlexNet
3.2.1. Dual GPU Training
3.2.2. Dropout Regularization
3.2.3. Local Response Normalization (LRN)
4. Experimental Results
4.1. Raw Waveform Measurement
4.2. Application of Symmetrical Point Coordinate Method in Solar Photovoltaic Modules
4.3. Recognition Results of AlexNet
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barki, D.; Prasad, N.R.; Popuri, S.; Reddy, Y.; Prasad, D.V.B.; Madan, G. Root-cause and Failure Analysis of Solar modules in a Solar Power Plant. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020. [Google Scholar]
- Lv, R.; Tang, J.; Jaubert, J.N.; Xing, G. Highly Accelerated Thermal Cycling Test for New Type of Crystalline Silicon Photovoltaic Modules. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019. [Google Scholar]
- Predan, F.; Franke, A.; Hoehn, O.; Lackner, D.; Helmers, H.; Siefer, G.; Bett, A.W.; Dimroth, F. Wafer-bonded GaInP/GaAs/GaInAs//GaSb Four-Junction Solar Cells with 43.8% Efficiency under Concentration. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020. [Google Scholar]
- Golive, Y.R.; Zachariah, S.; Bhaduri, S.; Dubey, R.; Chattopadhyay, S.; Singh, H.K.; Kottantharayil, A.; Shiradkar, N.; Vasi, J. Analysis and Failure Modes of Highly Degraded PV Modules Inspected during the 2018 All India Survey of PV Module Reliability. In Proceedings of the 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Penang, Malaysia, 6–21 April 2020. [Google Scholar]
- Zhang, J.; Ai, C.; Zheng, Z.; Ding, K.; Chen, X.; Liu, Y.; Chen, L. Module-Level Fault Diagnosis of Photovoltaic Array based on Wireless Sensor Networks and Inverter Activated I–V Scanning. In Proceedings of the 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nangjing, China, 27–29 May 2022. [Google Scholar]
- Ciani, L.; Cristaldi, L.; Faifer, M.; Lazzaroni, M.; Rossi, M. Design and Implementation of a On-Board Device for Photovoltaic Panels Monitoring. In Proceedings of the 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Minneapolis, MN, USA, 6–9 May 2013. [Google Scholar]
- Chine, W.; Mellit, A.; Pavan, A.M.; Lughi, V. Fault Diagnosis in Photovoltaic Arrays. In Proceedings of the 2015 International Conference on Clean Electrical Power (ICCEP), Taormina, Italy, 16–18 June 2015. [Google Scholar]
- Otamendi, U.; Martinez, I.; Quartulli, M.; Olaizola, I.G.; Viles, E.; Cambarau, W. Segmentation of Cell-Level Anomalies in Electroluminescence Images of Photovoltaic Modules. Sol. Energy 2021, 220, 914–926. [Google Scholar] [CrossRef]
- Mellit, A.; Kalogirou, S. Artificial Intelligence and Internet of Things to Improve Efficacy of Diagnosis and Remote Sensing of Solar Photovoltaic Systems: Challenges, Recommendations and Future Directions. Renew. Sustain. Energy Rev. 2021, 143, 110889. [Google Scholar] [CrossRef]
- Alves, R.H.F.; de Deus Junior, G.A.; Marra, E.G.; Lemos, R.P. Automatic Fault Classification in Photovoltaic Modules Using Convolutional Neural Networks. Renew. Energy 2021, 179, 502–516. [Google Scholar] [CrossRef]
- Ali, M.U.; Khan, H.F.; Masud, M.; Kallu, K.D.; Zafar, A. A Machine Learning Framework to Identify the Hotspot in Photovoltaic Module Using Infrared Thermography. Renew. Energy 2021, 208, 643–651. [Google Scholar] [CrossRef]
- Chouay, Y.; Ouassaid, M. An intelligent method for fault diagnosis in photovoltaic systems. In Proceedings of the 2017 International Conference on Electrical and Information Technologies (ICEIT), Rabat, Morocco, 15–18 November 2017. [Google Scholar]
