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Abstract: Simulation is a cornerstone of planning and facilitating the transition towards
electric mobility in sub-Saharan Africa’s informal public transport. The primary objective
of this study is to validate and refine the electro-kinetic model used to simulate electric
versions of the sector’s minibuses. A systematic simulation methodology is also developed
to correct the simulation parameters and improve the high-frequency GPS data used
with the model. A retrofitted electric minibus was used to capture high-frequency GPS
mobility data and power draw from the battery. The method incorporates key refinements
such as corrections for gross vehicle mass, elevation and speed smoothing, radial drag,
hill-climb forces, and the calibration of propulsion and regenerative braking parameters.
The refined simulation demonstrates improved alignment with measured power draw
and trip energy usage, reducing error margins and enhancing model reliability. Factors
such as trip characteristics and environmental conditions, including wind resistance, are
identified as potential contributors to observed discrepancies. These findings highlight the
importance of precise data handling and model calibration for accurate energy simulation
and decision making in the transition to electric public transport. This work provides a
robust framework for future studies and practical implementations, offering insights into
the technical and operational challenges of electrifying informal public transport systems
in resource-constrained regions.

Keywords: electric vehicle; electric mobility; paratransit; minibus taxi; mobility modelling;
renewable energy; transport data

1. Introduction
The shift towards electrifying the transport sector is gaining significant traction world-

wide. According to the Intergovernmental Panel on Climate Change (IPCC), transportation
was responsible for 23% of energy-related greenhouse gas emissions globally in 2014 [1,2].
Efforts to promote low-carbon transport in urban areas are now integral to international
strategies aimed at combating climate change according to Odhiambo et al. [3] and are closely
tied to three of the United Nations’ Sustainable Development Goals [4,5]. In the Global North,
sales of electric vehicles (EVs) have risen dramatically with many major car manufacturers
pledging to end the production of internal combustion engine vehicles by 2030 [6–8].

As developed countries start to push the change to electric mobility, developing coun-
tries are feeling increasing pressure to follow suit [9–11]. The critical questions are whether
these advancements genuinely benefit developing countries and whether they can adapt to
the significantly different infrastructure demands of these technologies. One major chal-
lenge is that many developing countries’ struggling electricity utilities are already unable
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to meet existing energy needs, making it difficult to support the substantial increase in
demand that widespread EVs usage would require [12,13]. Research suggests that in some
African contexts, transitioning private vehicles to EV technology may be unsustainable for
current power grids [14,15] and, in some cases, could even have adverse environmental
consequences [16].

In many developing countries, public transport dominates the modal share. Kumar et al. [17]
show that in Africa, besides walking, minibus taxis hold the largest modal share (as observed
across 14 cities). Given the significance of this sector, prioritising the electrification of public
transport over private vehicles seems a logical step.

The transition to EVs presents a unique opportunity to address longstanding issues in
African public transport, which is often characterised by ageing and poorly maintained
minibuses [17]. However, progress in sub-Saharan Africa (SSA) remains exceedingly slow.
Privately owned minibus taxis, which form the backbone of transportation in SSA, are
ubiquitous in both urban and rural areas. This sector supports 83% of the so-called “parat-
ransit” or “popular transportation” industry, which serves over 70% of daily commuters
in the region. Paratransit refers to an informal, decentralised system of shared public
transport operated by small-scale owners. These services lack fixed schedules and routes,
adapting dynamically to passenger demand [18]. For this sector to achieve sustainability,
transitioning to electric energy sources is essential [14,19–24].

Currently, there is limited knowledge about the energy demands of minibus taxis, partic-
ularly considering their distinct and largely undocumented mobility patterns [25,26]. Many
factors affect the energy requirements of a transport sector in its particular context [24,27–31].
For a given passenger demand, these factors include the following:

• Properties of the routes and terrains: elevation changes, road surface (pavement) type
and its condition, tortuosity, speed restrictions, number of stops, speed restrictions,
traffic conditions, distances covered;

• Driver behaviour and driving style: acceleration and deceleration aggressiveness,
compliance to speed restrictions, regularity of stopping to collect passengers;

• Vehicle-related properties: weight, occupancy, propulsion power, vehicle range, re-
energising (fuelling/charging) rates, vehicle efficiency.

These factors (and the mobility patterns) impact how much (and when) an electric
vehicle’s battery will deplete. Without the actual deployment of electric vehicles, the im-
pact is simulated using mobility models or mobility data, driver models, electro-kinetic
vehicle models, and charging infrastructure models [27,29,32]. For an unscheduled and
decentralised transport system, in which charging is not predetermined (as it would be
for a scheduled transport system in a developed country or a centralised scheduled bus
system), the status of the vehicles’ batteries at any given time is key to understanding
charging requirements and the impact thereof on the electricity network [33,34]. Therefore,
planning for energy provision in the electrification of a transport sector requires a thorough
understanding of how these factors will affect the energy depletion of a vehicle’s battery to
ensure reliable simulation models. This understanding fundamentally concerns the energy
expenditure in kWh/km simulated for a given route or terrain, driving style, and vehicle.
Simulation models have been validated for specific modes in some regions [35,36]. How-
ever, existing studies focusing on this aspect of minibus paratransit rely on theoretical or
simulation-based models that have not been validated.

Accurate simulation models are urgently needed to determine the energy requirements
of electric taxis, predict grid demand, and conduct technical, economic, and environmental
analyses and optimisations. These tools will be crucial in guiding the electrification of the
minibus taxi sector effectively and sustainably.
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1.1. Limitations of Existing Methodologies

Some research effort has been invested to develop and improve EV taxi
simulations [31,35,37–40]. However, the reliability of this research has been hampered
by the unavailability of measured data surrounding public transport in developing coun-
tries. Additionally, electric vehicle penetration in developing countries has been relatively
slow [41,42]. On the one hand, routes, fleet sizes, timetables, etc. are vastly undocumented
due to the unregulated nature of public transport [18,43]. On the other hand, data of EV
taxis have been hitherto completely unavailable to validate the simulations.

