Evaluation of Technical Aspects of Solar Photovoltaic (PV) Power Installations on Farmland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Comparison of Array Configurations
- Single-sided module, fixed structure;
- Single-sided module with tracker;
- Double-sided module, fixed structure;
- Double-sided module with tracker.
- GCR = 0 would be obtained if the distance between the rows tended to an infinite value.
- GCR = 1 if the rows were at a distance equal to the width of the modules.
- : total installed power;
- : module efficiency;
- S: gross area, understood as at enclosure;
- c: useful land reduction coefficient (10%);
- : radiation under standard conditions of 1000 W/m2 S.
2.2. Electricity Production Calculation Models
- The hourly average global irradiance incident on the modules;
- The temperature of the cells;
- The availability of the system.
2.3. Economic Technical Evaluation for the Different Configurations
- Global Horizontal Irradiance [W/m2].
- Horizontal diffuse irradiance [W/m2].
- Wind speed [m/s].
- Temperature [∘C].
2.4. Economic Analysis
2.4.1. Capital Expenditure (CAPEX)
- = 35 EUR/kW;
- = 90 EUR/(kW km);
- = 4 EUR/kW;
- = 7.5 EUR/(kW km);
- P = power for connection purposes, expressed in kW;
- = the distance as the crow flies between the connection point and the nearest medium/low-voltage transformer substation of the grid operator which has been in operation for at least five years, expressed in km to two decimal places;
- = distance as the crow flies between the connection point and the nearest high/medium voltage transformer station of the grid operator in service for at least five years, expressed in km to two decimal places.
2.4.2. Operational Expenditure (OPEX)
2.5. Economic Calculation
- I = initial investment;
- n = duration of the investment project, in this case 30 years;
- i = opportunity cost of capital;
- = cash flow at year t-th.
- = cost of equity capital;
- = cost of debt capital;
- E = equity capital ();
- D = debt capital ().
- Accepted if NPV > 0, because it indicates that the future return is higher than the opportunity cost opportunity cost of the capital invested.
- Rejected if NPV < 0, because the future return is less than the opportunity cost of the invested capital.
3. Results
- reference yield or peak solar hours, intended as the ratio between the irradiation over a given period of time on the receiving plane (kWh/m2) and the radiation under STC conditions (kW/m2); it is expressed in h/day, h/month, or h/year;
- , the performance ratio is the efficiency of the overall system with respect to the nominal installed power and incident energy and is useful for comparing systems different plants;
- yield is calculated as the ratio between energy output and installed power (expressed in h/day, h/month, and h/year).
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Belloni, E.; Grasso, F.; Lozito, G.M.; Poli, D.; Fulginei, F.R.; Talluri, G. Neural-assisted HVACs optimal scheduling for Renewable Energy Communities. Energy Build. 2023, 301, 113658. [Google Scholar] [CrossRef]
