Multifunctional Cotton Fabrics Obtained by Modification with Silanes Containing Esters of Phosphoric Acid as Substituents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Organosilicon Flame Retardant Compounds
2.1.1. Synthesis of Organosilicon Derivatives of Fluorinated Phosphoric Esters (1 and 2)
2.1.2. Synthesis of Organosilicon Derivative of Phosphoric Diesters (3)
2.2. Modification of Fabrics
2.2.1. Cotton Fabric Impregnation with Organosilicon Flame Retardant Compounds (1, 2, and 3)
2.2.2. Mercerization Process (M)
2.2.3. Washing Process
2.3. Analyses and Measurements
2.3.1. NMR Spectroscopy
2.3.2. Determination of the Amount of Modifiers Applied on Fabrics (Add-on)
2.3.3. Elemental Analysis of Coated Samples
2.3.4. Microscale Combustion Calorimetry (MCC)
2.3.5. Limiting Oxygen Index
2.3.6. Thermogravimetric Analysis
2.3.7. Studies of Surface Morphology
2.3.8. Water Contact Angle (WCA) Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deepa, B.; Laly, A.P.; Rubie, M.S.; Sabu, T. Structure, properties and recyclability of natural fibre reinforced polymer composites. In Recent Developments in Polymer Recycling; Fainleib, A., Grigoryeva, O., Eds.; Transworld Research Network: Trivandrum, India, 2011; p. 101. [Google Scholar]
- Jelil, R.A. A review of low-temperature plasma treatment of textile materials. J. Mater. Sci. 2015, 50, 5913–5943. [Google Scholar] [CrossRef]
- Magovac, E.; Jordanov, I.; Grunlan, J.C.; Bischof, S. Environmentally-Benign Phytic Acid-Based Multilayer Coating for Flame Retardant Cotton. Materials 2020, 13, 5492. [Google Scholar] [CrossRef] [PubMed]
- Tortizsch, J. Plastic Flammability Handbook. Principles—Regulations—Testing and Approval; Carl Hanser Verlag: Munich, Germany, 2004. [Google Scholar]
- Morgan, A.B.; Wilkie, C.A. Flame Retardant Polymer Nanocomposites; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Horrocks, A.R.; Kandola, B.K.; Davies, P.J.; Zhang, S.; Padbury, S.A. Developments in flame retardant textiles—A Review. Polym. Degrad. Stabil. 2005, 88, 3–12. [Google Scholar] [CrossRef]
- Georlette, P. Applications of halogen flame retardants. In Fire Retardant Materials; Horrocks, A., Price, D., Eds.; Woodhead Publishing Ltd.: Boca Raton, FL, USA, 2001. [Google Scholar]
- Camlibel, O. Flame-Retardant Unsaturated Polyester Resins: An Overview of Past and Recent Developments. In Polyester: Production, Characterization and Innovative Applications; IntechOpen: London, UK, 2017. [Google Scholar]
- Choi, K.; Seo, S.; Kwon, H.; Kim, D.; Park, Y.T. Fire protection behavior of layer-by-layer assembled starch-clay multilayers on cotton fabric. J. Mater. Sci. 2018, 53, 11433–11443. [Google Scholar] [CrossRef]
- Xu, B.; Ding, Y.; Qu, S.; Cai, Z. Superamphiphobic cotton fabrics with enhanced stability. Appl. Surf. Sci. 2015, 356, 951–957. [Google Scholar] [CrossRef]
- Gao, Y.; He, C.; Huang, Y.; Qing, F.L. Novel water and oil repellent POSS-based organic/inorganic nanomaterial: Preparation, characterization and application to cotton fabrics. Polymer 2010, 51, 5997–6004. [Google Scholar] [CrossRef]
- Horrocks, A.R.; Wang, M.Y.; Hall, M.E.; Sunmonu, F.; Pearson, J.S. Flame retardant textile back-coatings. Part 2. Effectiveness of phosphorus-containing flame retardants in textile back-coating formulations. Polym. Int. 2000, 49, 1079–1091. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, M.; Wang, Q.; Li, B. A novel durable flame retardant cotton fabric produced by surface chemical grafting of phosphorus-and nitrogen-containing compounds. Cellulose 2017, 24, 4069–4081. [Google Scholar] [CrossRef]