- Juan, R.O.S.; Kim, J. Photovoltaic Cell Defect Detection Model based-on Extracted Electroluminescence Images using SVM Classifier. In Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020. [Google Scholar]
- Lu, S.D.; Wei, S.E.; Wang, M.H.; Sian, H.W.; Kuo, C.C. Hybrid Methodology Based on Extension Neural Network for Fault Diagnosis of Photovoltaic Module. Sens. Mater. 2021, 33, 2925–2941. [Google Scholar] [CrossRef]
- Lu, S.-D.; Wang, M.-H.; Wei, S.-E.; Liu, H.-D.; Wu, C.-C. Photovoltaic Module Fault Detection Based on a Convolutional Neural Network. Processes 2021, 9, 1635. [Google Scholar] [CrossRef]
- Li, L.; Lu, N.; Jiang, H.; Qin, J. Impact of Deep Convolutional Neural Network Structure on Photovoltaic Array Extraction from High Spatial Resolution Remote Sensing Images. Remote Sens. 2023, 15, 4554. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, A.; Gong, C.; Liang, W.; Wang, Z. Fault Diagnosis Method for Photovoltaic Panels Based on Improved ShuffleNet V2 and Infrared Images. In Proceedings of the 2022 7th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 23–26 September 2022. [Google Scholar]
- Fan, X.; Deng, S.; Wu, Z.; Fan, J.; Zhou, C. Spatial Domain Image Fusion with Particle Swarm Optimization and Lightweight AlexNet for Robotic Fish Sensor Fault Diagnosis. Biomimetics 2023, 8, 489. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhang, T.; Li, Q.; Wang, J.; Zhang, W.; Wen, Z.; Tang, Y. Fault Diagnosis of Conventional Circuit Breaker Contact System Based on Time–Frequency Analysis and Improved AlexNet. IEEE Trans. Instrum. Meas. 2021, 70, 3508512. [Google Scholar] [CrossRef]
- Mohiuddin, M.; Islam, M.S.; Islam, S.; Miah, M.S.; Niu, M.-B. Intelligent Fault Diagnosis of Rolling Element Bearings Based on Modified AlexNet. Sensors 2023, 23, 7764. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhao, X.; Tao, B.; Yin, Z. Online Process Monitoring Based on Vibration-Surface Quality Map for Robotic Grinding. IEEE/ASME Trans. Mechatron. 2020, 25, 2882–2892. [Google Scholar] [CrossRef]
- Tan, J.C.; Lim, K.M.; Lee, C.P. Enhanced AlexNet with Super-Resolution for Low-Resolution Face Recognition. In Proceedings of the 2021 9th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 3–5 August 2021. [Google Scholar]
- Shrestha, S.M.; Mallineni, J.K.; Yedidi, K.R.; Knisely, B.; Tatapudi, S.; Kuitche, J.; TamizhMani, G. Determination of Dominant Failure Modes Using FMECA on the Field Deployed c-Si Modules under Hot-Dry Desert Climate. IEEE J. Photovolt. 2015, 5, 174–182. [Google Scholar] [CrossRef]
- Tatapudi, S.; Libby, C.; Raupp, C.; Srinivasan, D.; Kuitche, J.; Bicer, B.; TamizhMani, G. Defect and Safety Inspection of 6 PV Technologies from 56,000 Modules Representing 257,000 Modules in 4 Climatic Regions of the United States. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016. [Google Scholar]
- Brooks, A.E.; Cormode, D.; Cronin, A.D.; Kam-Lum, E. PV System Power Loss and Module Damage Due to Partial Shade and Bypass Diode Failure Depend on Cell Behavior in Reverse Bias. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015. [Google Scholar]
- Yang, J.; Yan, R. A Multidimensional Feature Extraction and Selection Method for ECG Arrhythmias Classification. IEEE Sens. J. 2021, 21, 14180–14190. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Yan, R. Bearing Fault Diagnosis Based on Visual Symmetrized Dot Pattern and CNNs. In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 20–23 May 2019. [Google Scholar]