- Belloni, E.; Massaccesi, A.; Moscatiello, C.; Martirano, L. Preliminary analysis of stand-alone street lighting system with PV and battery: Measurements and simulations of a case study. In Proceedings of the 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 6–9 June 2023; pp. 1–6. [Google Scholar]
- Bindi, M.; Corti, F.; Aizenberg, I.N.; Grasso, F.; Lozito, G.M.; Luchetta, A.; Piccirilli, M.C.; Reatti, A. Machine Learning-Based Monitoring of DC-DC Converters in Photovoltaic Applications. Algorithms 2022, 15, 74. [Google Scholar] [CrossRef]
- Parise, M. On the Use of Cloverleaf Coils to Induce Therapeutic Heating in Tissues. J. Electromagn. Waves Appl. 2011, 25, 1667–1677. [Google Scholar] [CrossRef]
- Gholami, A.; Ameri, M.; Zandi, M.; Ghoachani, R.G.; Eslami, S.; Pierfederici, S. Photovoltaic potential assessment and dust impacts on photovoltaic systems in Iran. IEEE J. Photovolt. 2020, 10, 824–837. [Google Scholar] [CrossRef]
- Kerekes, T.; Koutroulis, E.; Séra, D.; Teodorescu, R.; Katsanevakis, M. An optimization method for designing large PV plants. IEEE J. Photovolt. 2012, 3, 814–822. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zhang, X.; Ye, H.; Dong, J.; He, Q.; Wang, X.; Liu, J.; Li, B.; Wu, J. Characterization and mapping of photovoltaic solar power plants by Landsat imagery and random forest: A case study in Gansu Province, China. J. Clean. Prod. 2023, 417, 138015. [Google Scholar] [CrossRef]
- Palermo, M.; Forconi, F.; Belloni, E.; Quercio, M.; Lozito, G.M.; Fulginei, F.R. Optimization of a feedforward neural network’s architecture for an HVAC system problem. In Proceedings of the 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Canary Islands, Spain, 19–21 July 2023; pp. 1–6. [Google Scholar]
- Lozito, G.M.; Bertolini, V.; Fulginei, F.R.; Belloni, E.; Quercio, M. Neural Estimator for Inductor Losses in Buck DC-DC Converters Operating in CCM. In Proceedings of the IEEE EUROCON 2023—20th International Conference on Smart Technologies, Torino, Italy, 6–8 July 2023; pp. 412–417. [Google Scholar]
- Parise, M. On the electromagnetic field of an overhead line current source. Electronics 2020, 9, 2009. [Google Scholar] [CrossRef]
- Romano, D.; Kovacevic-Badstubner, I.; Parise, M.; Grossner, U.; Ekman, J.; Antonini, G. Rigorous dc Solution of Partial Element Equivalent Circuit Models including Conductive, Dielectric, and Magnetic Materials. IEEE Trans. Electromagn. Compat. 2020, 62, 870–879. [Google Scholar] [CrossRef]
- Babu, B.C.; Gurjar, S. A novel simplified two-diode model of photovoltaic (PV) module. IEEE J. Photovolt. 2014, 4, 1156–1161. [Google Scholar] [CrossRef]
- Romano, D.; Angelo, L.D.; Kovacevic-Badstubner, I.; Grossner, U.; Parise, M.; Antonini, G. Efficient Partial Elements Computation for the Non-Orthogonal PEEC Method Including Conductive, Dielectrics, and Magnetic Materials. IEEE Trans. Magn. 2022, 58, 7000611. [Google Scholar] [CrossRef]
- Lazzeroni, P.; Mariuzzo, I.; Quercio, M.; Repetto, M. Economic, Energy, and Environmental Analysis of PV with Battery Storage for Italian Households. Electronics 2021, 10, 146. [Google Scholar] [CrossRef]
- Quercio, M.; Lozito, G.M.; Corti, F.; Fulginei, F.R.; Laudani, A. Recent Results in Shielding Technologies for Wireless Electric Vehicle Charging Systems. IEEE Access 2024, 12, 16728–16740. [Google Scholar] [CrossRef]
