Influence of Thermochemical Conversion Technologies on Biochar Characteristics from Extensive Grassland for Safe Soil Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock
2.2. Biochar Production
2.3. Thermochemical Conversion Units
2.4. Physico-Chemical Analysis
2.5. Assessments
3. Results
3.1. Biochar Quality and Main Constituents
3.2. PAH Content
3.3. Heavy Metals
3.4. Minor Elements and CO2 Sequestration
3.5. Ash Retention
4. General Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat. LUCAS The EU’s Land Use and Land Cover Survey 2021. 2021. Available online: https://ec.europa.eu/eurostat/documents/4031688/14187915/KS-09-21-309-EN-N.pdf/7b948a5b-9135-1ee3-3a2b-a26d58c6f2f7?t=1644247217894 (accessed on 1 February 2021).
- Silva, J.P.; Toland, J.; Jones, W.; Eldridge, J.; Thorpe, E.; O’Hara, E. LIFE and Europe’s Grasslands: Restoring a Forgotten Habitat; European Communities: Luxembourg, 2008; ISBN 9789279101595. [Google Scholar]
- Szarka, N.; Haufe, H.; Lange, N.; Schier, F.; Weimar, H.; Banse, M.; Sturm, V.; Dammer, L.; Piotrowski, S.; Thrän, D. Biomass flow in bioeconomy: Overview for Germany. Renew. Sustain. Energy Rev. 2021, 150, 111449. [Google Scholar] [CrossRef]
- Trippe, K.M.; Griffith, S.M.; Banowetz, G.M.; Whitaker, G.W. Changes in soil chemistry following wood and grass biochar amendments to an acidic agricultural production soil. Agron. J. 2015, 107, 1440–1446. [Google Scholar] [CrossRef]
- Adesemuyi, M.F.; Adebayo, M.A.; Akinola, A.O.; Olasehinde, E.F.; Adewole, K.A.; Lajide, L. Preparation and characterisation of biochars from elephant grass and their utilisation for aqueous nitrate removal: Effect of pyrolysis temperature. J. Environ. Chem. Eng. 2020, 8, 104507. [Google Scholar] [CrossRef]
- Reza, M.S.; Afroze, S.; Bakar, M.S.A.; Saidur, R.; Aslfattahi, N.; Taweekun, J.; Azad, A.K. Biochar characterization of invasive Pennisetum purpureum grass: Effect of pyrolysis temperature. Biochar 2020, 2, 239–251. [Google Scholar] [CrossRef]
- Irfan, M.; Chen, Q.; Yue, Y.; Pang, R.; Lin, Q.; Zhao, X.; Chen, H. Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures. Bioresour. Technol. 2016, 211, 457–463. [Google Scholar] [CrossRef]
- European Biochar Foundation (EBC). Guidelines for a Sustainable Production of Biochar; European Biochar Foundation: Arbaz, Switzerland, 2022. [Google Scholar]
- Hilber, I.; Blum, F.; Leifeld, J.; Schmidt, H.P.; Bucheli, T.D. Quantitative determination of PAHs in biochar: A prerequisite to ensure its quality and safe application. J. Agric. Food Chem. 2012, 60, 3042–3050. [Google Scholar] [CrossRef]
- Steiner, C.; Bayode, A.O.; Ralebitso-Senior, T.K. Feedstock and Production Parameters. In Biochar Application; LaFleur, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 41–54. ISBN 9780128034330. [Google Scholar]
- Schmidt, H.; Hagemann, N.; Leifeld, J.; Bucheli, T. Pflanzenkohle in der Landwirtschaft. Hintergründe zur Düngerzulassung und Potentialab—klärung für die Schaffung von Kohlenstoff-Senken; Agroscope: Zürich, Switzerland, 2021; pp. 1–71. [Google Scholar]
- Lehmann, J.; Joseph, C. (Eds.) Biochar for Environmental Management: Science and Technology, 2nd ed.; Earthscan: London, UK, 2009; ISBN 978-0-415-70415-1. [Google Scholar]
- Tagliaferro, A.; Rosso, C.; Giorcelli, M. (Eds.) Biochar—Emerging Applications; IOP: Bristol, UK, 2020; ISBN 9780750326605. [Google Scholar]
- Basu, P. Biomass Gasification and Pyrolysis and Torrefaction, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780123964885. [Google Scholar]
- Miles, T.R.; Baxter, L.L.; Bryers, R.W.; Jenkins, B.M.; Oden, L.L. Alkali Deposits Found in Biomass Power Plants; National Technical Information Service (NTIS): Springfield, VA, USA, 1996; pp. 433–8142. [CrossRef]
- Higman, C.; Van der Burgt, M. Feedstocks and Feedstock Characteristics. In Gasification; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 47–90. ISBN 9780750685283. [Google Scholar]
- EBI—European Biochar Industry Consortium. European Biochar Market Report 2021/2022 What Is Biochar, What is PyCCS? European Biochar Industry Consortium: Breisgau, Germany, 2022. [Google Scholar]
- Pant, K.K.; Mohanty, P. Biomass, Conversion Routes and Products—An Overview. In Transformation of Biomass: Theory to Practice; Hornung, A., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2014; ISBN 9781119973270. [Google Scholar]
- Battin-Leclerc, F.; Simmie, J.M.; Blurock, E. Cleaner Combustion—Developing Detailed Chemical Kinetic Models; Battin-Leclerc, F., Simmie, J.M., Blurock, E., Eds.; Springer: London, UK, 2013; ISBN 9781447153061. [Google Scholar]
- EBC. Certification of the Carbon Sink Potential of Biochar; Ithaka Institute: Arbaz, Switzerland, 2020; Available online: http://European-biochar.org (accessed on 1 February 2021).