To illustrate this point, the simulated energy usage of taxis has been simulated
from 0.93 kWh/km [38] to 0.39 kWh/km [31] to 0.50 kWh/km [40], as shown in Figure 1.
Without accurate simulations, it is difficult to reliably forecast the feasibility of and strategise
the transition to sustainable public transport [25,44].

Cignini et al (2020)
0.35 kWh/km, [3070 kg]

Cignini et al (2020)
0.7 kWh/km, [3870 kg]

Collett et al (2021)
0.5 kWh/km, [3350 kg]

Abraham et al (2021)
0.93 kWh/km, [2900 kg]

Hull et al (2022)
0.39 kWh/km, [3900 kg]

Giliomee et al (2023)
0.44 kWh/km, [3900 kg]

Abraham et al (2023)
0.53 kWh/km, [3900 kg]

Abraham et al (2023)
0.37 kWh/km, [2575 kg]

Measured
0.342 kWh/km, [2575 kg]

Corrected simulation
0.333 kWh/km, [2575 kg]

Corrected simulation
0.457 kWh/km, [3900 kg]
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Figure 1. Energy expenditures from recent attempts in the literature compared to that measured in this
paper [31,35,37–40]. Care should be taken when comparing these numbers, since different datasets
and vehicles with different weights were used. The weights used for each source are reported.

After the initial estimation of minibus taxi energy requirements by Abraham et al. [38],
various corrections were suggested by Hull et al. [31], Giliomee et al. [39], and Abraham et al. [40]
in order to improve the accuracy of EV taxi simulations. The progression of these models is listed
in Table 1.

Table 1. Progression of model improvements from the literature.

Reference Progressive Steps

Abraham et al. [38] (2021) Contributes a simulation model, which takes typical low-frequency
mobility data, upsamples it using a mobility model, and simulates it
with an energy-based simulation model.

Hull et al. [31] (2022) Suggests the use of high-frequency data.

Develops and contributes a high-frequency electro-kinetic simula-
tion model.

Giliomee et al. [39] (2023) Suggests improvements to the mobility model (driver model and
mapping) to the model used by Abraham et al. [38].

Abraham et al. [40] (2023) Implements the suggestions of Giliomee et al. [39]

Merges the electro-kinetic simulation model of Hull et al. [31] into
EV-Fleet-Sim.

Makes mathematical corrections to the electro-kinetic simulation
model of Hull et al. [31].

Although all these publications have made strides to improve these models, they
remain theoretical and unvalidated using data from a physical electric minibus taxi.
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Therefore, the primary objective of this work presented is to validate and refine the
electro-kinetic model of a minibus taxi, using high-frequency GPS mobility data. To achieve
this objective, a simulation framework is proposed to improve parameters and refine the
tracking data.

1.2. Contribution

The article presents a unique contribution to electric vehicle efficiency simulation
by introducing a two-part improvement framework, encompassing advancements in the
simulation method and the data processing methodology.

First, an electro-kinetic simulation model and a coupled robust data processing
(wrangling) method are developed. This model integrates key physical and environmental
parameters to simulate the energy efficiency of an electric minibus taxi using real-world
tracking data. The initial methodology establishes a baseline for accurately capturing
vehicle dynamics and energy usage patterns.

Second, the data processing method is advanced by refining the treatment of raw
GPS-tracking data. These improvements include improved handling of noisy data, detec-
tion and handling of outlier data points, and correction of GPS-based elevation profiles.
This step ensures the accuracy and reliability of generic input data for simulation and
validation purposes.

Third, the simulation model is validated and improved based on the processed data
compared to that of actual data. This involves two major enhancements:

1. Parameter updates: Fine-tuning key parameters such as rolling resistance, motor effi-
ciency, and drag coefficients to align the model outputs closely with measured results.

2. Model improvements: Incorporation of corrections for radial drag, heading angle,
and hill-climb forces, providing a more realistic representation of aerodynamic and
gravitational effects.

Finally, we present a fully validated simulation approach that combines the improved
electro-kinetic model with the data processing refinement. This validated methodology
accurately predicts the energy efficiency of electric minibus taxis but can also be implemen-
ted with generic electric vehicles in other transport systems, making it a practical tool for
assessing the feasibility and performance of electric vehicles in real-world scenarios and
fleet optimisation.

2. Methodology
This section outlines the method used to validate the theoretical EV simulation model

developed in Abraham et al. [40]. The model’s output is compared to the measured data obtained
from tracking a physical electric minibus taxi, which was developed in Lacock et al. [45].

The process of this methodology is shown in Figure 2. Data are collected using a
physical EV (in this case, the retrofitted electric minibus taxi). The obtained data are then
analysed for various issues that may affect the simulation. In this step, extraneous data
may be removed. With the raw data processed accordingly, the data are used to run an
initial simulation, using EV-Fleet-Sim. With the first simulation completed, the simulation
output is validated by comparing it to the results of the measured data. As further shown
in Figure 2, this is followed by an iterative process of simulating and validating the results,
which allows for making various corrections. These corrections are discussed further below.
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Gather data Analysis of raw data Initial simulation Initial validation

Correct parameters Re-simulate Re-validate

Correct data issues Re-simulate Re-validate

Correct model issues Re-simulate Re-validate

Calibrate model parameters Re-simulate Re-validate

Figure 2. Methodology pipeline.

