Influence of Different Beam Oscillation Patterns in Electron Beam Welding of Niobium Sheets with Different Thickness
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Formation Analysis
3.2. Microstructure Analysis
3.3. Microhardness Profiles
3.4. Tensile Properties at 77 K
4. Conclusions
- (1)
- Due to the large misalignment of the bottom surface, the joints welded with no oscillation or sinusoidal oscillation are probably not the candidate welding parameters for the electron beam welding of niobium sheets of 2 mm and 2.8 mm.
- (2)
- The application of oscillation did not significantly refine the weld grains. The grains in the FZ and HAZ of joints are quite large when oscillating patterns are sinusoidal or circular, but the aspect ratio of grains in the fusion zone is relatively lower for these patterns.
- (3)
- Intense {001}<100> and {001}<110> textures occurred in the weld when sinusoidal or infinity oscillation was applied, indicating poor formability of the fusion zone.
- (4)
- Although the microhardness of different joints has no significant discrepancy, the joints welded with sinusoidal or infinity oscillation have superior plasticity at 77 K. The brittle fracture was determined for the joint welded with no oscillation or circular oscillation.
- (5)
- The applicability of infinity oscillation to girth welding still requires verification.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anakhov, S.; Singer, X.; Singer, W.; Wen, H. Gas and RRR distribution in high purity niobium EB welded in ultra-high vacuum. AIP Conf. Proc. 2006, 837, 71–84. [Google Scholar]
- Lu, X.Y.; Quan, S.W.; Zhang, B.C.; Hao, J.K.; Zhu, F.; Lin, L.; Xu, W.C.; Wang, E.D.; Wang, F.; Jin, S.; et al. The first nine-cell TESLA cavity made in China. Chin. Phys. Lett. 2008, 25, 3940–3941. [Google Scholar]
- Pekeler, M.; Schwellenbach, J.; Tradt, M. Experiences in large grain-single crystal cavity fabrication. AIP Conf. Proc. 2007, 927, 141–148. [Google Scholar]
- Apollinari, G.; Gonin, I.; Khabiboulline, T.; Lanfranco, G.; McConologue, F.; Romanov, G.; Wagner, R. Design of 325 MHz single and triple spoke resonators at FNAL. IEEE Trans. Appl. Supercond. 2007, 17, 1322–1325. [Google Scholar] [CrossRef]
- Liu, S.H.; Wang, Z.J.; Tao, Y.; He, Y.; Jia, H.; Xie, Z.P.; Dou, W.P.; Chen, W.L.; Wang, W.S.; Jia, Y.Z.; et al. Physics design of the superconducting section of the CiADS linac. Int. J. Mod. Phys. A 2019, 34, 1950178. [Google Scholar] [CrossRef]
- Sekutowicz, J.; Ko, K.; Ge, L.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Xiao, L.; Gonin, I.; Khabibouline, T.; et al. Design of a low loss SRF cavity for the ILC. In Proceedings of the IPAC2005, Knoxville, TN, USA, 16–20 May 2005. [Google Scholar]
- Sun, A. Superconducting RF cavity frequency and field distribution sensitivity simulation. In Proceedings of the IPAC2005, Knoxville, TN, USA, 16–20 May 2005. [Google Scholar]
- Pekeler, M. High gradients in superconducting RF cavities. Part. Accel. 1998, 60, 231–242. [Google Scholar]
- Cooley, L.D.; Burk, D.; Cooper, C.; Dhanaraj, N.; Foley, M.; Ford, D.; Gould, K.; Hicks, D.; Novitski, R.; Romanenko, A.; et al. Impact of forming, welding, and electropolishing on pitting and the surface finish of SRF cavity niobium. IEEE Trans. Appl. Supercond. 2011, 21, 2609–2614. [Google Scholar] [CrossRef] [Green Version]