- Cura, D.; Yilmaz, M.; Koten, H.; Senthilraja, S.; Awad, M.M. Evaluation of the technical and economic aspects of solar photovoltaic plants under different climate conditions and feed-in tariff. Sustain. Cities Soc. 2022, 80, 103804. [Google Scholar] [CrossRef]
- Lombardi, L.; Loreto, F.; Ferranti, F.; Ruehli, A.; Nakhla, M.S.; Tao, Y.; Parise, M.; Antonini, G. Time-Domain Analysis of Retarded Partial Element Equivalent Circuit Models Using Numerical Inversion of Laplace Transform. IEEE Trans. Electromagn. Compat. 2021, 63, 870–879. [Google Scholar] [CrossRef]
- Klyuev, R.; Gavrina, O.; Madaeva, M. Benefits of Solar Power Plants for Energy Supply to Consumers in Mountain Territories. In Proceedings of the 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, 1–4 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Canova, A.; Giaccone, L.; Quercio, M. A proposal for performance evaluation of low frequency shielding efficiency. In Proceedings of the CIRED 2021—The 26th International Conference and Exhibition on Electricity Distribution, Geneva, Switzerland, 20–23 September 2021; Volume 2021, pp. 935–939. [Google Scholar]
- Quercio, M.; Galbusera, F.; Poskovic, E.; Franchini, F.; Ferraris, L.; Canova, A.; Gruosso, G.; Demir, A.G.; Previtali, B. Characterization of LPBF Produced Fe2.9wt.%Si for Electromagnetic Actuator. IEEE Access 2023, 11, 134822–134833. [Google Scholar] [CrossRef]
- Canova, A.; Corti, F.; Laudani, A.; Lozito, G.M.; Quercio, M. Innovative shielding technique for wireless power transfer systems. IET Power Electron. 2023, 17, 962–969. [Google Scholar] [CrossRef]
- Corti, F.; Laudani, A.; Lozito, G.M.; Palermo, M.; Quercio, M.; Pattini, F.; Rampino, S. Dynamic Analysis of a Supercapacitor DC-Link in Photovoltaic Conversion Applications. Energies 2023, 16, 5864. [Google Scholar] [CrossRef]
- Faba, A.; Gaiotto, S.; Lozito, G.M. A novel technique for online monitoring of photovoltaic devices degradation. Sol. Energy 2017, 158, 520–527. [Google Scholar] [CrossRef]
- Laudani, A.; Lozito, G.M.; Lucaferri, V.; Radicioni, M.; Fulginei, F.R.; Salvini, A.; Coco, S. An analytical approach for maximum power point calculation for photovoltaic system. In Proceedings of the 2017 European Conference on Circuit Theory and Design (ECCTD), Catania, Italy, 4–6 September 2017; pp. 1–4. [Google Scholar]
- Lozito, G.M.; Bozzoli, L.; Salvini, A. Microcontroller based maximum power point tracking through FCC and MLP Neural Networks. In Proceedings of the 2014 6th European Embedded Design in Education and Research Conference (EDERC), Milan, Italy, 11–12 September 2014; pp. 207–211. [Google Scholar]
- Parise, M.; Romano, D.; Antonini, G. Loop Impedance of Single-Turn Circular Coils Lying on Conducting Media. IEEE Trans. Electromagn. Compat. 2022, 64, 580–584. [Google Scholar] [CrossRef]
- Pelaez, S.A.; Deline, C.; Greenberg, P.; Stein, J.S.; Kostuk, R.K. Model and validation of single-axis tracking with bifacial PV. IEEE J. Photovolt. 2019, 9, 715–721. [Google Scholar] [CrossRef]
- Quercio, M.; Lucaferri, V.; Belloni, E.; Lozito, G.; Riganti Fulginei, F. Evaluation of a demand response online algorithm on the costs sustained by the user. Energy Build. 2024, 317, 114355. [Google Scholar] [CrossRef]