2.1. Data Collection

The electric taxi was driven a total of 1400 kilometres across a variety of terrains,
including urban areas, hilly regions, and intercity routes, as shown in Figure 3. To ensure
a comprehensive evaluation, the taxi was tested under different load conditions, using
sandbags to simulate full-load scenarios near its gross-vehicle mass (GVM) and instances
where the vehicle was empty. The tested vehicle weights ranged from 2060 kg to 3090 kg.
Thirty discrete trips were conducted over ten days and analysed to capture the most
accurate representation of the vehicle’s performance.

Figure 3. Vehicles routes over 30 trips conducted over 10 days with colour indicating density
of samples.

Data collection was facilitated by an onboard telematics system that recorded CAN bus
data at a frequency of 0.5 Hz, including key parameters such as power draw or regeneration,
vehicle speed, and state of charge. However, the system did not capture GPS coordinates.
To address this, a cellular device was used to record GPS coordinates at 1 Hz with speed
and altitude. The two datasets were synchronised with curve-fitting methods to align the
variables common across the two datasets (e.g., speed), allowing meaningful comparison
and analysis. The CAN data was up-sampled to match the 1-second frequency of the GPS
data, resulting in a cohesive dataset that could be used to develop and validate energy
efficiency models. To further reduce the error in time between the dataset, we use window
sampling to reduce the synchronisation error between the common value throughout
the methodology.
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2.2. Data Analysis
2.2.1. Mobility

The data collected from the various trips were analysed for mobility characteristics.
Several metrics were selected, which influence the energy usage by the vehicle. These are
listed in Table 2.

Table 2. Mobility metrics used.

Metrics Definition

Trip payload The weight carried by the vehicle. Heavier loads would require more energy.

Trip route A number of routes were chosen for the purpose of this experiment. These trips were intra-
town (within the same town) and inter-town (between towns). The two types of routes contain
different terrains and result in different mobility characteristics, which would cause different
energy requirements. Inter-town trips would require more energy due to longer distances and
higher average speeds, but they would require less energy per unit distance because of fewer
stop–start events compared to intra-town trips.

Trip length This metric quantifies the exact length travelled by the vehicle. Longer distances would require
more energy.

Elevation delta This metric requires the net elevation difference between the end and beginning of the trip. Ending
at a higher elevation than the vehicle started would imply a higher potential energy and thus
more energy drawn from the battery.

Sum of upward elevation
deltas per unit distance

The net elevation difference is not enough to conclude the effect that elevation has on energy
usage. Since energy is not perfectly conserved when climbing and descending hills, hillier terrains
would require more energy. Large elevation deltas per unit distance indicate routes with hills
and valleys.

Sum of downward elevation
deltas per unit distance

See previous metric’s description.

Sum of absolute heading angle
deltas per unit distance

The tortuousness (windiness) of a trip has a large impact on energy usage. Tortuous trips cause
more energy losses due to braking and turning-friction. A larger number of heading angle deltas
per unit distance indicate a more tortuous trip.

Mean speed Trips taken at higher speeds require more energy to traverse due to losses to aerodynamic friction.

Standard deviation of speed This metric indicates how much the speed varied. A larger standard deviation implies that more
acceleration and deceleration took place during the trip.

2.2.2. Energy

The power and energy usage data of each of the trips were analysed. For each trip,
the net energy requirement was established by adding the power samples over the trip
duration. This was then divided by the distance of the route to find the energy usage rate
(kWh/km). Each trip’s energy usage rate should correspond to the mobility characteristics
encountered in the trip, as determined in the previous steps. This correspondence is
checked to verify that the energy usage rates are as expected.

The total energy was then broken down into its propulsion and regeneration com-
ponents. Once again, this should correspond with the mobility characteristics of the
corresponding trips. A high proportion of propulsion energy to regeneration energy indic-
ates that the vehicle had more upward elevation deltas than downward elevation deltas.
A high proportion of regenerated energy implies that many there were many opportunities
for regenerative breaking, such as downward elevation deltas and aggressive acceleration
(high standard deviation in speed). This correspondence was checked.

2.3. Simulation

Once confidence in the measured energy data was established, the mobility data
were reformatted into a format suitable for usage by the EV-Fleet-Sim tool developed
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by Abraham et al. [40]. The tool consists of two electric vehicle models: an energy-
based model derived from Kurczveil et al. [46] and a kinetic-based model derived
from Hull et al. [31]. In this study, the model of Hull et al. [31] was used due to the flexibil-
ity of its implementation. As will be described, numerous aspects of the implementation
were tweaked in order to test the effect of various changes to the model on energy usage.

The initial energy results were substantially different from the measured results, as de-
scribed in Section 3.1. The primary reasons for the discrepancy were identified and correc-
ted. These corrections are listed in Table 3, which are followed by a detailed analysis.

Table 3. Refinements applied in this work to improve the model.

Type of Refinement Refinement Detail

Vehicle parameter updates Gross vehicle mass updated
Data corrections GPS-reported elevation smoothing

GPS-reported speed profile smoothing
GPS-reported heading angle correction

Model corrections Hill-climb force-based model change to energy-based model
Model parameter calibration Propulsion and regeneration factor calibration

The model parameters were reviewed and adjusted, if necessary, to match the vehicle
that was being tested. In this case, the vehicle had a variable weight between 2060 kg (tare
weight) and 3090 kg (fully loaded). The simulation model was thus adjusted to read the
weight of the trip from a data file before conducting the simulation.

After making this parameter update, the scenario was simulated and the results
compared/validated against the measured values. This revealed noisy power profiles, as
discussed in Section 3.2. The cause of this was a consequence of three data issues. The first
two issues were the presence of high-frequency components in the elevation and speed
profiles. Therefore, the first two corrections were to apply Gaussian smoothing to the
elevation and speed profiles. Details about this issue and the effect of the two corrections
are described in Sections 3.2.1 and 3.2.2.