- Qiang-Lin, L.I.; Huang, F.Q.; Wei, Y.-J.; Wu, J.-Z.; Zhou, Z.; Liu, G. A Phosphorus-Nitrogen Flame-retardant: Synthesis and Application in Cotton Fabrics. Mater. Sci. 2018, 24, 448–452. [Google Scholar]
- Gaan, S.; Sun, G. Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polym. Degrad. Stab. 2007, 92, 968–974. [Google Scholar] [CrossRef]
- Gaan, S.; Sun, G.; Hutches, K.; Engelhard, M.H. Effect of nitrogen additives on flame retardant action of tributylphosphate: Phosphorus–nitrogen synergism. Polym. Degrad. Stab. 2008, 93, 99–108. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, P.; Su, Z.; Wei, P.; Wang, G.; Tang, X. Synergistic effect of phosphorus, nitrogen, and silicon on flame-retardant properties and char yield in polypropylene. J. Appl. Polym. Sci. 2005, 96, 854. [Google Scholar] [CrossRef]
- Suryaprabha, T.; Sethuraman, M.G. Fabrication of a superhydrophobic and flame-retardant cotton fabric using a DNA-based coating. J. Mater. Sci. 2020, 1–11. [Google Scholar] [CrossRef]
- Nguyen, H.K.; Sakai, W.; Nguyen, C. Preparation of a Novel flame retardant formulation for cotton fabric. Materials 2020, 13, 54. [Google Scholar] [CrossRef] [Green Version]
- Alongi, J.; Ciobanu, M. Malucelli G. Sol-gel treatments of cotton fabrics for improving thermal and flame stability: Effect of the structure of the alkoxysilane precursor. Carbohydr. Polym. 2012, 87, 627–635. [Google Scholar] [CrossRef]
- Alongi, J. Novel flame retardant finishing system for cotton fabric based on phosphorus-containing compounds and silica derived from sol-gel process. Carbohydr. Polym. 2011, 85, 599–608. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Venkataraman, M.; Kremenakova, D.; Militky, J.; Zhou, Y. Progress in Sol-Gel Technology for the Coatings of Fabrics. Materials 2020, 13, 1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Periolatto, M.; Ferrero, F.; Montarsolo, A.; Mossotti, R. Hydrorepellent finishing of cotton fabrics by chemically modified TEOS based nanosol. Cellulose 2013, 20, 355–364. [Google Scholar] [CrossRef]
- Malucelli, G.; Carosio, F.; Alongi, J.; Fina, A.; Frache, A.; Camino, G. Materials engineering for surface-confined flame retardancy. Mater. Sci. Eng. R Rep. 2014, 84, 1–20. [Google Scholar] [CrossRef]
- Horrocks, A.R. An introduction to the burning behavior of cellulosic fibres. J. Soc. Dyers Colour 1983, 99, 191–197. [Google Scholar] [CrossRef]
- Wu, W.; Yang, C.Q. Comparison of different reactive organophosphorus flame retardant agents for cotton: Part I. The bonding of the flame retardant agents to cotton. Polym. Degrad. Stab. 2006, 91, 2541–2548. [Google Scholar] [CrossRef]
- Liu, C.; Xing, T.; Wei, B.; Chen, G. Synergistic effects and mechanism of modified silica sol flame retardant systems on silk fabric. Materials 2018, 11, 1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szolnoki, B.; Bocz, K.; Sóti, P.L.; Bodzay, B.; Zimonyi, E.; Toldy, A.; Morlin, B.; Bujnowicz, K.; Wladyka-Przybylak, M.; Marosi, G. Development of natural fibre reinforced flame retarded epoxy resin composites. Polym. Degrad. Stab. 2015, 119, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Hu, Y.; Song, L.; Lu, H. Effect of modified organic–inorganic hybrid materials on thermal properties of cotton fabrics. J. Therm. Anal. Calorim. 2011, 103, 423–427. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, S.; Xiong, K.; Wang, W.; Liu, Y. Highly flame retardancy of cotton fabrics with a novel phosphorus/nitrogen/silicon flame-retardant treating system. Fiber Polym. 2016, 17, 569–575. [Google Scholar] [CrossRef]
- Tian, P.; Lu, Y.; Wang, D.; Zhang, G.; Zhang, F. Solvent-free synthesis of silicon-nitrogen-phosphorus flame retardant for cotton fabrics. Cellulose 2019, 26, 6995–7007. [Google Scholar] [CrossRef]
