Early Prediction of Remaining Useful Life for Lithium-Ion Batteries with the State Space Model
Abstract
:1. Introduction
2. Methodology
2.1. Overview
2.2. Proposed Method Based on Mamba
3. Experiments
3.1. Experimental Process and Method
3.2. Definition of RUL and SOH
3.3. Datasets
3.4. Features Analysis and Selection
3.5. Evaluation Metrics
4. Results and Discussion
4.1. RUL Prediction Results
4.2. Performance Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wulandari, T.; Fawcett, D.; Majumder, S.B.; Poinern, G.E.J. Lithium-based batteries, history, current status, challenges, and future perspectives. Battery Energy 2023, 2, 20230030. [Google Scholar] [CrossRef]
- Kim, T.; Song, W.; Son, D.-Y.; Ono, L.K.; Qi, Y. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964. [Google Scholar] [CrossRef]
- Jaguemont, J.; Bard, F. A critical review of lithium-ion battery safety testing and standards. Appl. Therm. Eng. 2023, 231, 121014. [Google Scholar] [CrossRef]
- Reza, M.S.; Mannan, M.; Mansor, M.; Ker, P.J.; Mahlia, T.M.I.; Hannan, M.A. Recent advancement of remaining useful life prediction of lithium-ion battery in electric vehicle applications: A review of modelling mechanisms, network configurations, factors, and outstanding issues. Energy Rep. 2024, 11, 4824–4848. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, Y.; Cheng, C.; Zhou, B.; Hu, P.; Yuan, Y. Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network. Appl. Energy 2019, 253, 113626. [Google Scholar] [CrossRef]
- Hu, X.; Xu, L.; Lin, X.; Pecht, M. Battery lifetime prognostics. JOUR 2020, 4, 310–346. [Google Scholar] [CrossRef]
- Wang, X.; Ye, P.; Liu, S.; Zhu, Y.; Deng, Y.; Yuan, Y.; Ni, H. Research progress of battery life prediction methods based on physical model. Energies 2023, 16, 3858. [Google Scholar] [CrossRef]
- He, Z.; Gao, M.; Wang, C.; Wang, L.; Liu, Y. Adaptive state of charge estimation for li-ion batteries based on an unscented Kalman filter with an enhanced battery model. Energies 2013, 6, 4134–4151. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, H.; Dong, G.; Wei, J.; Wu, J. Particle filter-based state-of-charge estimation and remaining-dischargeable-time prediction method for lithium-ion batteries. J. Power Sources 2019, 414, 158–166. [Google Scholar] [CrossRef]
- Chen, L.; Wang, H.; Chen, J.; An, J.; Ji, B.; Lyu, Z.; Cao, W.; Pan, H. A novel remaining useful life prediction framework for lithium-ion battery using grey model and particle filtering. Int. J. Energy Res. 2020, 44, 7435–7449. [Google Scholar] [CrossRef]
- Dong, H.; Jin, X.; Lou, Y.; Wang, C. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter. J. Power Sources 2014, 271, 114–123. [Google Scholar] [CrossRef]
- Almutairi, Z.A.; Eltamaly, A.M.; El Khereiji, A.; Al Nassar, A.; Al Rished, A.; Al Saheel, N.; Marqabi, A.A.; Hamad, S.A.; Harbi, M.A.; Sherif, R.; et al. Modeling and Experimental Determination of Lithium-Ion Battery Degradation in Hot Environment. In Proceedings of the 2022 23rd International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 13–15 December 2022; pp. 1–8. [Google Scholar]
- Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 2019, 4, 383–391. [Google Scholar] [CrossRef]
- Xu, Q.; Wu, M.; Khoo, E.; Chen, Z.; Li, X. A hybrid ensemble deep learning approach for early prediction of battery remaining useful life. IEEE/CAA J. Autom. Sin. 2023, 10, 177–187. [Google Scholar] [CrossRef]
- Attia, P.M.; Severson, K.A.; Witmer, J.D. Statistical learning for accurate and interpretable battery lifetime prediction. J. Electrochem. Soc. 2021, 168, 090547. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Shen, W.; Lu, J.; Yang, X.-G. Deep neural network battery charging curve prediction using 30 points collected in 10 min. Joule 2021, 5, 1521–1534. [Google Scholar] [CrossRef]