The third issue was that the heading angle in the data often jumps to zero. This
was because the data logger calculated the heading angle from GPS coordinates rather
than measuring it using a magnetometer or gyroscope. The GPS coordinates would fail
to update when the GPS signal was poor, leading to duplicate GPS coordinates, which
resulted in an undefined heading angle, which was recorded as 0◦. This was corrected
by performing linear interpolation on the heading angle. This interpolation followed the
shortest acute angular distance between non-zero heading angles. For example, if the
sequence of heading angles was [10, 0, 0, 0, 350], this would interpolate as [10, 5,
0, 355, 350] instead of the less likely [10, 95, 180, 265, 350].

After applying these corrections, the power profile still contained noisy “spikes”.
This was found to be due to an issue with the simulation model. Following the pipeline
of Figure 2, this process of correction → simulation → validation was repeated for the
simulation model correction. The model used the difference in GPS coordinates to calculate
the road inclination, which is used to calculate the power propelled/regenerated while
climbing/descending. However, since the difference in GPS coordinates was often zero,
the calculated inclination would be an impossible 90 ◦. To resolve this, the hill climb power
was calculated using the following equation:

Phill =
m · g · ∆h

∆t
(1)

After applying all these corrections, the simulation underestimated both the propul-
sion and regeneration energy compared to the measured data. Consequently, the last
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correction was to tune the propulsion and regeneration model parameters to match the
measured data more closely.

After all of these corrections, the simulated result converged within a satisfactory
error margin.

A similar pipeline can be followed in the case of other vehicles and scenarios. How-
ever, the exact parameters to be updated, data issues to be corrected, model corrections,
and parameters to be calibrated may differ based on the unique characteristics and issues
in that scenario.

3. Results
The result section is outlined to present the flow proposed in Figure 2. The measured

data and the uncorrected simulation results are compared in Figure 4. On the left hand
y-axis, the energy usage (kWh/km) is shown with the column chart as an indicator. On the
right hand y-axis, the distance travelled (km) per trip is displayed with the dashed line as
an indicator. Note that the x-axis represents each trip travelled with the vehicle in ascending
order from the shortest to the longest trip distance. For example, with trip 7, the vehicle
travelled 23 km with a total measured energy usage of 3.4 kWh/km.
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Figure 4. Energy usage rate (kWh/km) recorded for various trips, and simulation results with the
uncorrected model (measured mean of all trips = 0.342 kWh/km; measured mean of trips longer than
5 km = 0.327 kWh/km; simulated mean of all trips = 0.372 kWh/km; simulated mean of trips longer
than 5 km = 0.375 kWh/km).

3.1. Measured Results

Figure 4 shows that the mean measured energy usage across trips was measured to be
0.342 kWh/km.

Analysing the data captured from the minibus taxi revealed that five trips fell under
5 km in length. These trips are trips 1, 6, 20, 22, and 25.

Short trips such as these proved to be outliers. Firstly, the two trips with the highest
energy usage per unit distance both fell under 5 km. This is because for shorter trips, the
energy usages of auxiliary components have a greater role. For example, when the vehicle
starts, energy is consumed to power auxiliary components such as the brake pressure
system, water/oil pumps, air conditioner, etc.

The trip with the largest sum of upward elevation deltas is also present in this subset.
Short trips, if driven exclusively uphill or downhill, would not represent typical driving
behaviour. The two trips with the highest tortuousness (represented by the absolute
heading angles deltas per unit distance) were also encountered in this subset. This is
because of the turns required to get out of the parking areas, which skew the overall
tortuousness of the trip. The trips in this subset were also characterised by low average
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speeds. This prompted us to focus only on trips longer than 5 km when validating the
results. Taking the average of trips exceeding 5 km yielded an average energy efficiency of
0.331 kWh/km.

After this, the remaining data were observed to identify if they accurately represented
the characteristics of the vehicle. Several hypotheses were tested to ensure reliability:

Hypothesis 1. Trips with larger payloads would require more energy.

Hypothesis 2. Trips with more hills would require more energy.

Hypothesis 3. More tortuous trips would require more energy.

Hypothesis 4. Higher speeds would require more energy.

Given these hypotheses, the trips appeared to follow all the rules, except for
Hypotheses 4, where the correlation was not absolutely clear.

Trips exceeding 5 km (>5 km) with a GVM of around 2.1 tonnes had an energy usage of
0.31 kWh/km. Trips with a GVM of around 3 tonnes had an energy usage of 0.35 kWh/km,
which was 13% higher. This confirmed Hypothesis 1.

The top 50% of trips (>5 km) ranked by hilliness (varied elevation as indicated by
upward elevation deltas per unit distance) had an energy usage of 0.345 kWh/km, while
the bottom 50% had an energy usage of 0.311 kWh/km. The hillier trips therefore used 10%
more energy per unit distance. This confirmed Hypothesis 2.

The top 50% of trips (>5 km) ranked by tortuousness (as indicated by the absolute
heading angle deltas per unit distance) had an energy usage of 0.335 kWh/km, while the
bottom 50% was 0.320 kWh/km. This meant that the more tortuous trips used 5% more
energy per unit distance. This confirmed Hypothesis 3.

Investigating Hypothesis 4, trips (>5 km) with higher average speeds had a 1% lower
energy usage than trips at lower average speeds. This is likely due to other trip charac-
teristics (stop, start, etc.) weighing more heavily on the energy usage. However, looking
at certain trips where other characteristics are more controlled reveals that speed does
have an effect. For example, trips 7, 15 and 12 are all intercity trips from Somerset West to
Stellenbosch (distance of 18.8 km) and have similar trip characteristics except for their in-
creasing mean speeds of 43, 46, and 50 km/h, respectively. The energy usage (0.34 kWh/km,
0.40 kWh/km and 0.41 kWh/km, respectively) is higher for trips that have higher average
speeds. A similar conclusion can be obtained for trips 2, 4, and 26, which are from Stel-
lenbosch to Somerset West (0.24 kWh/km, 0.28 kWh/km and 0.29 kWh/km, respectively),
confirming Hypothesis 4.