- Lang, T.; Dam-Johansen, K.; Garrijo, E.; Glarborg, P.; Grotkjaer, T.; Jensen, A.D.; Jensen, P.A.; Johnsson, J.E.; Kavalauskas, A.; Knudsen, J.N.; et al. Physical, Chemical and Reaction Kinetic Data for Grate Modeling. In Eltra PSO Project 3178—The Joint Project–Straw Combustion on a Grate; Danmarks Tekniske Universitet: Lyngby, Denmark, 2005. [Google Scholar]
- Kaltschmitt, M.; Hartmann, H. Energie aus Biomasse, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 9783540850946. [Google Scholar]
- Glarborg, P. Hidden interactions—Trace species governing combustion and emissions. Proc. Combust. Inst. 2007, 31, 77–98. [Google Scholar] [CrossRef]
- Blokhina, V.Y.; Prochnow, A.; Plöchl, M.; Luckhaus, C. Ökonomische Bewertung der Biogaserzeugung. Nat. Landsch. 2009, 41, 83–88. [Google Scholar]
- Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.M.; Fühner, C.; Bens, O.; Kern, J.; et al. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011, 2, 71–106. [Google Scholar] [CrossRef]
- Farru, G.; Dang, C.H.; Schultze, M.; Kern, J.; Cappai, G.; Libra, J.A. Benefits and Limitations of Using Hydrochars from Organic Residues as Replacement for Peat on Growing Media. Horticulturae 2022, 8, 325. [Google Scholar] [CrossRef]
- Kirch, T.; Medwell, P.R.; Birzer, C.H.; van Eyk, P.J. Small-scale autothermal thermochemical conversion of multiple solid biomass feedstock. Renew. Energy 2019, 149, 1261–1270. [Google Scholar] [CrossRef]
- DIN EN ISO 17225-1:2014; Biogene Festbrennstoffe—Brennstoffspezifikationen und—klassen—Teil 1: Allgemeine Anforderungen. BEUTH: Berlin, Germany, 2014.
- Joseph, B.; Kaetzl, K.; Hensgen, F.; Schäfer, B.; Wachendorf, M. Sustainability assessment of activated carbon from residual biomass used for micropollutant removal at a full-scale wastewater treatment plant. Environ. Res. Lett. 2020, 15, 064023. [Google Scholar] [CrossRef]
- Funke, A.; Mumme, J.; Koon, M.; Diakité, M. Cascaded production of biogas and hydrochar from wheat straw: Energetic potential and recovery of carbon and plant nutrients. Biomass Bioenergy 2013, 58, 229–237. [Google Scholar] [CrossRef]
- Rodriguez, J.J.; Ipiales, R.P.; de la Rubia, M.A.; Diaz, E.; Mohedano, A.F. Integration of hydrothermal carbonization and anaerobic digestion for energy recovery of biomass waste: An overview. Energy Fuels 2021, 35, 17032–17050. [Google Scholar] [CrossRef]
- Budai, A.; Zimmerman, A.R.; Cowie, A.L.; Webber, J.B.W.; Singh, B.P.; Glaser, B.; Masiello, C.A.; Andersson, D.; Shields, F.; Lehmann, J.; et al. Biochar Carbon Stability Test Method: An assessment of methods to determine biochar carbon stability. Int. Biochar Initiat. 2013, 1–10. Available online: https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_Report_Biochar_Stability_Test_Method_Final.pdf (accessed on 1 February 2021).