- Wang, C.; Xiong, R.; Tian, J.; Lu, J.; Zhang, C. Rapid ultracapacitor life prediction with a convolutional neural network. Appl. Energy 2022, 305, 117819. [Google Scholar] [CrossRef]
- Hafizhahullah, H.; Yuliani, A.R.; Pardede, H.; Ramdan, A.; Zilvan, V.; Krisnandi, D.; Kadar, J. A hybrid cnn-lstm for battery remaining useful life prediction with charging profiles data. In Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications, IC3INA ‘22, New York, NY, USA, 22–23 November 2023; pp. 106–110. [Google Scholar]
- Sun, H.; Sun, J.; Zhao, K.; Wang, L.; Wang, K. Data-driven ica-bi-lstm-combined lithium battery soh estimation. Math. Probl. Eng. 2022, 2022, 9645892. [Google Scholar] [CrossRef]
- Lu, J.; Xiong, R.; Tian, J.; Wang, C.; Sun, F. Deep learning to estimate lithium-ion battery state of health without additional degradation experiments. Nat. Commun. 2023, 14, 2760. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, B. Attention mechanism-based neural network for prediction of battery cycle life in the presence of missing data. Batteries 2024, 10, 229. [Google Scholar] [CrossRef]
- Cai, Y.; Li, W.; Zahid, T.; Zheng, C.; Zhang, Q.; Xu, K. Early prediction of remaining useful life for lithium-ion batteries based on ceemdan-transformer-dnn hybrid model. Heliyon 2023, 9, e17754. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, S.; Ding, Y.; Li, Y.; Wu, W.; Rong, Y.; Kong, W.; Huang, J.; Li, S.; Yang, H.; et al. State space model for new-generation network alternative to transformers: A survey. arXiv 2024, arXiv:2404.09516. [Google Scholar]
- Gu, A.; Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv 2024, arXiv:2312.00752. [Google Scholar]
- Tang, X.; Wan, H.; Wang, W.; Gu, M.; Wang, L.; Gan, L. Lithium-ion battery remaining useful life prediction based on hybrid model. Sustainability 2023, 15, 6261. [Google Scholar] [CrossRef]
- Li, Z.; Shen, S.; Ye, Y.; Cai, Z.; Zhen, A. An interpretable online prediction method for remaining useful life of lithium-ion batteries. Sci. Rep. 2024, 14, 12541. [Google Scholar] [CrossRef]
- Shu, X.; Shen, S.; Shen, J.; Zhang, Y.; Li, G.; Chen, Z.; Liu, Y. State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives. iScience 2021, 24, 103265. [Google Scholar] [CrossRef]
- Chen, D.; Hong, W.; Zhou, X. Transformer network for remaining useful life prediction of lithium-ion batteries. IEEE Access 2022, 10, 19621–19628. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Y. Data-driven online health estimation of li-ion batteries using a novel energy-based health indicator. IEEE Trans. Energy Convers. 2020, 35, 1715–1718. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Foley, A.M.; Z¨ulke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 2019, 113, 109254. [Google Scholar] [CrossRef]
- He, W.; Williard, N.; Osterman, M.; Pecht, M. Prognostics of lithium-ion batteries based on dempster–shafer theory and the bayesian monte carlo method. J. Power Sources 2011, 196, 10314–10321. [Google Scholar] [CrossRef]
- Xing, Y.; Ma, E.W.M.; Tsui, K.-L.; Pecht, M. An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectron. Reliab. 2013, 53, 811–820. [Google Scholar] [CrossRef]
- Williard, N.; He, W.; Osterman, M.; Pecht, M. Comparative analysis of features for determining state of health in lithium-ion batteries. Int. J. Progn. Health Manag. 2013, 4, 14–21. [Google Scholar] [CrossRef]