3.2. Simulated Results with Existing Model

In Abraham et al. [40], the simulation model was refined using various techniques
and applied to a large dataset of 10 minibus taxis in and around Stellenbosch, yielding an
average energy usage of 0.53 kWh/km. Applying the unmodified model, with the same
parameters to trips (>5 km) in this study, yielded an energy usage of 0.530 kWh/km, which
is the same as the aforementioned study. The vehicle modelled in Abraham et al. [40] was
simulated with a GVM of 3900 kg. The vehicle in this study, however, had a weight which
varied between 2060 kg (tare weight) and 3090 kg (fully loaded). When the parameters were
accordingly adjusted, the simulation yielded an average energy efficiency of 0.372 kWh/km
for trips >5 km, which was significantly closer to the measured value of 0.327 kWh/km.
The mean absolute error associated with these trips was 18.1% with a standard deviation of
18.3%. This meant that some trips were substantially underestimated (trips: 22, 20, 6, 1, 25,
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5 and 24) and others were substantially overestimated (trips: 11, 23 14, 2, 21 7,15, 9, 28, 29
and 16). This is shown in Figure 4, and the error is shown in Figure 5.
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Figure 5. Error in energy usage of each trip simulated before and after data correction.

Figure 5 presents energy usage error data sorted by ascending trip distance. The results
highlight that simulations for shorter trips are significantly less accurate with energy
usage often underestimated. This discrepancy is likely due to the omission of auxiliary
components in the model, such as the brake pump and climate control, which consume
considerable power during startup.

For the trips that exceed 5 km, Trip 12 exhibited the smallest absolute error, whereas
Trip 23 had the largest error. Consequently, these two trips were selected for detailed
comparative analysis in subsequent plots. Notably, Trip 23 is an intra-town journey
within Somerset West, whereas Trip 12 spans from Somerset West to Stellenbosch (18.8 km).
With these extremes, Trip 3 is also shown as a typical trip in Figure 6. The energy profile of
Trip 23, for example, shows that the simulated energy (before corrections, indicated by the
dashed line) overshoots the measured energy shortly after time 15:56. In Trip 3, the energy
is initially underestimated, but from around 16:35, it is overestimated.

In addition to this, the power profiles shown in Figure 6 are extremely noisy. In Trip 3,
the power profile spikes up to 150 kW. This is an obvious overestimation by the simulator
since the motor’s maximum power is capped to 50 kW and should not have been able to per-
form mobility that requires power that exceeds this limit. Likewise, in Trip 23 and Trip 12,
the power profile spike is frequently above that limit. To analyse this anomaly, the power
profile was smoothened using Gaussian smoothing (sigma = 10, kernel size = 81) to indicate
the average trend underlying the noisy power profile. In Trip 23, the continuously high
power between 15:56 and 15:57 indicates the reason for the energy overshoot identified in
that period.

The simulated power profile was separated into its various principal components for
further inspection. This is shown in Figure 7a. The figure shows that the hill-climb power
was especially noisy.

Figures 6 and 7a clearly highlight discrepancies between the simulated and measured
data across the 30 trips. In particular, Figure 7a helps identify that the speed and elevation
variables, within the tracked data, are responsible for the power component discrepancy,
which in turn contributes to the increase in energy usage error across the trips. To address
these issues, the following corrections are proposed to enhance the accuracy of both the
simulation model and the quality of data collected from the vehicle, ensuring a more
accurate representation of vehicle efficiency.
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Figure 6. Measured and simulated energy and power profiles for trips before and after corrections
were applied to the simulation method. Trip 3 is a normal trip with a typical error between measured
and (corrected) simulated profiles. Trip 23 is the trip with the worst-case simulation error, and Trip 12
is the best-case simulation error, both after corrections were applied.



Energies 2025, 18, 446 12 of 21

16:20:00 16:25:00 16:30:00 16:35:00 16:40:00 16:45:00
Time

100

50

0

50

100

Po
we

r

Hill-climb power
Acceleration power
Rolling resistance

Aerodynamic drag
Radial drag
Rotational power

16:20:00 16:25:00 16:30:00 16:35:00 16:40:00 16:45:00
Time

40

20

0

20

40

Po
we

r

Hill-climb power
Acceleration power
Rolling resistance

Aerodynamic drag
Radial drag
Rotational power

(a) Trip 3 before corrections. (b) Trip 3 after corrections.

22 20 6 1 25 11 23 5 13 24 14 2 21 4 7 27 15 10 8 17 26 9 12 28 29 3 18 19 30 16
Trip ID

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
op

uls
ion

/r
eg

en
 e

ne
rg

y 
pe

r 
un

it 
dis

ta
nc

e 
alo

ng
 th

e 
tri

p 
(k

W
h/

km
)

0

5

10

15

20

25

30

35

40

Di
sta

nc
e 

Tr
av

ell
ed

 (k
m

)

Measured - Propelled
Measured - Regenerated

Simulated - Propelled
Simulated - Regenerated

Distance

(c) Disaggregated energy in terms of propulsion and regenerative braking per trip.

22 20 6 1 25 11 23 5 13 24 14 2 21 4 7 27 15 10 8 17 26 9 12 28 29 3 18 19 30 16
Trip ID

0.075

0.050

0.025

0.000

0.025

0.050

0.075

Er
ro

r i
n 

pr
op

uls
ion

/r
eg

en
 e

ne
rg

y 
pe

r 
un

it 
dis

ta
nc

e 
alo

ng
 th

e 
tri

p 
(k

W
h/

km
)

0

5

10

15

20

25

30

35

40

Di
sta

nc
e 

Tr
av

ell
ed

 (k
m

)

Error - Propelled Error - Regenerated Distance

(d) Error in simulated energy used for propulsion and regenerative braking per trip.

