Effects on the Mechanical Properties of Nacre-Like Bio-Hybrid Membranes with Inter-Penetrating Petal Structure Based on Magadiite
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Nacre-Like Hybrid Membranes with Interpenetrating Petals Structure
2.2.1. Preparation of CS/MAG Nanosheets
2.2.2. Preparation of CS/KH550/MAG Nanosheets
2.2.3. Preparation of the Nacre-Like Hybrid Membranes
2.3. Characterization and Performance of the Nacre-Like Hybrid Membranes
3. Results and Discussion
3.1. Chemical Stability and Contact Angle Analysis
3.2. XRD Analysis
3.3. SEM Analysis
3.4. Fourier Transforms Infrared Spectroscopy (FTIR) Analysis
3.5. Mechanical Properties Analysis
3.6. Thermal Properties Analysis
3.7. Transmission Analysis
3.8. Burning Experimental Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sarikaya, M.; Aksay, I.A. Nacre of abalone shell: A nature multifunctional nanolaminated ceramic-polymer composite material. In Structure, Cellular Synthesis and Assembly of Biopolymers; Springer: Berlin/Heidelberg, Germany, 1992; Volume 19, pp. 1–26. [Google Scholar]
- Wegst, U.; Ashby, M.F. The mechanical efficiency of natural materials. Philos. Mag. 2004, 84, 2167–2181. [Google Scholar] [CrossRef]
- Bonderer, L.J.; Studart, A.R.; Gauckler, L.J. Bioinspired design and assembly of platelet reinforced polymer films. Science 2008, 319, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Barthelat, F.; Li, C.; Comi, C.; Espinosa, H.D. Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 2006, 21, 1977–1986. [Google Scholar] [CrossRef]
- Ternes, M.; Lutz, C.P.; Hirjibehedin, C.F.; Giessibl, F.J.; Heinrich, A.J. The Force Needed to Move an Atom on a Surface. Science 2008, 319, 1066–1069. [Google Scholar] [CrossRef] [Green Version]
- Pan, G.; Yao, Y.; Zeng, X.; Sun, J.; Hu, J.; Sun, R.; Xu, J.; Wong, C. Learning from Natural Nacre: Constructing Layered Polymer Composites with High Thermal Conductivity. ACS Appl. Mater. Interfaces 2017, 9, 33001–33010. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.Y.; Chen, P.; Meyers, M.A. The growth of nacre in the abalone shell. Acta Biomater. 2008, 4, 131–138. [Google Scholar] [CrossRef]
- Wilkerson, R.P.; Gludovatz, B.; Watts, J.; Tomsia, A.P.; Hilmas, G.E.; Ritchie, R.O. A study of size effects in bioinspired, “nacre-like”, metal-compliant phase (nickel-alumina) coextruded ceramics. Acta Mater. 2018, 148, 147–155. [Google Scholar] [CrossRef]
- Rodrigues, J.R.; Alves, N.M.; Mano, J.F. Nacre-inspired nanocomposites produced using layer-by-layer assembly: Design strategies and biomedical applications. Mater. Sci. Eng. C 2017, 76, 1263–1273. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S.; Xiao, H.; Zhang, X. Synthesis and Tribological Properties of Bio-Inspired Nacre-Like Composites. Materials 2018, 11, 1563. [Google Scholar] [CrossRef]
- Sheikhi, A.; Kakkar, A.; van de Ven, T.G.M. A Leaf out of Nature’s Book: Hairy Nanocelluloses for Bioinspired Mineralization. Cryst. Growth Des. 2016, 16, 4627–4634. [Google Scholar] [CrossRef]
- Zhang, L.; Ling, L.; Xiao, M.; Han, D.; Wang, S.; Meng, Y. Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nafion membrane with nacre-like nanoarchitectures. J. Power Sources 2017, 352, 111–117. [Google Scholar] [CrossRef]