- Lanza, G.; Stang, A.; Kern, J.; Wirth, S.; Gessler, A. Degradability of raw and post-processed chars in a two-year field experiment. Sci. Total Environ. 2018, 628, 1600–1608. [Google Scholar] [CrossRef]
- Schulze, M.; Mumme, J.; Funke, A.; Kern, J. Effects of selected process conditions on the stability of hydrochar in low-carbon sandy soil. Geoderma 2016, 267, 137–145. [Google Scholar] [CrossRef]
- Leng, L.; Huang, H.; Li, H.; Li, J.; Zhou, W. Biochar stability assessment methods: A review. Sci. Total Environ. 2019, 647, 210–222. [Google Scholar] [CrossRef]
- Lanza, G.; Rebensburg, P.; Kern, J.; Lentzsch, P.; Wirth, S. Impact of chars and readily available carbon on soil microbial respiration and microbial community composition in a dynamic incubation experiment. Soil Tillage Res. 2016, 164, 18–24. [Google Scholar] [CrossRef]
- Ravenni, G.; Sárossy, Z.; Ahrenfeldt, J.; Henriksen, U.B. Activity of chars and activated carbons for removal and decomposition of tar model compounds—A review. Renew. Sustain. Energy Rev. 2018, 94, 1044–1056. [Google Scholar] [CrossRef]
- Cornelissen, G.; Hale, S.E. Polycyclic Aromatic Hydrocarbons in Biochar and Their Bioavailabilty. In Biochar: A Guide to Analytical Methods; Singh, B., Ed.; CSIRO Publishing: Clayton South, VIC, Australia, 2017; ISBN 1486305105. [Google Scholar]
- Spokas, K.A. Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, T.; Park, H.; Orozco, R.; Ding, Z.; Alvarez Lopez, V.; Steinbeiss, L.; Mosquera Losada, M.R.; Hoffmann, T. Biochar Production from Late-harvest Grass—Challenges and Potential for Farm-scale Implementation. Sustain. Prod. Consum. 2023. accepted. [Google Scholar]
- Camps-Arbestain, M.; Shen, Q.; Wang, T.; van Zwieten, L.; Novak, J. Available nutrients in biochar. In Biochar: A Guide to Analytical Methods; Singh, B., Ed.; CSIRO Publishing: Boca Raton, FL, USA, 2017; pp. 110–125. ISBN 9781486305094. [Google Scholar]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Kloss, S.; Zehetner, F.; Wimmer, B.; Buecker, J.; Rempt, F.; Soja, G. Biochar application to temperate soils: Effects on soil fertility and crop growth under greenhouse conditions. J. Plant Nutr. Soil Sci. 2014, 177, 3–15. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Shackley, S.; Ruysschaert, G.; Zwart, K.; Glaser, B. (Eds.) Biochar in European Soils; Routledge: New York, NY, USA, 2016; ISBN 978-0-415-71166-1. [Google Scholar]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefining 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Johansen, J.M.; Jakobsen, J.G.; Frandsen, F.J.; Glarborg, P. Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass. Energy Fuels 2011, 25, 4961–4971. [Google Scholar] [CrossRef]