Figure 7. Disaggregation of power components. Trip 3 (a,b) shows the disaggreated output for all the
components. The simulation before corrections were applied is shown in (a,b) shows the output from
the corrected simulation. Propulsion and regeneration energy components per trip after corrections
are shown in (c), and the remaining errors are shown in (d).

3.2.1. Elevation Profile Correction

Gaussian smoothing was applied to the power profile in order to obtain an under-
standing of the general power response of the model, which are shown in Figure 6. It is
clear that the smoothed power profile (indicated in green) follows the measured power
usage (in red). Upon detailed inspection of the GPS data, it was found that the reason for
the noisy power profile is due to inaccuracies and aliasing in the measured elevation data.
Figure 8a highlights inaccuracies in the elevation data. For example, from point B to C,
the altitude (indicated by the blue line) is recorded as a constant 80.5 m for approximately
10 s. However, the altitude immediately jumps to 91.5 m (point D) in 1 s. This implies that
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the vehicle climbed an elevation of 11 m in 1 s, which would require an unrealistic amount
of power. Herein lies the cause of the spikes in Figure 7a. Inspecting the site of this trip
segment reveals that the altitude profile should be smooth, and that this jagged profile
is inaccurate.

To improve the elevation profile, a Gaussian filter was applied to the measured
elevation data to smoothen the transitions. The resultant elevation profile is shown in
orange in Figure 8a. This smoothened elevation profile was then used in the corrected
energy simulation, the results of which are shown in Section 3.3.
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(a) Smoothened GPS altitude profile (σ = 10, kernel size = 81).
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(b) Smoothened GPS speed profile (σ = 1, kernel size = 9).

Figure 8. Gaussian smoothing operations on GPS altitude and speed data for Trip 3.

3.2.2. Speed Profile Correction

Detailed inspection of the raw GPS speed data revealed that the noisy profile is
caused by inaccuracies and aliasing inherent to GPS signal processing. For instance, rapid
and improbable changes in speed were observed over short time intervals, which do not
align with realistic vehicle behaviour. These inaccuracies distort the calculated energy
usage, as they directly influence the power demand estimations. Gaussian smoothing
was therefore applied to the measured speed profile to reduce noise and better reflect the
actual vehicle dynamics, as shown in Figure 8b. The smoothed speed profile (shown in
orange) follows the measured speed profile (in blue) more closely while eliminating abrupt,
unrealistic fluctuations.

A Gaussian filter with σ = 1 and kernel size = 9 was applied to the speed profile,
producing the smoothened curve shown in Figure 8b in orange.
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3.2.3. Radial Drag and Heading Angle Correction

The simulated power profile was separated into its various components for inspection,
as shown in Figure 7a. This revealed that radial drag was an additional source of power
spikes. The reason for this was found by inspecting the raw GPS data, which are shown in
Table 4.

Table 4. Raw GPS data where heading angle resets to zero randomly. Highlighted rows indicate rows
where the heading angle resets to zero.

GPS ID Time Latitude Longitude Altitude Heading Velocity Energy

...
...

...
...

...
...

...
...

21949 2024-04-23 15:27:05 −33.984837 18.834373 135 237.2 85.1 −8.5
21950 2024-04-23 15:27:06 −33.984954 18.834156 135 238.1 84.2 −23

21951 2024-04-23 15:27:07 −33.985065 18.833939 135 0 85.1 −7.5

21952 2024-04-23 15:27:08 −33.985065 18.833939 134 239.5 84.5 8
21953 2024-04-23 15:27:09 −33.985279 18.833502 132 240.7 83.8 7
21954 2024-04-23 15:27:10 −33.985382 18.833281 132 241.5 83.7 6

21955 2024-04-23 15:27:11 33.985483 18.833056 132 0 85.0 −20.5

21956 2024-04-23 15:27:12 −33.985483 18.833056 132 242.5 84.7 −47
21957 2024-04-23 15:27:13 −33.985677 18.832607 132 243.1 84.5 −31

...
...

...
...

...
...

...
...

Highlighted rows indicate that there are instances where the heading angle is erro-
neously reported zero. The heading angle is calculated by the vehicle tracker using the
difference between subsequent coordinates. This makes it apparent why the heading
angle reset to zero. Looking at the data point with GPS ID 21951, the following data point
(ID 21952) has the exact same coordinates despite the vehicle travelling at a velocity of
85 km/h. The GPS coordinate had not been updated because of a poor GPS signal. Since
the difference between the two data points is zero, the heading angle is undefined, causing
the system to log a heading angle of zero.

Within the simulation environment, the heading angle is used in the electro-kinetic
model to calculate the energy lost to radial friction forces in the tyres when cornering.

The model tries to replicate this apparent rapid change of heading angle from 240 deg
to 0 deg by skidding the vehicle’s tyres. Since the vehicle maintains the same velocity while
performing this apparent behaviour, the simulation model concludes that a large amount
of power was used.

To correct this, the heading angle was linearly interpolated to obtain the final energy
usage shown in Section 3.3.