- Liu, H.; Naqvi, I.H.; Li, F.; Liu, C.; Shafiei, N.; Li, Y.; Pecht, M. An analytical model for the cc-cv charge of li-ion batteries with application to degradation analysis. J. Energy Storage 2020, 29, 101342. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Xie, Y.; Zeng, J.; Fernandez, C. Remaining useful life prediction and state of health diagnosis of lithium-ion batteries with multiscale health features based on optimized catboost algorithm. Energy 2024, 300, 131575. [Google Scholar] [CrossRef]
- Lin, C.; Xu, J.; Shi, M.; Mei, X. Constant current charging time based fast state-of-health estimation for lithium-ion batteries. Energy 2022, 247, 123556. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, Y.; Ma, R.; Zhao, Y.; Shi, M.; Qu, W. Prediction of Lithium Battery Health State Based on Temperature Rate of Change and Incremental Capacity Change. Energies 2023, 22, 7581. [Google Scholar] [CrossRef]
- Hogg, R.; McKean, J.; Craig, A. Introduction to Mathematical Statistics, 7th ed.; Pearson: London, UK, 2012. [Google Scholar]
- Nguyen, T. A Resource Usage Prediction System Using Functional-Link and Genetic Algorithm Neural Network for Multivariate Cloud Metrics. In Proceedings of the 2018 IEEE 11th Conference on Service-Oriented Computing and Applications (SOCA) (2018), Paris, France, 20–22 November 2018; pp. 49–56. [Google Scholar]
- Nguyen, T.; Nguyen, B.M.; Nguyen, G. Building Resource Autoscaler with Functional-Link Neural Network and Adaptive Bacterial Foraging Optimization. Theory Appl. Models Comput. 2019, 2019, 501–517. [Google Scholar]
- Nguyen, B.M.; Hoang, B.; Nguyen, T.; Nguyen, G. A novel queuing search variant for global space search and workload modeling. J. Ambient. Intell. Human Comput. 2021, 12, 27–46. [Google Scholar]
Attribute | CS2_35 | CS2_36 | CS2_37 | CS2_38 |
---|---|---|---|---|
MAE | 0.0099 | 0.0097 | 0.0145 | 0.0127 |
RMSE | 0.0123 | 0.0112 | 0.0189 | 0.0180 |
RE | 0.0017 | 0.0261 | 0.0194 | 0 |
0.9964 | 0.9980 | 0.9916 | 0.9920 |
Data | Method | Evaluation Metrics | |||
---|---|---|---|---|---|
MAE | RMSE | RE | |||
CS2_35 | CNN | 0.0138 | 0.0193 | 0.0237 | 0.9813 |
BiLSTM | 0.0176 | 0.0221 | 0.0255 | 0.9887 | |
CNN-BiLSTM | 0.0259 | 0.0319 | 0.0237 | 0.9764 | |
Proposed Approach | 0.0099 | 0.0123 | 0.0017 | 0.9964 | |
CS2_36 | CNN | 0.0109 | 0.0206 | 0.0101 | 0.9837 |
BiLSTM | 0.0131 | 0.0232 | 0.0201 | 0.9820 | |
CNN-BiLSTM | 0.0202 | 0.0296 | 0.0101 | 0.9870 | |
Proposed Approach | 0.0097 | 0.0112 | 0.0061 | 0.9980 | |
CS2_37 | CNN | 0.0185 | 0.0191 | 0.0186 | 0.9847 |
BiLSTM | 0.0179 | 0.0198 | 0.0186 | 0.9849 | |
CNN-BiLSTM | 0.0170 | 0.0228 | 0.0186 | 0.9880 | |
Proposed Approach | 0.0145 | 0.0189 | 0.0094 | 0.9916 | |
CS2_38 | CNN | 0.0231 | 0.0182 | 0.0224 | 0.9820 |
BiLSTM | 0.0192 | 0.0243 | 0.0224 | 0.9850 | |
CNN-BiLSTM | 0.0347 | 0.0397 | 0.1105 | 0.9620 | |
Proposed Approach | 0.0127 | 0.0180 | 0 | 0.9920 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Zhao, S. Early Prediction of Remaining Useful Life for Lithium-Ion Batteries with the State Space Model. Energies 2024, 17, 6326. https://doi.org/10.3390/en17246326
Liang Y, Zhao S. Early Prediction of Remaining Useful Life for Lithium-Ion Batteries with the State Space Model. Energies. 2024; 17(24):6326. https://doi.org/10.3390/en17246326
Chicago/Turabian StyleLiang, Yuqi, and Shuai Zhao. 2024. "Early Prediction of Remaining Useful Life for Lithium-Ion Batteries with the State Space Model" Energies 17, no. 24: 6326. https://doi.org/10.3390/en17246326
APA StyleLiang, Y., & Zhao, S. (2024). Early Prediction of Remaining Useful Life for Lithium-Ion Batteries with the State Space Model. Energies, 17(24), 6326. https://doi.org/10.3390/en17246326