- Zhu, X.; Zhao, J.; Hou, D.; Han, Z. An SDP Characteristic Information Fusion-Based CNN Vibration Fault Diagnosis Method. Shock Vib. 2019, 2019, 3926963. [Google Scholar] [CrossRef]
- Wang, M.-H.; Chen, F.-H.; Lu, S.-D. Research on Fault Diagnosis of Wind Turbine Gearbox with Snowflake Graph and Deep Learning Algorithm. Appl. Sci. 2023, 13, 1416. [Google Scholar] [CrossRef]
- Wang, M.-H.; Lu, S.-D.; Hung, C.-C. Application of Deep Learning and Symmetrized Dot Pattern to Detect Surge Arrester Status. Appl. Sci. 2022, 12, 650. [Google Scholar] [CrossRef]
- Mahesh, S.; Ramkuma, G.; Anjaneyulu, K. Smart Face Detection and Recognition in Pose Variant Images Using Alexnet CNN Compare Accuracy With SVM. In Proceedings of the 2022 International Conference on Cyber Resilience (ICCR), Dubai, United Arab Emirates, 6–7 October 2022. [Google Scholar]
- Agarwal, A.; Patni, K.; Rajeswari, D. Lung Cancer Detection and Classification Based on Alexnet CNN. In Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES), Coimbatre, India, 8–10 July 2021. [Google Scholar]
- Ma, Z.; Liu, B.; Tang, R. GIS Mechanical Fault Diagnosis and Test Analysis Based on S Transform-SVM-AlexNet Model. In Proceedings of the 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nanjing, China, 20–23 September 2020. [Google Scholar]
Equipment Specifications | ||
---|---|---|
Input signal | Square wave signal: 250 kHz, 20 Vp–p | |
DAQ card | PXI-5105: 60 MS/s, 8 synchronous channels, 12 bit resolution | |
PV module | Power: | 20 W |
Rated voltage: | 18.2 V | |
Rated current: | 1.10 A | |
Open-circuit voltage: | 22.4 V | |
Short-circuit current: | 1.19 A | |
Solar irradiance: | 1000 W/m2 | |
Air mass: | 1.5 | |
Fault types of solar PV modules | ||
Type 1 | Normal fault type of solar PV modules | |
Type 2 | Poor connection fault type of solar PV modules | |
Type 3 | Cracking fault type of solar PV modules | |
Type 4 | Bypass diode failure of solar PV modules |
Algorithm | Training Time (s) | Testing Time (s) | Epoch | Training Rate (%) | Accuracy Rate (%) | Ranking |
---|---|---|---|---|---|---|
SDP+AlexNet | 143 s | 0.02 s | 100 | 100% | 99.8% | 1 |
SDP+CNN | 181 s | 0.24 s | 100 | 100% | 99.5% | 2 |
SDP+HOG+SVM | 10.7 s | 0.91 s | N/A | N/A | 93.8% | 3 |
SDP+HOG+ENN | 3518 s | 1.63 s | 100 | 96.31% | 91.75% | 4 |
SDP+HOG+BPNN | 243 s | 1.12 s | 10,000 | 100% | 90.9% | 5 |
ENN [14] | 20 | 100% | 87.5% | 6 | ||
PNN [14] | 1 | N/A | 75% | 7 | ||
MNN(4-9-3) [14] | 1000 | 82.1% | 62.5% | 8 | ||
MNN(4-18-3) [14] | 1000 | 81.2% | 50% | 9 | ||
MNN(4-10-3) [14] | 1000 | 67.9% | 47.5% | 10 | ||
MNN(4-17-3) [14] | 1000 | 60.3% | 42.5% | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.-H.; Hung, C.-C.; Lu, S.-D.; Lin, Z.-H.; Kuo, C.-C. Fault Diagnosis for PV Modules Based on AlexNet and Symmetrized Dot Pattern. Energies 2023, 16, 7563. https://doi.org/10.3390/en16227563
Wang M-H, Hung C-C, Lu S-D, Lin Z-H, Kuo C-C. Fault Diagnosis for PV Modules Based on AlexNet and Symmetrized Dot Pattern. Energies. 2023; 16(22):7563. https://doi.org/10.3390/en16227563
Chicago/Turabian StyleWang, Meng-Hui, Chun-Chun Hung, Shiue-Der Lu, Zong-Han Lin, and Cheng-Chien Kuo. 2023. "Fault Diagnosis for PV Modules Based on AlexNet and Symmetrized Dot Pattern" Energies 16, no. 22: 7563. https://doi.org/10.3390/en16227563