3.2.4. Hill-Climb Force Model Correction

In Figure 7a, the hill-climbing power was found to spike at the same time as spikes in
the radial drag (which is resolved in Section 3.2.3). It was observed that the spikes of the
GPS coordinates affected the hill-climbing power calculation. This power was calculated
by multiplying the hill-climbing force by the vehicle’s velocity. The hill climbing force
was determined using the incline angle of the road, as determined using the arctan of the
difference in altitude divided by the distance between GPS coordinates. Since the distance
between the GPS coordinates was zero when the GPS signal was poor, it resulted in a 90◦

incline angle, requiring unrealistically large amounts of power.
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To correct the model, the hill-climb power, Phill, was rather calculated using the change
in elevation. The hill-climb energy, Ehill, is consequently determined as

Ehill = m · g · ∆h, (2)

where m is the vehicle mass (kg), g is gravitational acceleration (9.81 m/s2), and ∆h is the
elevation change (m). The hill-climb power is then given by

Phill =
m · g · ∆h

∆t
, (3)

where ∆t is the time interval between timestamps (s). This modification improves the
model’s accuracy by accounting for hill-climbing energy and power requirements.

3.2.5. Parameter Tuning

Having implemented these corrections, the propulsion and regeneration factors were
tuned to match the measured values by running the simulation models with many com-
binations of propulsion and regeneration factors. It was found that the factors were
mutually exclusive in their effect. In other words, a change in propulsion factor did not
have any change in the regeneration energy error and vice versa. The error in the propul-
sion/regeneration energy calculation for various propulsion/regeneration factors is shown
in Figure 9. This figure shows that the optimum propulsion and regeneration factors
are 0.9 and 0.65, respectively. However, these are the same values used in the original
simulation (as determined in Abraham et al. [40]).
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Figure 9. Error in propulsion and regeneration energies for various propulsion and regeneration factors.

3.3. Corrected Simulation Result

The final energy usage results are shown in Figure 10 after the changes described in
Section 3.2 were implemented into the data and simulation model. The average energy
usage reduced to 0.331 kWh/km for the longer trips (>5 km), which was significantly closer
to the measured value of 0.327 kWh/km. This leads to an average error of 8.61%, with a
standard deviation of 10.1%, which is substantially better than the initial error of 18.1% and
standard deviation of 18.3%.

Abraham et al. [40] used a vehicle weight of 3900 km and found a result of 0.530 kWh/km.
The corrected simulator was run using their weight and the data from this paper. The res-
ulting usage was 0.457 kWh/km, which is 14% lower than with the uncorrected model.
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Figure 10. Final propulsion and regeneration energy usage (measured mean of all trips = 0.342 kWh/km;
measured mean of trips longer than 5 km = 0.327 kWh/km; simulated mean of all trips = 0.333 kWh/km;
simulated mean of trips longer than 5 km = 0.331 kWh/km). The errors are shown in Figure 5.

The energy usage for each trip was also broken into propulsion and regeneration
components. These are shown in Figure 7c. For both the propulsion and regeneration com-
ponents, the simulated energy is sometimes overestimated and sometimes underestimated
compared to the measured values. This is likely due to aspects not included in the model.

The corrected model results, as shown in Figure 1, are more accurate than those found
in the literature. It is evident that the consumption values reported in existing studies often
overestimate energy consumption, while the actual consumption is much more efficient.
The results produced by this model demonstrate the accuracy of the proposed methodology.

Analysing the power profile in Figure 6f reveals a substantial reduction in noise
compared to the original profile shown in Figure 6, which exhibited numerous spikes.
The corrected profile displays minimal discrepancies, though occasional power spikes
exceeding 50 kW are observed in some trips. These spikes can be attributed to the sim-
ulation not being strictly constrained to a 50 kW limit. Additionally, the simulation may
overestimate the required power due to its omission of environmental factors, such as
headwinds or tailwinds, which can contribute to the discrepancies observed in the graph.

A tabular summary of the key corrections and their connection with simulation
accuracy is provided in Table 5.

Table 5. Summary of key corrections and their impact on simulation accuracy.

Correction Description Difference in Energy
Consumption (%) Impact on Simulation Accuracy

Original
simulation

Original simulation before cor-
rections with model parameters
of Abraham et al. [40]: 0.530 kWh/km

– –

Parameter
update

The mass of the model was updated to
match the physical vehicle. The mass,
which was a fixed 3900 kg, was updated
to a value between 2100 kg to 3000 kg,
depending on how heavily the vehicle
was loaded in the given trip.

−29

Depends on the parameter being
adjusted. In this case, it had a high
impact on energy consumption,
as mass is a highly sensitive parameter,
as highlighted by Abraham et al. [40].
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Table 5. Cont.

Correction Description Difference in Energy
Consumption (%) Impact on Simulation Accuracy

Elevation
smoothing

Gaussian smoothing was applied to GPS
elevation data. −3

Small, negative impact on energy con-
sumption. High impact on power
profile, as frequent power spikes due
the hill-climbing are removed.

Speed profile
smoothing

Gaussian smoothing was applied to GPS
speed data. −5

Medium/low, negative impact on
energy consumption. Medium impact
on power profile, as power spikes due
to acceleration are removed.

Heading angle
correction

Heading angles that were falsely reset to
zero by the GPS sensor were interpolated
from other non-zero heading angles in or-
der to more accurately predict the radial
drag power loss.

−6

Medium/low, negative impact on
energy consumption. Medium/low
impact on power profile, as power
spikes due to radial drag are removed.
However, these spikes are not very
significant, as radial drag is a small
component of the total power.

Hill-climb
power model
correction

The hill-climb power was calculated from
the change in altitude rather than from
the road gradient, which was sometimes
inaccurate.

−7

Medium, negative impact on energy
consumption. High impact on power
profile, as frequent power spikes due
the hill-climbing are removed.

Parameter
tuning

Propulsion and regen coefficients were
tuned until the simulation accuracy was
optimised. Propulsion coeff. changed
from 0.90 to 0.855 and regen coeff.
changed from 0.65 to 0.70

+9

Medium impact on energy consump-
tion. Impact depends on how accurate
the initial guess was and what para-
meters are tuned.