- Lidman Olsson, E.O.; Glarborg, P.; Leion, H.; Dam-Johansen, K.; Wu, H. Release of P from Pyrolysis, Combustion, and Gasification of Biomass—A Model Compound Study. Energy Fuels 2021, 35, 15817–15830. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, H.; Yuan, H.; Zhuang, X.; Yuan, S.; Yin, X.; Wu, C. Release and Transformation Pathways of Various K Species during Thermal Conversion of Agricultural Straw. Part 1: Devolatilization Stage. Energy Fuels 2018, 32, 9605–9613. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Sárossy, Z.; Dong, C.; Glarborg, P. Release and transformation of chlorine and potassium during pyrolysis of KCl doped biomass. Fuel 2017, 197, 422–432. [Google Scholar] [CrossRef]
- Wu, H.; Castro, M.; Jensen, P.A.; Frandsen, F.J.; Glarborg, P.; Dam-Johansen, K.; Røkke, M.; Lundtorp, K. Release and Transformation of Inorganic Elements in Combustion of a High-Phosphorus Fuel. Energy Fuels 2011, 7, 2874–2886. [Google Scholar] [CrossRef] [Green Version]
- van Lith, S.C.; Jensen, P.A.; Frandsen, F.J.; Glarborg, P. Release to the gas phase of inorganic elements during wood combustion. Part 2: Influence of fuel composition. Energy Fuels 2008, 22, 1598–1609. [Google Scholar] [CrossRef]
- Knudsen, J.N.; Jensen, P.A.; Dam-Johansen, K. Transformation and Release to the Gas Phase of Cl, K, and S during Combustion of Annual Biomass. Energy Fuels 2004, 18, 1385–1399. [Google Scholar] [CrossRef]
- Tan, Z. Air Pollution and Greenhouse Gases—From Basic Concepts to Engineering Applications for Air Emission Control; Springer: Singapore, 2014; ISBN 9789812872111. [Google Scholar]
- Glarborg, P.; Jensen, A.D.; Johnsson, J.E. Fuel nitrogen conversion in solid fuel fired systems. Prog. Energy Combust. Sci. 2003, 29, 89–113. [Google Scholar] [CrossRef]
- Lang, T.; Jensen, A.D.; Jensen, P.A. Retention of Organic Elements During Solid Fuel Pyrolysis with Emphasis on the Peculiar Behaviour of Nitrogen. Energy Fuels 2005, 19, 1631–1643. [Google Scholar] [CrossRef]
- Wei, X.; Schnell, U.; Hein, K.R.G. Behaviour of gaseous chlorine and alkali metals during biomass thermal utilisation. Fuel 2005, 84, 841–848. [Google Scholar] [CrossRef]
- Knudsen, J.N.; Jensen, P.A.; Lin, W.; Dam-Johansen, K. Secondary Capture of Chlorine and Sulfur during Thermal Conversion of Biomass. Energy Fuels 2005, 19, 606–617. [Google Scholar] [CrossRef]
Reactor | Process Type (-Thermal) | Code | Replication | Total Input (kgdb) | HHT (°C) | Retention Time (h) |
---|---|---|---|---|---|---|
Lab scale | ||||||
HTC | Hydro- | LH-BP | 4 | 7.0 | 220 | 5.0 |
Top-lit up-draft (TLUD) | Auto- | LA-BM | 1 | 0.3 | 720 | 0.5 |
Pyrolysis oven | Allo- | LI-BP450 | 2 | 5.5 | 450 | 1.5 |
Pyrolysis oven | Allo- | LI-BP550 | 2 | 5.5 | 550 | 1.5 |