- Saha, T.K.; Mondal, J.; Mittal, K.C.; Bhushan, K.G.; Bapat, A.V. Fabrication of niobium superconducting accelerator cavity by electron beam welded joints. J. Phys. Conf. Ser. 2012, 390, 012015. [Google Scholar] [CrossRef] [Green Version]
- Ashby, M.F. Material Selection in Mechanical Design, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 15–29. [Google Scholar]
- Sun, J.F.; Zhang, Z.W.; Zhang, M.L.; Jiang, F.C.; Ding, M.H. Microstructure evolution and their effects on the mechanical properties of TB8 titanium alloy. J. Alloys Compd. 2016, 663, 769–774. [Google Scholar] [CrossRef]
- Liang, S.J.; Sun, H.F.; Liu, Z.Y.; Wang, E.D. Mechanical properties and texture evolution during rolling process of an AZ31 Mg alloy. J. Alloys Compd. 2009, 472, 127–132. [Google Scholar] [CrossRef]
- He, X.Y.; Wang, H.; Zhu, Z.G.; Wang, L.Z.; Liu, J.Q.; Haghdadi, N.; Nai, S.M.L.; Huang, J.; Primig, S.; Ringer, S.P.; et al. Texture evolution in a CrMnFeCoNi high-entropy alloy manufactured by laser powder bed fusion. J. Mater. Sci. 2021, 422, 127504. [Google Scholar] [CrossRef]
- Yang, J.; Dong, H.G.; Xia, Y.Q.; Li, P.; Ma, Y.T.; Wu, W.; Wang, B.S. The microstructure and mechanical properties of novel cryogenic twinning-induced plasticity steel welded joint. Mater. Sci. Eng. A 2021, 818, 141449. [Google Scholar] [CrossRef]
- Fu, C.; Wang, Y.Q.; He, S.L.; Zhang, C.L.; Jing, X. Microstructural characterization and mechanical properties of TIG weld joint made by forged Ti-4Al-2V alloy. Mater. Sci. Eng. A 2021, 821, 141604. [Google Scholar] [CrossRef]
- Das, K.; Ghosh, A.; Bhattacharya, A.; Lanjewar, H.; Majumdar, J.D.; Ghosh, M. Effect of beam current on the microstructure, crystallographic texture and mechanical properties of electron beam welded high purity niobium. Mater. Charact. 2021, 179, 111318. [Google Scholar] [CrossRef]
- Singer, W. Fabrication of elliptical SRF cavities. Supercond. Sci. Technol. 2017, 30, 033001. [Google Scholar] [CrossRef]
- Dohmae, T.; Umemori, K.; Yamanaka, M.; Watanabe, Y.; Inoue, H. Investigation of in-house superconducting radio-frequency 9-cell cavity made of large grain niobium at KEK. Nucl. Instrum. Meth. A 2017, 875, 1–9. [Google Scholar] [CrossRef]
- Furuta, F.; Saito, K.; Konomi, T. Large grain cavity R&D in KEK. AIP Conf. Proc. 2011, 1352, 169–177. [Google Scholar]
- Shimizu, H.; Dohmae, T.; Egi, M.; Enami, K.; Inoue, H.; Kako, E.; Park, G.T.; Sakai, H.; Umemori, K.; Watanabe, Y.; et al. Fabrication and evaluation of superconducting single-cell cavities manufactured using various materials and methods. IEEE Trans. Appl. Supercond. 2017, 27, 3500714. [Google Scholar] [CrossRef]
- Marhauser, F. JLAB SRF cavity fabrication errors, consequences and lessons learned. In Proceedings of the IPAC2011, San Sebastian, Spain, 4–9 September 2011. [Google Scholar]
- Chen, G.Q.; Liu, J.P.; Shu, X.; Gu, H.; Zhang, B.G.; Feng, J.C. Beam scanning effect on properties optimization of thick-plate 2A12 aluminum alloy electron-beam welding joints. Mater. Sci. Eng. A 2019, 744, 583–592. [Google Scholar] [CrossRef]
- Babu, N.K.; Raman, S.G.S.; Murthy, C.V.S.; Reddy, G.M. Effect of beam oscillation on fatigue life of Ti-6Al-4V electron beam weldments. Mater. Sci. Eng. A 2007, 471, 113–119. [Google Scholar] [CrossRef]