Final
simulation

Final simulation after all corrections were
applied: 0.331 kWh/km – –

4. Conclusions
With this research, a systematic methodology (see Figure 2) is proposed to refine

and validate an energy usage model for an electric vehicle for the model developed
by Abraham et al. [40]. Therefore, the work presented here serves as a guideline for other
researchers to use the available energy usage model to further their own research, given
their own unique datasets.

The methodology pipeline included multiple stages: parameter correction (GVM),
data corrections (elevation smoothing and speed profile smoothing), model corrections
(radial drag, heading angle, and hill-climb force models), and calibration of key parameters
such as propulsion and regeneration factors. This approach led to a final simulation that
closely approximated real-world performance, achieving an average simulated energy
usage of 0.327 kWh/km for trips longer than 5 km. Although the measured data showed
an average usage of 0.331, the discrepancy between the measured and simulated values
(approximately 1.2% lower for simulated results) is within an acceptable range, considering
the complexity of factors involved.

The energy efficiency achieved, despite the simulation’s inherent simplifications and
assumptions, suggests that this efficiency (0.327 kWh/km) is promising and concludes that
the model was accurately validated through the proposed methodology.

Significant improvements were made through the corrections of the elevation and
speed profiles. The elevation smoothing helped remove inaccuracies and aliasing from
the GPS data, while the speed profile smoothing addressed discrepancies due to noise
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and abrupt speed changes. Furthermore, model corrections, such as the radial drag and
heading angle adjustments, along with the hill-climb force model correction, provided
more realistic power usage estimates, particularly on hilly terrain or winding routes.

Moreover, the calibration of propulsion and regeneration factors was essential in refin-
ing the energy model. This calibration ensured that the simulation accurately accounted
for the energy recaptured during braking and the actual power required for propulsion
under different conditions.

The study also validated several key hypotheses, such as the influence of payload,
varied elevations (hilliness), tortuousness, and vehicle speed on energy usage. Payload
had a clear positive correlation with energy use with heavier trips consuming more energy.
Similarly, hillier routes and more tortuous driving patterns led to higher energy usage,
confirming the expected trends. However, the relationship with speed was less straightfor-
ward: while higher speeds generally led to higher energy usage, this effect was modulated
by other trip characteristics like terrain and route complexity.

Some of the discrepancies in the mobility data can be due to environmental factors,
particularly wind conditions, which can have a significant impact on energy usage. Head-
winds or tailwinds could lead to variations in the required energy, which was not fully
captured by the model. This suggests that incorporating environmental data, such as wind
speed and direction, will be valuable to further improve the model’s accuracy for real-world
applications. Additionally, radial drag estimations can be improved by measuring the
heading angle using a Gyroscope or Magnetometer rather than deriving this measurement
from GPS coordinates.

This paper contributes a pipeline of iterative corrections and calibrations that can be
used for accurate EV modelling. This pipeline is applied to electric taxis but can be applied
to a variety of other vehicles and scenarios.

From a policy perspective, the results show the importance of using data-driven and
validated models in contextually representative simulation environments when planning
for the electrification of informal transport. Unlike scheduled and centralised transport
sectors, the mobility patterns, route and terrain properties, driver behaviour, and vehicle
properties play an essential role in paratransit’s eventual electrical energy requirements.
This impacts the expected energy required (kWh) and the expected temporal load (kW).
Accordingly, the inaccurate modelling of these factors will directly impact the extent to
which electrification appears viable and beneficial given the region’s energy challenges.

Although applied to minibus taxis in this paper, the method and approach extend
to other informal modes of transport, including boda-bodas (motorbikes used as taxis),
jeepneys, tuk-tuks, midibuses, chapas, etc.

In conclusion, the iterative corrections and calibrations applied throughout this study
led to a reliable energy usage model with a realistic efficiency range for the vehicle in typical
conditions. The methodology and insights from this research are instrumental in enhancing
the performance and feasibility of electric vehicles in urban and inter-town contexts.

Limitations and Future Work

Despite the contributions of this study, several limitations are acknowledged, whose
resolution is reserved as future work.

Firstly, the energy consumption was measured from only one electric minibus. Ad-
ditionally, this electric minibus was a retrofitted vehicle, which may have manufacturing
defects which make it less efficient than a new electric minibus. Using a fleet of electric
minibuses in the validation could help to account for manufacturing variations which affect
the results.
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Secondly, the data were collected from an electric minibus which travelled across a
variety of terrains under a variety of conditions. This made it difficult to isolate the cause
of trips with an unexpectedly high/low energy consumption. It is therefore envisaged to
collect data in more controlled experiments, such that only one mobility metric is varied,
while attempting to keep other mobility metrics fixed. For example, several trips could
be conducted which vary the speed of the vehicle between trips while keeping the road
elevation, trip length, vehicle payload, etc. constant between those trips.

Environmental effects were not accounted for in this study. In some trips, the simu-
lated power exceeded the vehicle’s power limit of 50 kW, which was possibly because the
simulation did not account for tailwinds, which would have caused the vehicle to travel
faster than would be possible with a 50 kW motor.

Although a 1 Hz data sampling has been regarded as the ideal sampling rate in previ-
ous research publication, this is not necessarily the case for model calibration. From this
work, it has been shown that a high sampling rate of 1 Hz is valuable but also comes with
unique data issues. Fortunately, data processing techniques, such as Gaussian smoothing,
can rectify data issues related to high sampling rates. However, the errors caused by this
estimation should be quantified. Both GPS and CAN bus data would need to be captured
at high frequencies.

In this paper, the model was calibrated using high-frequency data. However, the im-
provement of using the calibrated model on typical low-frequency data was not quantified.

The study employed two different devices to collect data, allowing for the synchron-
isation of the vehicle’s power consumption with its GPS coordinates. Future work will
involve installing a CAN device that integrates GPS tracking, enabling real-time data
synchronisation instead of relying on post-processing.
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