Pyrolysis oven | Allo- | LI-BP650 | 2 | 5.5 | 650 | 1.5 |
Farm scale | ||||||
Carbontwister | Auto- | FA-BS | 4 | 584.4 | 600 | 2.0 |
VarioL | Allo- | FI-BB | 1 | 172.1 | NM 1 | 4.0 |
C63-F | Allo- | FI-CP | 1 | 2458.6 | 800 | NM 1 |
YieldBiochar (wt%db) | YieldC (wt%db) | DM (wt%db) | C (wt%db) | COrg [=(wt%db) | H (wt%db) | N (wt%db) | S (wt%db) | O (wt%db) | H/COrg (-) | Ash (wt%db) | pH (-) | EC (mS·cm−1) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grass | NA 1 | NA | 88.2 ± 0.1 | 46.2 ± 1.9 | 38.1 ± 2.5 | 7.0 ± 0.2 | 1.1 ± 0.19 | 0.3 ± 0.03 | 0.38 ± 0.03 | 2.1 ± 0.14 | 7.79 ± 0.3 | 5.8 ± 0.2 | 34.8 ± 12.4 |
LH-BP | 61.0 ± 1.9 | 80.0 | 22.5 ± 0.8 | 60.5 ± 1.7 | 57.0 ± 2.1 | 5.6 ± 0.3 | 1.2 ± 0.14 | 0.1 ± 0.15 | 0.22 ± 0.01 | 1.1 ± 0.03 | 9.3 ± 2.2 | 4.2 ± 0.2 | 11.9 ± 0.3 |
LA-BM | 23.8 ± 0.0 | 32.1 | 101.1 ± 0.0 | 62.1 ± 0.0 | 61.2 ± 0.0 | 1.5 ± 0.0 | 1.3 ± 0.00 | 0.6 ± 0.00 | 0.11 ± 0.00 | 0.3 ± 0.00 | 23.6 | 9.3 ± 0.0 | NM 2 |
LI-BP450 | 32.5 ± 1.7 | 48.2 | 100.2 ± 0.3 | 68.4 ± 1.0 | 70.5 ± 2.6 | 2.0 ± 0.1 | 1.6 ± 0.06 | 0.7 ± 0.05 | 0.07 ± 0.01 | 0.3 ± 0.01 | 20.6 ± 1.8 | 10.6 ± 0.0 | 73.7 ± 6.8 |
LI-BP550 | 27.4 ± 2.1 | 42.5 | 100.3 ± 0.2 | 71.4 ± 1.8 | 72.7 ± 3.0 | 1.5 ± 0.2 | 1.4 ± 0.08 | 0.6 ± 0.04 | 0.03 ± 0.01 | 0.2 ± 0.04 | 22.1 ± 1.0 | 10.4 ± 0.1 | 80.4 ± 1.2 |
LI-BP650 | 26.6 ± 0.8 | 40.8 | 98.7 ± 1.3 | 70.7 ± 2.5 | 74.3 ± 1.1 | 1.2 ± 0.0 | 1.3 ± 0.03 | 0.6 ± 0.05 | 0.05 ± 0.01 | 0.2 ± 0.01 | 24.2 ± 1.8 | 10.5 ± 0.0 | 82.9 ± 5.9 |
FA-BS | 12.9 ± 0.1 | 16.8 | 98.6 ± 0.5 | 60.4 ± 2.9 | 62.8 ± 2.9 | 1.8 ± 0.1 | 0.9 ± 0.14 | 0.3 ± 0.05 | 0.03 ± 0.04 | 0.3 ± 0.03 | 33.7 ± 4.0 | 9.9 ± 0.0 | 36.9 ± 8.2 |
FI-BB | 36.3 ± 0.6 | 55.2 | 63.8 ± 1.1 | 70.1 ± 1.7 | 71.2 ± 2.5 | 1.3 ± 0.1 | 1.3 ± 0.07 | 0.4 ± 0.04 | 0.07 ± 0.01 | 0.2 ± 0.03 | 19.6 ± 1.0 | 9.6 ± 0.1 | 32.1 ± 1.3 |
FI-CP | 20.5 ± 0.0 | 32.2 | 98.6 ± 0.1 | 72.4 ± 0.3 | 71.6 ± 2.1 | 1.0 ± 0.0 | 1.3 ± 0.05 | 0.4 ± 0.01 | −0.02 ± 0.02 | 0.1 ± 0.01 | 27.1 ± 2.6 | 10.8 ± 0.0 | 52.7 ± 1.5 |
EPA8 (mg∙kg−1) | EPA16 (mg∙kg−1) | |
---|---|---|
EBC-Agro | 1.0 | 6.0 ± 2.2 |
FA-BS | BDL 1 | 7.9 |
FI-BB | 2.1 | 29.1 |
FI-CP | BDL 1 | 0.7 |
As (mg∙kg−1) | Cd (mg∙kg−1) | Cr (mg∙kg−1) | Cu (mg∙kg−1) | Hg (µg∙kg−1) | Ni (mg∙kg−1) | Pb (mg∙kg−1) | Zn (mg∙kg−1) | |
---|---|---|---|---|---|---|---|---|
Grass | 0.18 ± 0.06 | 0.12 ± 0.03 | 1.08 ± 0.66 | 6.57 ± 1.39 | <0.5 1 | 0.43 ± 0.14 | 0.68 ± 0.37 | 53.69 ± 14.12 |
EBC-Agro | 13.00 | 1.50 | 90.00 | 100.00 | 1000.0 | 50.00 | 120.00 | 400.00 |
LH-BP | 0.19 ± 0.10 | 0.37 ± 0.25 | 2.67 ± 1.17 | 10.82 ± 0.89 | <0.5 1 | 3.27 ± 2.49 | 0.91 ± 0.54 | 75.48 ± 7.29 |
LA-BM | NM 2 | 3.02 ± 0.00 | 0.89 ± 0.00 | 17.99 ± 0.00 | NM 2 | 3.34 ± 0.00 | <0.01 1 | 260.43 ± 0.00 |