- Babu, N.K.; Raman, S.G.S.; Murthy, C.V.S.; Reddy, G.M. Influence of beam oscillation patterns on the structure and mechanical properties of Ti-6Al-4V electron beam weldments. Sci. Technol. Weld. Joining 2005, 10, 583–590. [Google Scholar] [CrossRef]
- Ke, W.C.; Bu, X.Z.; Oliveira, J.P.; Xu, W.G.; Wang, Z.M.; Zeng, Z. Modeling and numerical study of keyhole-induced porosity formation in laser beam oscillating welding of 5A06 aluminum alloy. Opt. Laser Technol. 2021, 133, 106540. [Google Scholar] [CrossRef]
- Wang, Z.M.; Oliveira, J.P.; Zeng, Z.; Bu, X.Z.; Peng, B.; Shao, X.Y. Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties. Opt. Laser Technol. 2019, 111, 58–65. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.W.; Gao, M. Effects of circular oscillating beam on heat transfer and melt flow of laser melting pool. J. Mater. Res. Technol. 2020, 9, 9271–9282. [Google Scholar] [CrossRef]
- Jiang, Z.G.; Chen, X.; Li, H.; Lei, Z.L.; Chen, Y.B.; Wu, S.B.; Wang, Y.H. Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy. Mater. Des. 2020, 186, 108195. [Google Scholar] [CrossRef]
- Singer, W.; Singer, X.; Tiessen, J.; Wen, H.M.; Scholz, F. RRR Degradation and Gas Absorption in the Electron Beam Welding Area of High Purity Niobium. AIP Conf. Proc. 2003, 671, 162–175. [Google Scholar]
- Byun, T.S.; Kim, S.H.; Mammosser, J. Low-temperature mechanical properties of superconducting radio frequency cavity materials. J. Nucl. Mater. 2009, 392, 420–426. [Google Scholar] [CrossRef]
- Paradis, P.F.; Ishikawa, T.; Yoda, S. Non-contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace. Int. J. Thermophys. 2002, 23, 825–842. [Google Scholar] [CrossRef]
- Semak, V.; Matsunawa, A. The role of recoil pressure in energy balance during laser materials processing. J. Phys. D Appl. Phys. 1999, 30, 2541–2552. [Google Scholar] [CrossRef]
- Chen, Y.; Lei, Z.; Zhou, H. Influence of laser beam oscillation on welding stability and molten pool dynamics. In Proceedings of the 24th National Laser Conference & Fifteenth National Conference on Laser Technology and Optoelectronics, Shanghai, China, 2 December 2020. [Google Scholar]
- Kar, J.; Roy, S.M.; Roy, G.G. Influence of beam oscillation in electron beam welding of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2018, 94, 4531–4541. [Google Scholar] [CrossRef]
- Yan, S.H.; Meng, Z.; Chen, B.; Tan, C.W.; Song, X.G.; Wang, G.D. Prediction of temperature field and residual stress of oscillation laser welding of 316LN stainless steel. Opt. Laser. Technol. 2022, 145, 107493. [Google Scholar] [CrossRef]
- Gao, M.; Wang, H.K.J.; Hao, K.D.; Mu, H.Y.; Zeng, X.Y. Evolutions in microstructure and mechanical properties of laser lap welded AZ31 magnesium alloy via beam oscillation. J. Manuf. Process. 2019, 45, 92–99. [Google Scholar] [CrossRef]
- Yang, K.V.; Shi, Y.J.; Palm, F.; Wu, X.H.; Rometsch, P. Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting. Scr. Mater. 2018, 145, 113–117. [Google Scholar] [CrossRef]
- Kumar, K.; Masanta, M.; Sahoo, S.K. Microstructure evolution and metallurgical characteristic of bead-on-plate TIG welding of Ti-6Al-4V alloy. J. Mater. Process. Tech. 2019, 265, 34–43. [Google Scholar] [CrossRef]
- Lequeu, P.; Jonas, J.J. Modeling of the plastic anisotropy of textured sheet. Metall. Trans. A 1988, 19, 105–120. [Google Scholar] [CrossRef]
- Wang, L.; Gao, M.; Zhang, C.; Zeng, X. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy. Mater. Des. 2016, 108, 707–717. [Google Scholar] [CrossRef]