- Sarin, S.; Kolesnikova, S.; Postnova, I.; Ha, C.; Shchipunov, Y. Bionanocomposite from self-assembled building blocks of nacre-like crystalline polymorph of chitosan with clay nanoplatelets. RSC Adv. 2016, 6, 33501–33509. [Google Scholar] [CrossRef]
- Zhao, H.; Yue, Y.; Zhang, Y.; Li, L.; Guo, L. Ternary Artificial Nacre Reinforced by Ultrathin Amorphous Alumina with Exceptional Mechanical Properties. Adv. Mater. 2016, 28, 2037–2042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shen, P.; Shaga, A.; Guo, R.; Jiang, Q. Preparation of nacre-like composites by reactive infiltration of a magnesium alloy into porous silicon carbide derived from ice template. Mater. Lett. 2016, 183, 299–302. [Google Scholar] [CrossRef]
- Ruan, Y.; Ying, Y.; Guo, Y.; Zhou, Z.; Peng, X. Mechanical enhancement of a nanoconfined-electrodeposited nacre-like Cu2O layered crystal/graphene oxide nanosheet composite thin film. RSC Adv. 2016, 6, 94845–94850. [Google Scholar] [CrossRef]
- Liu, C.; Xu, G.; Du, J.; Sun, J.; Wan, X.; Liu, X.; Su, J.; Liang, J.; Zheng, G.; Xie, L.; et al. Mineralization of Nacre-like Structures Mediated by Extrapallial Fluid on Pearl Nucleus. Cryst. Growth Des. 2018, 18, 32–36. [Google Scholar] [CrossRef]
- Liu, S.; Yao, F.; Oderinde, O.; Li, K.; Wang, H.; Zhang, Z.; Fu, G. Zinc ions enhanced nacre-like chitosan/graphene oxide composite film with superior mechanical and shape memory properties. Chem. Eng. J. 2017, 321, 502–509. [Google Scholar] [CrossRef]
- Liu, S.; Ling, J.; Li, K.; Yao, F.; Oderinde, O.; Zhang, Z.; Fu, G. Hierarchical alginate biopolymer papers produced via lanthanide ion coordination. RSC Adv. 2016, 6, 63171–63177. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, H.; Yang, Q.; Wang, D.; Zhang, W.; Yang, X. Calcined Chitosan-Supported Layered Double Hydroxides: An Efficient and Recyclable Adsorbent for the Removal of Fluoride from an Aqueous Solution. Materials 2017, 10, 1320. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Qi, X.; Guan, Y.; Peng, F.; Yao, C.; Sun, R. High Strength Hemicellulose-Based Nanocomposite Film for Food Packaging Applications. ACS Sustain. Chem. Eng. 2016, 4, 1985–1993. [Google Scholar] [CrossRef]
- Liu, A.; Berglund, L.A. Clay nanopaper composites of nacre-like structure based on montmorrilonite and cellulose nanofibers-Improvements due to chitosan addition. Carbohydr. Polym. 2012, 87, 53–60. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Jiang, H.; Shi, J.; Li, F.; Xia, Y.; Zhang, G.; Li, H. Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect. Carbohydr. Polym. 2017, 177, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Abba, M.T.; Hunger, P.M.; Kalidindi, S.R.; Wegst, U.G.K. Nacre-like hybrid films: Structure, properties, and the effect of relative humidity. J. Mech. Behav. Biomed. 2016, 55, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, S.R.; de Albuquerque, N.J.A.; de Almeida, R.M.; de Abreu, F.C. Synthesis and Charaterization of Silica-Based Aldehyde Chitosan Hybrid Material for Biodiesel Purification. Materials 2017, 10, 1132. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Cheng, Q. Learning from nacre: Constructing polymer nanocomposites. Compos. Sci. Technol. 2017, 150, 141–166. [Google Scholar] [CrossRef]