LI-BP450 | 1.02 ± 0.30 | 0.33 ± 0.11 | 2.08 ± 0.55 | 18.40 ± 3.34 | <0.5 1 | 1.92 ± 0.21 | 2.02 ± 1.51 | 235.90 ± 149.77 |
LI-BP550 | 1.00 ± 0.34 | 0.20 ± 0.14 | 2.21 ± 0.70 | 20.59 ± 2.56 | <0.5 1 | 2.06 ± 0.10 | 3.14 ± 0.87 | 195.37 ± 84.98 |
LI-BP650 | 1.01 ± 0.27 | 0.17 ± 0.05 | 2.14 ± 0.54 | 33.88 ± 11.72 | <0.5 1 | 2.23 ± 0.11 | 2.65 ± 0.58 | 188.94 ± 31.34 |
FA-BS | NM 2 | 1.09 ± 0.29 | 15.99 ± 7.72 | 25.06 ± 1.49 | NM 2 | 14.95 ± 8.64 | 3.89 ± 1.59 | 241.68 ± 34.87 |
FI-BB | 0.90 ± 0.07 | 0.17 ± 0.03 | 44.51 ± 15.33 | 19.09 ± 0.88 | NM 2 | 37.90 ± 3.54 | <0.01 1 | 160.65 ± 10.98 |
FI-CP | 0.99 ± 0.05 | 0.12 ± 0.01 | 3.63 ± 1.39 | 19.09 ± 0.45 | NM 2 | 2.69 ± 0.40 | <0.01 1 | 147.63 ± 1.09 |
Percentage of Element (%) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ash | As | Cd | Cr | Cu | Ni | Pb | Zn | P | K | Mg | Ca | Fe | Cl | N | S | |
LH-BP | 75.4 | 66.4 | 193.4 | 128.5 | 107.9 | 363.7 | 105.2 | 85.1 | 83.9 | 37.5 | 36.9 | 63.0 | 26.1 | 48.0 | 72.3 | 107.0 |
LA-BM | 69.5 | NA 1 | 70.6 | 21.9 | 68.8 | 69.0 | NA 1 | 82.1 | 71.6 | 78.8 | 66.8 | 72.4 | 29.8 | 41.6 | 36.7 | 47.7 |
LI-BP450 | 88.4 | 188.8 | 90.7 | 53.4 | 97.7 | 114.0 | 123.7 | 141.6 | 88.8 | 88.2 | 92.1 | 94.2 | 29.4 | 71.7 | 49.7 | 73.9 |
LI-BP550 | 80.4 | 155.0 | 47.6 | 47.8 | 92.3 | 103.3 | 162.7 | 99.0 | 80.8 | 80.8 | 83.8 | 85.5 | 25.3 | 75.4 | 36.6 | 59.1 |
LI-BP650 | 85.4 | 151.9 | 38.9 | 44.9 | 147.4 | 108.1 | 133.2 | 92.9 | 85.3 | 83.1 | 86.5 | 88.1 | 26.7 | 80.4 | 34.3 | 55.8 |
FA-BS | 53.7 | NA 1 | 13.7 | 213.7 | 51.7 | 166.7 | NA 1 | 41.1 | 42.7 | 34.0 | 39.4 | 44.7 | 333.2 | NA 1 | 13.4 | 14.1 |
FI-BB | 93.7 | NA 1 | 47.5 | 2653.7 | 103.1 | 3489.2 | NA 1 | 84.6 | 107.1 | 87.8 | 103.2 | 91.9 | 81.5 | 34.3 | 45.4 | 61.7 |
FI-CP | 73.8 | 115.4 | 20.6 | 58.8 | 64.1 | 101.0 | NA 1 | 56.0 | 71.0 | 69.9 | 70.6 | 72.8 | 37.8 | 41.7 | 24.9 | 27.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heinrich, T.; Kaetzl, K.; Libra, J.A.; Hoffmann, T. Influence of Thermochemical Conversion Technologies on Biochar Characteristics from Extensive Grassland for Safe Soil Application. Energies 2023, 16, 1896. https://doi.org/10.3390/en16041896
Heinrich T, Kaetzl K, Libra JA, Hoffmann T. Influence of Thermochemical Conversion Technologies on Biochar Characteristics from Extensive Grassland for Safe Soil Application. Energies. 2023; 16(4):1896. https://doi.org/10.3390/en16041896
Chicago/Turabian StyleHeinrich, Thomas, Korbinian Kaetzl, Judy A. Libra, and Thomas Hoffmann. 2023. "Influence of Thermochemical Conversion Technologies on Biochar Characteristics from Extensive Grassland for Safe Soil Application" Energies 16, no. 4: 1896. https://doi.org/10.3390/en16041896