Thermoecological Cost Analysis of Hydrothermal Carbonization for Valorization of Under-Sieve Fraction from Municipal Solid Wastes †
Abstract
:1. Introduction
- Quantify the TEC of HTC under different process conditions.
- Compare the TEC of HTC with alternative USF treatment methods, such as bio-stabilization, landfilling, and wastewater treatment.
- Identify the optimal conditions for minimizing TEC, thereby enhancing energy efficiency and environmental sustainability.
2. Materials and Methods
2.1. Thermoecological Cost (TEC) Analysis
- aij coefficient of the consumption of the i-th product per unit of the j-th major product, e.g., in kg/kg or kg/MJ,
- fij coefficient of the consumption and by production of the i-th product per unit of the j-th major product, e.g., in kg/kg or kg/MJ,
- bsj exergy of the s-th non-renewable natural resource immediately consumed in the process under consideration per unit of the j-th product, MJ/kg,
- ρi specific thermo-ecological cost of the i-th product, e.g., in MJ/kg,
- amount of k-th harmful substance from j-th process, kg,
- thermoecological cost of k-th harmful substance, MJ/kg.
- unknown index of cumulative exergy burdening the fabrication of j-th useful products;
- index of exergy cumulative consumption burdening i-th main product consumed in j-th production branch;
- index of specific consumption of i-th product per unit of product j-th, e.g., kg i/kg j;
- bj index of direct primary exergy consumption in j-th branch, e.g., MJ/kg j;
- fij index of specific by-production production of i-th by-product per unit of j-th main product.
2.2. Laboratory Scale Primary Data
2.3. USF Hydrothermal Carbonization Process Concept
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefin. 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Fiori, L.; Basso, D.; Castello, D.; Baratieri, M. Hydrothermal carbonization of biomass: Design of a batch reactor and preliminary experimental results. Chem. Eng. Trans. 2014, 37, 55–60. [Google Scholar] [CrossRef]
- Reza, M.T.; Lynam, J.G.; Uddin, M.H.; Coronella, C.J. Hydrothermal carbonization: Fate of inorganics. Biomass Bioenergy 2013, 49, 86–94. [Google Scholar] [CrossRef]
- Micali, F.; Mendecka, B.; Lombardi, L.; Milanese, M.; Ferrara, G.; De Risi, A. Experimental investigation on high-temperature hydrothermal carbonization of olive pomace in batch reactor. AIP Conf. Proc. 2019, 2191, 020112. [Google Scholar] [CrossRef]
- Mendecka, B.; Di Ilio, G.; Lombardi, L.; Di Ilio, G.; Lombardi, L. Thermo-fluid dynamic and kinetic modeling of hydrothermal carbonization of olive pomace in a batch reactor. Energies 2020, 13, 4142. [Google Scholar] [CrossRef]
- Kannan, S.; Gariepy, Y.; Raghavan, G.S.V.V. Conventional Hydrothermal Carbonization of Shrimp Waste. Energy Fuels 2018, 32, 3532–3542. [Google Scholar] [CrossRef]
- Cai, J.; Li, B.; Chen, C.; Wang, J.; Zhao, M.; Zhang, K. Hydrothermal carbonization of tobacco stalk for fuel application. Bioresour. Technol. 2016, 220, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Basso, D.; Patuzzi, F.; Castello, D.; Baratieri, M.; Fiori, L. Modeling the reaction kinetics during hydrothermal carbonization of waste biomass. In Proceedings of the 22nd European Biomass Conference and Exhibition, Hamburg, Germany, 23–26 June 2014; pp. 1269–1273. [Google Scholar] [CrossRef]
- Basso, D.; Weiss-Hortala, E.; Patuzzi, F.; Castello, D.; Baratieri, M.; Fiori, L. Hydrothermal carbonization of off-specification compost: A byproduct of the organic municipal solid waste treatment. Bioresour. Technol. 2015, 182, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Basso, D.; Patuzzi, F.; Castello, D.; Castello, M.; Rada, E.C.; Weiss-Hortala, E.; Fiori, L. Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Manag. 2016, 47, 114–121. [Google Scholar] [CrossRef]