- Reed, R.P.; Mccowan, C.N.; Walsh, R.P.; Delgado, L.A.; Mccolskey, J.D. Tensile strength and ductility of indium. Mater. Sci. Eng. A 1988, 102, 227–236. [Google Scholar] [CrossRef]
- Wu, G.; Dhanaraj, N.; Cooley, L.; Hicks, D.; Hahn, E.; Burk, D.; Muranyi, W.; Foley, M.; Edwards, H.; Harms, E.; et al. Tensile tests of niobium material for SRF cavities. AIP Conf. Proc. 2010, 1218, 857–862. [Google Scholar]
- Zhang, X.Y.; Wang, K.H.; Zhou, Q.; Kong, J.; Peng, Y.; Ding, J.L.; Diao, C.L.; Yang, D.Q.; Huang, Y.; Zhang, T.; et al. Element partitioning and electron backscatter diffraction analysis from feeding wire to as-deposited microstructure of wire and arc additive manufacturing with super duplex stainless steel. Mater. Sci. Eng. A 2020, 773, 138856. [Google Scholar] [CrossRef]
- Zhang, S.S.; Liu, Y.C.; Xu, T.W.; Sun, M.X.; Zhang, Q.; Wan, Y. Effect of texture and microstructure on tensile behaviors in the polycrystalline pure niobium. Met. Mater. Int. 2021, 27, 4023–4034. [Google Scholar] [CrossRef]
- Dong, P.; Brust, F.W. Welding residual stresses and effects on fracture in pressure vessel and piping components: A millennium review and beyond. J. Press. Vess. T. ASME 2000, 122, 329–338. [Google Scholar] [CrossRef]
Stage | Voltage Ua/kv | Beam Current Ib/mA | Focusing Current If/mA | Velocity V/mm·s−1 | Working Distance d/mm | Oscillation Frequency f/Hz | Oscillation Amplitude A/mm |
---|---|---|---|---|---|---|---|
P1 | 70 | 15 | 1545 | 6 | 300 | 300 | 1.1 |
P2 | 70 | 38 | 1500 | 6 | 300 | 300 | 1.3 |
Oscillating Pattern | Welding Width on Top Surface dU/mm | Welding Width on Bottom Surface dL/mm | Misalignment dA/mm | Weld Bottom Reinforcement hL/mm |
---|---|---|---|---|
No oscillation | 4.45 | 3.01 | 0.34 | 0.11 |
Sinusoidal oscillation | 4.64 | 2.99 | 0.44 | 0.27 |
Circular oscillation | 4.73 | 2.97 | 0.03 | 0.18 |
Infinity oscillation | 4.54 | 2.98 | 0.03 | 0.19 |
Sample | Tensile Strength Rm (MPa) | Yield Strength (MPa) | Elongation δ (%) | Fracture Type |
---|---|---|---|---|
Base metal | 886.5 ± 9.8 | 849.2 ± 11.5 (Rp0.2) | 9.5 ± 1.1 | Ductile fracture |
No oscillation | 633.8 ± 16.2 | 582.3 ± 20.4 (Rp0.2) | 1.0 ± 0.2 | Brittle fracture |
Sinusoidal oscillation | 609.2 ± 19.8 | 575.6 ± 15.5 (Upper yield point) 548.2 ± 19.3 (Lower yield point) | 22.1 ± 2.6 | Ductile fracture |
Circular oscillation | 549.33 ± 21.2 | 516.9 ± 10.6 (Rp0.2) | 0.7 ± 0.1 | Brittle fracture |
Infinity oscillation | 517.2 ± 8.5 | 512.4 ± 13.8 (Upper yield point) 448.9 ± 8.7 (Lower yield point) | 18.9 ± 1.8 | Ductile fracture |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, J.; Wu, J.; Liu, Z.; Ma, J.; Liu, Z.; Peng, W. Influence of Different Beam Oscillation Patterns in Electron Beam Welding of Niobium Sheets with Different Thickness. Materials 2022, 15, 3778. https://doi.org/10.3390/ma15113778
Tao J, Wu J, Liu Z, Ma J, Liu Z, Peng W. Influence of Different Beam Oscillation Patterns in Electron Beam Welding of Niobium Sheets with Different Thickness. Materials. 2022; 15(11):3778. https://doi.org/10.3390/ma15113778
Chicago/Turabian StyleTao, Jia, Jiefeng Wu, Zhihong Liu, Jianguo Ma, Zhenfei Liu, and Wuqingliang Peng. 2022. "Influence of Different Beam Oscillation Patterns in Electron Beam Welding of Niobium Sheets with Different Thickness" Materials 15, no. 11: 3778. https://doi.org/10.3390/ma15113778