- Zhao, X. Synthesis and application of a durable phosphorus/silicon flame-retardant for cotton. J. Text. Inst. 2010, 101, 538–546. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, C.; Li, Q.; Bai, Y.; Lu, Z. Preparation of linear piperazine/phosphorous/polysiloxane copolymer and its application on cotton fabrics. J. Therm. Anal. Calorim. 2017, 130, 1997–2005. [Google Scholar] [CrossRef]
- Dong, C.; Lu, Z.; Zhang, F.; Zhu, P.; Wang, P.; Che, Y.; Sui, S. Combustion behaviors of cotton fabrics treated by a novel nitrogen-and phosphorus-containing polysiloxane flame retardant. J. Therm. Anal. Calorim. 2016, 123, 535–544. [Google Scholar] [CrossRef]
- Przybylak, M.; Maciejewski, H.; Dutkiewicz, A.; Wesołek, D.; Władyka-Przybylak, M. Multifunctional, strongly hydrophobic and flame-retarded cotton fabrics modified with flame retardant agents and silicone compounds. Polym. Degrad. Stab. 2016, 128, 55–64. [Google Scholar] [CrossRef]
- Dutkiewicz, M.; Przybylak, M.; Januszewski, R.; Maciejewski, H. Synthesis and flame retardant efficacy of hexakis (3-(triethoxysilyl)propyloxy)cyclotriphosphazene/silica coatings for cotton fabrics. Polym. Degrad. Stab. 2018, 148, 10–18. [Google Scholar] [CrossRef]
- Przybylak, M.; Maciejewski, H.; Dutkiewicz, A. Preparation of highly hydrophobic cotton fabric by modification with bifunctional silsesquioxanes in the sol-gel process. Appl. Surf. Sci. 2016, 387, 163–174. [Google Scholar] [CrossRef]
- Przybylak, M.; Maciejewski, H.; Dutkiewicz, A.; Dąbek, I.; Nowicki, M. Fabrication of superhydrophobic cotton fabrics by a simple chemical modification. Cellulose 2016, 23, 2185–2197. [Google Scholar] [CrossRef] [Green Version]
- Textiles—Tests for color fastness—Color fastness to domestic and commercial laundering; PN-EN ISO 105-C06:2010; Polish Committee for Standardization: Warsaw, Poland, 2013.
- Determination of flammability by the oxygen index method; PN-EN ISO 4589-2:2017-06; Polish Committee for Standardization: Warsaw, Poland, 2017.
- Alongi, J.; Ciobanu, M.; Malucelli, G. Sol-gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics: Optimisation of the process and evaluation of the durability. Cellulose 2011, 18, 167–177. [Google Scholar] [CrossRef]
- Alongi, J.; Malucelli, G. State of the art and perspectives on sol-gel derived hybrid architectures for flame retardancy of textiles. J. Mater. Chem. 2012, 22, 21805–21809. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, X.; Lei, D.; Fei, B.; Xin, J.H. A durable flame retardant for cellulosic fabrics. Polym. Degrad. Stab. 2012, 97, 2467–2472. [Google Scholar] [CrossRef]
- Wang, S.; Sui, X.; Li, Y.; Li, J.; Xu, H.; Zhong, Y.; Zhang, L.; Mao, Z. Durable flame retardant finishing of cotton fabrics with organosilicon functionalized cyclotriphosphazene. Polym. Degrad. Stab. 2016, 128, 22–28. [Google Scholar] [CrossRef]
- Alongi, J.; Malucelli, G. Cotton flame retardancy: State of the art and future perspectives. RSC Adv. 2015, 5, 24239–24263. [Google Scholar] [CrossRef]
- Pereira, C.M.C.; Martins, M.S.S. Flame retardancy of fiber-reinforced polymer composites based on nanoclays and carbon nanotubes. In Polymer Green Flame Retardants; Elsevier: Amsterdam, The Netherlands, 2014; pp. 551–595. [Google Scholar]
- Tian, L.; Li, X.; Wang, L.; Zhang, Y.; Cui, J.; Guo, J.; Yang, B. Synthesis and characterization of an efficient flame retardant based on aromatic ring and phosphate ester for epoxy resin. Polym. Eng. Sci. 2019, 59, E406–E413. [Google Scholar] [CrossRef]