- Śliz, M.; Tuci, F.; Czerwińska, K.; Fabrizi, S.; Lombardi, L.; Wilk, M. Hydrothermal carbonization of the wet fraction from mixed municipal solid waste: Hydrochar characteristics and energy balance. Waste Manag. 2022, in press. [Google Scholar]
- Stanek, W. (Ed.) Thermodynamics for Sustainable Management of Natural Resources; Green Energy and Technology; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Mendecka, B.; Lombardi, L.; Micali, F.; De Risi, A. Energy Recovery from Olive Pomace by Hydrothermal Carbonization on Hypothetical Industrial Scale: A LCA Perspective. Waste Biomass Valorization 2020, 11, 5503–5519. [Google Scholar] [CrossRef]
- Berge, N.D.; Li, L.; Flora, J.R.V.; Ro, K.S. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes. Waste Manag. 2015, 43, 209–217. [Google Scholar] [CrossRef]
- Benavente, V.; Fullana, A.; Berge, N.D. Life cycle analysis of hydrothermal carbonization of olive mill waste: Comparison with current management approaches. J. Clean. Prod. 2017, 142, 2637–2648. [Google Scholar] [CrossRef]
- Owsianiak, M.; Ryberg, M.W.; Renz, M.; Hitzl, M.; Hauschild, M.Z. Environmental Performance of Hydrothermal Carbonization of Four Wet Biomass Waste Streams at Industry-Relevant Scales. ACS Sustain. Chem. Eng. 2016, 4, 6783–6791. [Google Scholar] [CrossRef]
- Yin, C.Y.; El-Harbawi, M.; Jiang, Z.T. Life Cycle Assessment of Production of Hydrochar via Hydrothermal Carbonization of Date Palm Fronds Biomass. Materials 2023, 16, 6653. [Google Scholar] [CrossRef] [PubMed]
- Stobernack, N.; Mayer, F.; Malek, C.; Bhandari, R. Evaluation of the energetic and environmental potential of the hydrothermal carbonization of biowaste: Modeling of the entire process chain. Bioresour. Technol. 2020, 318, 124038. [Google Scholar] [CrossRef]
- Zhang, J.; Li, G.; Borrion, A. Life cycle assessment of electricity generation from sugarcane bagasse hydrochar produced by microwave assisted hydrothermal carbonization. J. Clean. Prod. 2021, 291, 125980. [Google Scholar] [CrossRef]
- Fabrizi, S. Hydrothermal Carbonization of the Organic Fraction Mechanically Separated from Mixed MSW; Niccolo Cusano University, Doctoral School in Industrial and Civil Engineering: Rome, Italy, 2022. [Google Scholar]
- Mendecka, B.; Czerwińska, K.; Fabrizi, S.; Lombardi, L.; Wilk, M. Thermoecological cost of hydrothermal carbonization of the under-sieve fraction of residual municipal wastes. In Proceedings of the 7th International Conference on Contemporary Problems of Thermal Engineering: Towards Sustainable & Decarbonized Energy System, Warsaw, Poland, 20–23 September 2022; pp. 983–991. [Google Scholar]
- Szargut, J.; Zibik, A.; Stanek, W. Depletion of the non-renewable natural exergy resources as a measure of the ecological cost. Energy Convers. Manag. 2002, 43, 9–12. [Google Scholar] [CrossRef]
- Szargut, J. Exergy Method: Technical and Ecological Applications; WIT Press: Southampton, UK, 2005. [Google Scholar]
- Bösch, M.E.; Hellweg, S.; Huijbregts, M.A.J.; Frischknecht, R. Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int. J. Life Cycle Assess 2007, 12, 181–190. [Google Scholar] [CrossRef]
- Mendecka, B.; Lombardi, L.; Kozioł, J. Probabilistic multi-criteria analysis for evaluation of biodiesel production technologies from used cooking oil. Renew. Energy 2020, 147, 2542–2553. [Google Scholar] [CrossRef]
- Lombardi, L.; Mendecka, B.; Carnevale, E. Comparative life cycle assessment of alternative strategies for energy recovery from used cooking oil. J. Environ. Manag. 2018, 216, 235–245. [Google Scholar] [CrossRef]
- Kotas, T.J. The Exergy Method of Thermal Plant Analysis; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Hepbasli, A. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew. Sustain. Energy Rev. 2008, 12, 593–661. [Google Scholar] [CrossRef]
- Szargut, J.; Morris, D.R.; Steward, F.R. Exergy Analysis Of Thermal, Chemical, and Metallurgical Processes. 1987. Available online: https://www.osti.gov/biblio/6157620 (accessed on 1 August 2022).