- Waraich, S.M.; Hering, B.; Burghard, Z.; Bill, J.; Behrens, P.; Menzel, H. Fabrication and characterization of biocompatible nacre-like structures from alpha-zirconium hydrogen phosphate hydrate and chitosan. J. Colloid Interface Sci. 2012, 367, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Lim, B.; Ryu, S.; Lee, D.; Lee, J. Preparation of multi-layered film of hydroxyapatite and chitosan. Mater. Sci. Eng. C 2010, 30, 789–794. [Google Scholar] [CrossRef]
- Postnova, I.; Sarin, S.; Silant’Ev, V.; Ha, C.; Shchipunov, Y. Chitosan bionanocomposites prepared in the self-organized regime. Pure Appl. Chem. 2015, 87, 793–803. [Google Scholar] [CrossRef]
- Eugster, H.P. Hydrous sodium silicates from lake Magadi, Kenya: Precursors of bedded chert. Science 1967, 157, 1177–1180. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Chang, L. Hydrothermal synthesis of magadiite. Appl. Clay Sci. 2006, 33, 73–77. [Google Scholar] [CrossRef]
- Mao, O.; Schleidt, S.; Zimmermann, H.; Jeschke, G. Molecular motion in surfactant layers inside polymer composites with synthetical magadiite. Macromol. Chem. Phys. 2007, 208, 2145–2160. [Google Scholar] [CrossRef]
- Kharkov, B.B.; Corkery, R.W.; Dvinskikh, S.V. Phase Transitions and Chain Dynamics of Surfactants Intercalated into the Galleries of Naturally Occurring Clay Mineral Magadiite. Langmuir 2014, 30, 7859–7866. [Google Scholar] [CrossRef] [PubMed]
- Isoda, K.; Kuroda, K.; Ogawa, M. Interlamellar grafting of gamma-methacryloxypropylsilyl groups on magadiite and copolymerization with methyl methacrylate. Chem. Mater. 2000, 12, 1702–1707. [Google Scholar] [CrossRef]
- Ramakrishnaiah, R.; Alkheraif, A.A.; Divakar, D.D.; Alghamdi, K.F.; Matinlinna, J.P.; Lung, C.Y.K.; Cherian, S.; Vallittu, P.K. The Effect of Lithium Disilicate Ceramic Surface Neutralization on Wettability of Silane Coupling Agents and Adhesive Resin Cements. Silicon-Neth. 2018, 10, 2391–2397. [Google Scholar] [CrossRef]
- Yang, H.; Dong, X.; Wang, D.; Xu, W. Effect of Silane Coupling Agent on Physical Properties of Polypropylene Membrane Reinforced by Native Superfine Down Powder. Polym. Polym. Compos. 2014, 22, 509–518. [Google Scholar] [CrossRef]
- Bonderer, L.J.; Studart, A.R.; Woltersdorf, J.; Pippel, E.; Gauckler, L.J. Strong and ductile platelet-reinforced polymer films inspired by nature: Microstructure and mechanical properties. J. Mater. Res. 2009, 24, 2741–2754. [Google Scholar] [CrossRef] [Green Version]
- Hassan, E.A.; Hassan, M.L.; Abou-Zeid, R.E.; El-Wakil, N.A. Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Ind. Crops Prod. 2016, 93, 219–226. [Google Scholar] [CrossRef]
- Park, K.; Jung, J.H.; Seo, H.; Kwon, O. Mesoporous silica-pillared kenyaite and magadiite as catalytic support for partial oxidation of methane. Microporous Mesoporous Mater. 2009, 121, 219–225. [Google Scholar] [CrossRef]