- Davies, P.J.; Horrocks, A.R.; Alderson, A. Possible phosphorus/halogen synergism in flame retardant textile backcoatings. Fire Mater. 2002, 26, 235–242. [Google Scholar] [CrossRef]
- Mostashari, S.M.; Fayyaz, F. A combination of red phosphorus-zinc chloride for flame-retardancy of a cotton fabric. Int. J. Polym. Mater. 2007, 57, 125–131. [Google Scholar] [CrossRef]
- Lewin, M. Synergistic and catalytic effects in flame retardancy of polymeric materials—An overview. J. Fire Sci. 1999, 17, 3–19. [Google Scholar] [CrossRef]
Symbol | 1 | 2 | 3 |
---|---|---|---|
One-step process | 8.3% | 8.3% | 8.1% |
Two-step process (M) | 9.8% | 9.9% | 9.5% |
Sample | Mass Loss Temperature (°C) | Tmax a (°C) | Δm b @ Tmax(% °C−1) | Residue (%) | ||||
---|---|---|---|---|---|---|---|---|
1% | 5% | 10% | 20% | @ Tmax | @ 700 °C | |||
Cotton | 51.8 | 318 | 342.9 | 353.3 | 366.1 | 3.95 | 41.9 | 0.92 |
1 | 61.4 | 175.1 | 320.5 | 344.9 | 362.4 | 3.26 | 40.2 | 0.96 |
2 | 65.5 | 273.8 | 320.8 | 335.5 | 354.7 | 2.67 | 41.7 | 1.28 |
3 | 70.7 | 260.6 | 286.1 | 303.7 | 318.8 | 1.34 | 62.6 | 3.37 |
1M | 65.7 | 180.3 | 287.6 | 337 | 359.8 | 2.64 | 47.4 | 1.19 |
2M | 68.6 | 232.6 | 311.5 | 329.4 | 349.1 | 2.02 | 49.6 | 1.68 |
3M | 87.2 | 254.7 | 280.2 | 301.2 | 315.2 | 1.28 | 65.1 | 7.27 |
1W | 59.8 | 176.3 | 324.2 | 347.6 | 363.8 | 3.44 | 41.1 | 0.67 |
2W | 62.5 | 305.7 | 332.8 | 345.3 | 361 | 3.2 | 42 | 0.92 |
3W | 57.6 | 319.8 | 337.4 | 348 | 362.8 | 3.2 | 43.3 | 1.47 |
1MW | 64.1 | 178.3 | 308.8 | 342.3 | 361.2 | 3.01 | 40 | 0.77 |
2MW | 61.3 | 207.3 | 318.6 | 333.4 | 351.7 | 2.6 | 43.5 | 1.18 |
3MW | 61.7 | 315.8 | 328.3 | 338.6 | 356.1 | 2.68 | 43.1 | 2.23 |
Sample | ttI (min) | TPHRR (°C) | PHRR (W·g−1) | THR (kJ·g−1) | ΔTHR (%) |
---|---|---|---|---|---|
Cotton | 330.0 | 392.4 | 270.3 | 12.1 | – |
1 | 255.5 | 316.9 | 106.3 | 6.6 | 45.9 |
2 | 256.0 | 317.4 | 112.0 | 6.7 | 45.0 |
3 | 303.0 | 364.9 | 203.4 | 11.8 | 2.6 |
1M | 247.5 | 308.8 | 70.2 | 5.7 | 52.9 |
2M | 243.0 | 304.3 | 73.7 | 6.9 | 43.0 |
3M | 297.5 | 359.3 | 141.5 | 8.6 | 29.0 |
1W | 284.0 | 345.7 | 166.0 | 9.4 | 22.4 |
2W | 292.5 | 354.2 | 169.0 | 10.0 | 17.2 |
3W | 315.0 | 377.1 | 227.9 | 10.7 | 12.0 |
1MW | 283.0 | 344.7 | 149.7 | 9.4 | 22.9 |
2MW | 299.5 | 361.3 | 154.3 | 9.9 | 18.5 |
3MW | 301.0 | 362.8 | 171.6 | 10.0 | 17.7 |
Sample Code | Before Washing | After Washing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | Si | F | P | C | O | Si | F | P | |
1 | 31.2 | 58.5 | 0.8 | 7.7 | 0.8 | 31.7 | 59.7 | 0.6 | 6.5 | 0.5 |
1M | 29.7 | 54.4 | 0.9 | 10.8 | 1.0 | 30.2 | 56.3 | 0.7 | 9.3 | 0.8 |
2 | 32.5 | 63.5 | 1.1 | 1.4 | 0.8 | 32.8 | 64.1 | 0.7 | 0.4 | 0.6 |
2M | 31.2 | 61.6 | 1.3 | 1.9 | 0.9 | 32.1 | 65 | 0.9 | 0.7 | 0.5 |
3 | 32.2 | 63.3 | 1.9 | – | 1.6 | 31.9 | 65.3 | 1.3 | – | 0.3 |
3M | 31.7 | 63.0 | 2.3 | – | 2.0 | 31.3 | 66.6 | 1.4 | – | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybylak, M.; Dutkiewicz, M.; Szubert, K.; Maciejewski, H.; Rojewski, S. Multifunctional Cotton Fabrics Obtained by Modification with Silanes Containing Esters of Phosphoric Acid as Substituents. Materials 2021, 14, 1542. https://doi.org/10.3390/ma14061542
Przybylak M, Dutkiewicz M, Szubert K, Maciejewski H, Rojewski S. Multifunctional Cotton Fabrics Obtained by Modification with Silanes Containing Esters of Phosphoric Acid as Substituents. Materials. 2021; 14(6):1542. https://doi.org/10.3390/ma14061542
Chicago/Turabian StylePrzybylak, Marcin, Michał Dutkiewicz, Karol Szubert, Hieronim Maciejewski, and Szymon Rojewski. 2021. "Multifunctional Cotton Fabrics Obtained by Modification with Silanes Containing Esters of Phosphoric Acid as Substituents" Materials 14, no. 6: 1542. https://doi.org/10.3390/ma14061542