- Asghar, R.; Fulginei, F.R.; Quercio, M.; Mahrouch, A. Artificial Neural Networks for Photovoltaic Power Forecasting: A Review of Five Promising Models. IEEE Access 2024, 12, 90461–90485. [Google Scholar] [CrossRef]
- Talluri, G.; Lozito, G.M.; Grasso, F.; Garcia, C.A.I.; Luchetta, A. Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities. Energies 2021, 14, 8480. [Google Scholar] [CrossRef]
- Gorjian, S.; Sharon, H.; Ebadi, H.; Kant, K.; Scavo, F.B.; Tina, G.M. Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems. J. Clean. Prod. 2021, 278, 124285. [Google Scholar] [CrossRef]
- Parise, M.; Antonini, G.; Di Paola, L. A Rigorous Explicit Expression for the Mutual Inductance of Two Co-Axial Thin-Wire Coil Antennas Placed above a Layered Ground. Energies 2023, 16, 7586. [Google Scholar] [CrossRef]
- Parise, M.; Lombardi, L.; Ferranti, F.; Antonini, G. Magnetic Coupling between Coplanar Filamentary Coil Antennas with Uniform Current. IEEE Trans. Electromagn. Compat. 2020, 62, 622–626. [Google Scholar] [CrossRef]
- Kim, G.G.; Choi, J.H.; Park, S.Y.; Bhang, B.G.; Nam, W.J.; Cha, H.L.; Park, N.; Ahn, H.K. Prediction model for PV performance with correlation analysis of environmental variables. IEEE J. Photovolt. 2019, 9, 832–841. [Google Scholar] [CrossRef]
- Powell, D.M.; Winkler, M.T.; Goodrich, A.; Buonassisi, T. Modeling the cost and minimum sustainable price of crystalline silicon photovoltaic manufacturing in the United States. IEEE J. Photovolt. 2013, 3, 662–668. [Google Scholar] [CrossRef]
- Quercio, M.; Del Pino Lopez, J.C.; Grasso, S.; Canova, A. Numerical and experimental analysis of thermal behaviour of high voltage power cable in unfilled ducts. Sci. Rep. 2024, 14, 20599. [Google Scholar] [CrossRef]
- Parise, M. Evaluation of the flux linkage between equally sized circular loops placed on a layered soil. Prog. Electromagn. Res. Lett. 2020, 89, 127–132. [Google Scholar] [CrossRef]
- Parise, M. On the Voltage Response of Homogeneous Earth Models in Central Loop Electromagnetic Sounding. Int. J. Antennas Propag. 2022, 2022, 8294000. [Google Scholar] [CrossRef]
- Parise, M. Evaluation of the Inductive Coupling between Coplanar Concentric Coils in the Presence of the Ground. Int. J. Antennas Propag. 2024, 2024, 6640727. [Google Scholar] [CrossRef]
- Xiao, W.; Edwin, F.F.; Spagnuolo, G.; Jatskevich, J. Efficient approaches for modeling and simulating photovoltaic power systems. IEEE J. Photovolt. 2012, 3, 500–508. [Google Scholar] [CrossRef]
Fence Surface Area | 130,000 m2 |
Useful Module Area | 115,000 m2 |
AC input power | 6 MW |
Rated Power [W] | 350 | 370 | 400 |
Efficiency [%] | 18 | 19 | 21 |
[V] | 47 | 48 | 49.7 |
[V] | 38.5 | 39.4 | 41 |
[A] | 9.7 | 9.8 | 10.2 |
[A] | 9.1 | 9.4 | 9.7 |
Rated Power [W] | 360 | 375 | 390 |
Efficiency [%] | 18 | 18 | 20 |
[V] | 47.6 | 48.2 | 49.3 |
[V] | 39.2 | 39.4 | 40 |
[A] | 9.5 | 9.6 | 10.0 |
[A] | 8.9 | 9.2 | 9.6 |
Ground Cover Ratio | |||||
---|---|---|---|---|---|
Power [W] | [%] | 0.4 | 0.47 | 0.5 | 0.55 |
350 | 18 | 1.03 | 1.14 | 1.24 | 1.35 |
370 | 19 | 1.07 | 1.20 | 1.30 | 1.44 |
400 | 21 | 1.13 | 1.3 | 1.4 | 1.55 |