- Wilk, M.; Magdziarz, A.; Jayaraman, K.; Szymańska-Chargot, M.; Gökalp, I. Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study. Biomass Bioenergy 2019, 120, 166–175. [Google Scholar] [CrossRef]
- Lucian, M.; Fiori, L. Hydrothermal carbonization of waste biomass: Process design, modeling, energy efficiency and cost analysis. Energies 2017, 10, 211. [Google Scholar] [CrossRef]
- Piccinno, F.; Hischier, R.; Seeger, S.; Som, C. From laboratory to industrial scale: A scale-up framework for chemical processes in life cycle assessment studies. J. Clean. Prod. 2016, 135, 1085–1097. [Google Scholar] [CrossRef]
Material | Composition, % |
---|---|
Paper | 8.41 ± 1.97 |
Plastics | 5.48 ± 0.41 |
Glass | 1.73 ± 0.33 |
Wood | 1.82 ± 0.54 |
Textiles | 1.72 ± 0.44 |
Food waste | 2.96 ± 0.52 |
Coffee pods | 1.13 ± 0.18 |
Inerts | 1.27 ± 0.52 |
Metals | 0.84 ± 0.30 |
Fine fraction < 20 mm | 74.64 ± 2.52 |
Name | C, % | H, % | N, % | S, % | O, % |
---|---|---|---|---|---|
USF | 36.0 ± 2.0 | 5.2 ± 0.4 | 1.3 ± 0.1 | 0.2 ± 0.2 | 18.2 ± 6.6 |
180_8h_0.15 | 27.3 ± 0.9 | 3.3 ± 0.1 | 0.75 ± 0.04 | 0.74 ± 0.03 | 10.5 ± 0.5 |
200_8h_0.15 | 32.3 ± 6.5 | 4.0 ± 1.0 | 1.0 ± 0.1 | 0.5 ± 0.4 | 10.3 ± 0.3 |
220_8h_0.15 | 40.5 ± 1.2 | 4.77 ± 0.06 | 1.33 ± 0.04 | 0.30 ± 0.03 | 7.1 ± 0.9 |
180_8h_0.07 | 36.4 ± 4.7 | 4.9 ± 0.6 | 0.9 ± 0.1 | 0.05 ± 0.03 | 21.5 ± 2.4 |
200_8h_0.07 | 34.6 ± 2.4 | 4.4 ± 0.3 | 0.93 ± 0.05 | 0.3 ± 0.3 | 14.0 ± 1.1 |
220_8h_0.07 | 32.5 ± 8.4 | 3.9 ± 0.9 | 1.2 ± 0.2 | 0.3 ± 0.2 | 7.7 ± 0.8 |
Name | A, % | VM, % | FC, % | HHV, MJ/kg | LHV, MJ/kg |
---|---|---|---|---|---|
USF | 39.2 ± 7.9 | 51.7 ± 5.7 | 9.2 ± 4.6 | 14.6 ± 0.9 | 13.7 ± 1.1 |
180_8h_0.15 | 57.4 ± 1.6 | 40.4 ± 0.4 | 2.2 ± 2.0 | 10.7 ± 0.2 | 10.0 ± 0.1 |
200_8h_0.15 | 52.0 ± 7.5 | 42.7 ± 3.7 | 5.3 ± 3.8 | 14.4 ± 3.1 | 13.4 ± 2.6 |
220_8h_0.15 | 46.1 ± 0.3 | 42.9 ± 0.2 | 11.0 ± 0.1 | 18.5 ± 0.2 | 17.4 ± 0.2 |
180_8h_0.07 | 36.4 ± 7.8 | 53.6 ± 6.0 | 10.0 ± 1.8 | 15.7 ± 2.2 | 14.6 ± 2.1 |
200_8h_0.07 | 45.7 ± 4.2 | 45.4 ± 2.7 | 8.9 ± 1.5 | 15.2 ± 1.6 | 14.2 ± 1.5 |
220_8h_0.07 | 54.5 ± 10.5 | 35.1 ± 7.5 | 10.4 ± 3.0 | 14.9 ± 3.9 | 14.0 ± 3.7 |
Name | Mass Yield, % | Solid, % | Liquid, % | Gas + Loss, % |
---|---|---|---|---|
180_8h_0.15 | 66.34 ± 1.21 | 8.65 ± 0.16 | 87.02 ± 1.96 | 4.32 ± 2.12 |
200_8h_0.15 | 57.81 ± 1.71 | 7.54 ± 0.22 | 86.54 ± 1.56 | 5.92 ± 1.34 |
220_8h_0.15 | 44.83 ± 0.90 | 5.85 ± 0.12 | 86.42 ± 0.44 | 7.73 ± 0.56 |
180_8h_0.07 | 59.81 ± 3.43 | 3.91 ± 0.22 | 92.62 ± 1.59 | 3.47 ± 1.81 |
200_8h_0.07 | 56.14 ± 0.74 | 3.67 ± 0.05 | 93.10 ± 0.68 | 3.23 ± 0.73 |
220_8h_0.07 | 44.11 ± 0.86 | 2.89 ± 0.06 | 93.27 ± 1.02 | 3.84 ± 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendecka, B.; Czerwińska, K.; Lombardi, L.; Śliz, M.; Wilk, M. Thermoecological Cost Analysis of Hydrothermal Carbonization for Valorization of Under-Sieve Fraction from Municipal Solid Wastes. Energies 2024, 17, 4090. https://doi.org/10.3390/en17164090
Mendecka B, Czerwińska K, Lombardi L, Śliz M, Wilk M. Thermoecological Cost Analysis of Hydrothermal Carbonization for Valorization of Under-Sieve Fraction from Municipal Solid Wastes. Energies. 2024; 17(16):4090. https://doi.org/10.3390/en17164090
Chicago/Turabian StyleMendecka, Barbara, Klaudia Czerwińska, Lidia Lombardi, Maciej Śliz, and Małgorzata Wilk. 2024. "Thermoecological Cost Analysis of Hydrothermal Carbonization for Valorization of Under-Sieve Fraction from Municipal Solid Wastes" Energies 17, no. 16: 4090. https://doi.org/10.3390/en17164090