- Naz, A.; Arun, S.; Narvi, S.S.; Alam, M.S.; Singh, A.; Bhartiya, P.; Dutta, P.K. Cu(II)-carboxymethyl chitosan-silane schiff base complex grafted on nano silica: Structural evolution, antibacterial performance and dye degradation ability. Int. J. Biol. Macromol. 2018, 110, 215–226. [Google Scholar] [CrossRef]
- Li, C.; Huang, C.; Hsieh, M.; Wei, K. Properties of covalently bonded layered-silicate/polystyrene nanocomposites synthesized via atom transfer radical polymerization. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 534–542. [Google Scholar] [CrossRef]
- Yao, H.; Guan, Y.; Mao, L.; Wang, Y.; Wang, X.; Tao, D.; Yu, S. A designed multiscale hierarchical assembly process to produce artificial nacre-like freestanding hybrid films with tunable optical properties. J. Mater. Chem. 2012, 22, 13005–13012. [Google Scholar] [CrossRef]
- Bee, S.; Lim, K.; Sin, L.T.; Ratnam, C.T.; Bee, S.L.; Rahmat, A.R. Interactive effect of ammonium polyphosphate and montmorillonite on enhancing flame retardancy of polycarbonate/acrylonitrile butadiene styrene composites. Iran. Polym. J. 2018, 27, 899–911. [Google Scholar] [CrossRef]
- Ding, F.; Liu, J.; Zeng, S.; Xia, Y.; Wells, K.M.; Nieh, M.; Sun, L. Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly. Sci. Adv. 2017, 3, e1701212. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Lai, X.; Li, H.; Zeng, X. Remarkably improving the fire-safety of polypropylene by synergism of functionalized ZrP nanosheet and N-alkoxy hindered amine. Appl. Clay Sci. 2018, 166, 61–73. [Google Scholar] [CrossRef]
Content of MAG | CS/MAG | CS/KH550/MAG | |||||
---|---|---|---|---|---|---|---|
10% | 30% | 50% | 10% | 30% | 50% | ||
Acid | Beginning (g) | 0.0180 | 0.0177 | 0.0138 | 0.0182 | 0.0161 | 0.0174 |
After 72 h (g) | 0.0134 | 0.0136 | 0.0114 | 0.0140 | 0.0135 | 0.0139 | |
L (%) | 25.56% | 23.16% | 17.39% | 23.08% | 16.15% | 20.11% | |
Basic | Beginning (g) | 0.0183 | 0.0137 | 0.0135 | 0.0175 | 0.0174 | 0.0194 |
After 72 h (g) | 0.0149 | 0.0125 | 0.0115 | 0.0143 | 0.0159 | 0.0185 | |
L (%) | 18.58% | 8.76% | 14.8% | 18.28% | 8.62% | 4.64% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, M.; Wang, X.; Du, M.; Liang, G.; Hu, G.; S.M., J.A. Effects on the Mechanical Properties of Nacre-Like Bio-Hybrid Membranes with Inter-Penetrating Petal Structure Based on Magadiite. Materials 2019, 12, 173. https://doi.org/10.3390/ma12010173
Ge M, Wang X, Du M, Liang G, Hu G, S.M. JA. Effects on the Mechanical Properties of Nacre-Like Bio-Hybrid Membranes with Inter-Penetrating Petal Structure Based on Magadiite. Materials. 2019; 12(1):173. https://doi.org/10.3390/ma12010173
Chicago/Turabian StyleGe, Mingliang, Xubin Wang, Mingyi Du, Guodong Liang, Guoqing Hu, and Jahangir Alam S.M. 2019. "Effects on the Mechanical Properties of Nacre-Like Bio-Hybrid Membranes with Inter-Penetrating Petal Structure Based on Magadiite" Materials 12, no. 1: 173. https://doi.org/10.3390/ma12010173
APA StyleGe, M., Wang, X., Du, M., Liang, G., Hu, G., & S.M., J. A. (2019). Effects on the Mechanical Properties of Nacre-Like Bio-Hybrid Membranes with Inter-Penetrating Petal Structure Based on Magadiite. Materials, 12(1), 173. https://doi.org/10.3390/ma12010173