Ground Cover Ratio | |||||
---|---|---|---|---|---|
Power [W] | [%] | 0.4 | 0.47 | 0.5 | 0.55 |
360 | 18 | 1.08 | 1.18 | 1.34 | 1.4 |
375 | 18 | 1.10 | 1.27 | 1.36 | 1.47 |
390 | 20 | 1.3 | 1.3 | 1.5 | 1.6 |
Single Fixed | Single Tracker | Double Fixed | Double Tracker | |
---|---|---|---|---|
Module | 8.5% | 8.6% | 8.3% | 8.8% |
String | 1.4% | 1.4% | 3.3% | 2.4% |
DC/AC | 1.3% | 1.2% | 1.0% | 1.1% |
Transformer | 0.8% | 0.6% | 0.7% | 0.9% |
Module Power | GCR | Tilt | ||
---|---|---|---|---|
[W] | [%] | 20° | 25° | 30° |
350 | 42 | 1435 | 1451 | 1463 |
350 | 45 | 1423 | 1434 | 1429 |
350 | 48 | 1393 | 1398 | 1379 |
370 | 36 | 1446 | 1463 | 1468 |
370 | 40 | 1438 | 1451 | 1455 |
370 | 44 | 1412 | 1421 | 1418 |
370 | 48 | 1372 | 1373 | 1357 |
400 | 38 | 1473 | 1489 | 1494 |
400 | 42 | 1454 | 1466 | 1469 |
400 | 46 | 1420 | 1427 | 1421 |
400 | 49 | 1371 | 1370 | 1352 |
Module Power | GCR | Tilt | |||
---|---|---|---|---|---|
[W] | [%] | 20° | 25° | 30° | 35° |
360 | 44 | 1524 | 1540 | 1544 | 1539 |
360 | 49 | 1499 | 1511 | 1512 | 1500 |
360 | 53 | 1449 | 1453 | 1439 | 1424 |
375 | 40 | 1517 | 1532 | 1536 | 1531 |
375 | 44 | 1485 | 1497 | 1501 | 1490 |
375 | 49 | 1433 | 1436 | 1421 | 1414 |
375 | 53 | 1377 | 1366 | 1357 | 1346 |
390 | 40 | 1536 | 1550 | 1556 | 1553 |
390 | 44 | 1495 | 1502 | 1500 | 1484 |
390 | 49 | 1429 | 1428 | 1410 | 1399 |
Power [Wp] | 350 | 370 | 400 | 360 | 375 | 390 |
Module [EUR/Wp] | 0.28 | 0.285 | 0.29 | 0.293 | 0.295 | 0.3 |
Structure with tracker [EUR/Wp] | 0.100 | 0.095 | 0.088 | 0.099 | 0.097 | 0.093 |
Fixed structure [EUR/Wp] | 0.055 | 0.052 | 0.049 | 0.054 | 0.051 | 0.049 |
DC cables [EUR/Wp] | 0.01 | 0.009 | 0.009 | 0.010 | 0.010 | 0.009 |
Electrical installation [EUR/Wp] | 0.020 | 0.019 | 0.018 | 0.020 | 0.019 | 0.018 |
Mechanical installation [EUR/Wp] | 0.040 | 0.038 | 0.035 | 0.039 | 0.039 | 0.037 |
Fixed structures [EUR/Wp] | 0.007 |
Tracker [EUR/Wp] | 0.008 |
Ground [EUR/ha] | 2500 |
Asset management [EUR/MWp] | 2000 |
Electric energy [EUR/MWp] | 2000 |
IMU [EUR/Wp] | 500 |
Accounting [EUR/Wp] | 5000 |
Security services [EUR/Wp] | 3000 |
Annual Final Yield | [kWh/kWp/Year] |
---|---|
Single fixed | 1420 |
Single tracker | 1580 |
Double fixed | 1425 |
Double tracker | 1687 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabino, L.; Asghar, R.; Crescimbini, F.; Riganti Fulginei, F. Evaluation of Technical Aspects of Solar Photovoltaic (PV) Power Installations on Farmland. Energies 2025, 18, 317. https://doi.org/10.3390/en18020317
Sabino L, Asghar R, Crescimbini F, Riganti Fulginei F. Evaluation of Technical Aspects of Solar Photovoltaic (PV) Power Installations on Farmland. Energies. 2025; 18(2):317. https://doi.org/10.3390/en18020317
Chicago/Turabian StyleSabino, Lorenzo, Rafiq Asghar, Fabio Crescimbini, and Francesco Riganti Fulginei. 2025. "Evaluation of Technical Aspects of Solar Photovoltaic (PV) Power Installations on Farmland" Energies 18, no. 2: 317. https://doi.org/10.3390/en18020317
APA StyleSabino, L., Asghar, R., Crescimbini, F., & Riganti Fulginei, F. (2025). Evaluation of Technical Aspects of Solar Photovoltaic (PV) Power Installations on Farmland. Energies, 18(2), 317. https://doi.org/10.3390/en18020317