Enhanced Optical Limiting of Gold Nanoparticles/Porous Carbon Nanocomposites
Abstract
:1. Introduction
2. Experiment and Sample Preparation
3. Results and Discussion
3.1. Characterization Results and Analysis
3.2. OL Properties and Mechanisms of Au NPs/PC Nanocomposites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Bai, T.; Dong, N.; Fan, F.; Zhang, S.; Zhuang, X.; Sun, J.; Zhang, B.; Zhang, X.; Wang, J.; et al. Graphene and its derivatives for laser protection. Prog. Mater. Sci. 2016, 84, 118–157. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, L.; Miao, Y.; Dong, J. Elliptically polarized, nanosecond dual-pulse Raman laser with tunable pulse interval and pulse amplitude ratio. Opt. Laser Technol. 2024, 171, 110397. [Google Scholar] [CrossRef]
- Zhao, M.; Wu, J.; Wei, Y.; Chen, J. Preparation of antimonene by laser irradiation in different solvents for optical limiting. Opt. Mater. 2020, 109, 110132. [Google Scholar] [CrossRef]
- Elim, H.I.; Ouyang, J.; Goh, S.H.; Wei, J. Optical-limiting-based materials of mono-functional, multi-functional and supramolecular C60-containing polymers. Thin Solid Film. 2005, 477, 63–72. [Google Scholar] [CrossRef]
- Gupta, J.; Vijayan, C.; Maurya, S.K.; Goswami, D. An efficient nanocomposite based on carbon nanotubes functionalized with a fluorescent ink for ultrafast optical limiting. Mater. Lett. 2011, 65, 915–917. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, Y.; Zhu, Y.; Huang, X.; Tian, Y.; Zhang, P.; Guo, Z.; Wang, Y. Optical limiting performances of multi-walled carbon nanotubols and [C60]fullerols. Chem. Phys. Lett. 2008, 457, 159–162. [Google Scholar] [CrossRef]
- Xie, Y.; Lu, Y.; Huang, J.; Li, X.; He, C. Nonlinear optical limiting effect of porous graphene dispersions at 1064 nm. Appl. Opt. 2023, 62, 1840–1844. [Google Scholar] [CrossRef] [PubMed]
- Abdulkader, A.F.; Hassan, Q.M.A.; Al-Asadi, A.S.; Bakr, H.; Emshary, C.A. Linear, nonlinear and optical limiting properties of carbon black in epoxy resin. Optik 2018, 160, 100–108. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, Q.; Pan, Q.; Hu, J.; Liu, R.; Zhu, H. High performance Pt(II) complex and its hybridized carbon quantum dots: Synthesis and the synergistic enhanced optical limiting property. Appl. Surf. Sci. 2022, 584, 152567. [Google Scholar] [CrossRef]
- Xu, H.; Yan, L.; Yu, Y.; Xu, Y. Facile synthesis of carbon-supported silver nanoparticles for optical limiting. Appl. Surf. Sci. 2018, 457, 655–661. [Google Scholar] [CrossRef]
- Tian, W.; Sun, H.; Duan, X.; Zhang, H.; Wang, S. Biomass-derived functional porous carbons for adsorption and catalytic degradation of binary micropollutants in water. Hazard Mater. 2020, 389, 121881. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Deng, F.; Zhang, Q.; Li, Y.; Shang, J.; Wang, J.; Gao, R.; Li, R. Sodium polyacrylate-based porous carbon fabricated by one-step carbonization and its outstanding electrochemical properties in supercapacitor. J. Energy Storage 2023, 73, 109098. [Google Scholar] [CrossRef]
- Gao, R.; Guo, W.; Zhang, Y.; Zhang, Q.; Li, Y.; Wang, J. Enhancement of gelatinization on electrochemical performance of corn starch-based porous carbon as electrode material in supercapacitors. Diam. Relat. Mater. 2024, 141, 110598. [Google Scholar] [CrossRef]
- Bai, J.; Shao, J.; Yu, Q.; Demir, M.; Altay, B.N.; Ali, T.M.; Jiang, Y.; Wang, L.; Hu, X. Sulfur-Doped porous carbon Adsorbent: A promising solution for effective and selective CO2 capture. Chem. Eng. J. 2024, 479, 147667. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Zhu, R.; Wu, J.; Zhang, W.; Lu, W. Rapid preparation of porous carbon by Flash Joule heating from bituminous coal and its adsorption mechanism of methylene blue. Colloids Surf. A Physicochem. Eng. Asp. 2024, 682, 132900. [Google Scholar] [CrossRef]
- Gao, B.; Zhao, X.; Yan, L.; Yang, L.; Zhang, Y.; Lin, T.; Si, J. Optical Limiting Response of Porous Carbon Dispersions. Nanomaterials 2024, 14, 533. [Google Scholar] [CrossRef]
- Gao, Y.; Chang, Q.; Ye, H.; Jiao, H.; Li, Y.; Wang, Y.; Song, Y.; Zhu, D. Size effect of optical limiting in gold nanoparticles. Chem. Phys. 2007, 336, 99–102. [Google Scholar] [CrossRef]
- Luo, L.; Jiang, C.; Li, H.; Ning, D.; Lao, S.; Liang, Z.; Tang, L.; Chen, W.; Ya, Y. An electrochemical aptasensor for detection of carbofuran using gold nanoparticles decorated hierarchical porous carbon as an effective sensing platform. Chemosphere 2023, 341, 140033. [Google Scholar] [CrossRef]
- Pradhan, P.; Podila, R.; Molli, M.; Kaniyoor, A.; Muthukumar, S.V.; Sai sankara, S.S.; Ramaprabhu, S.; Rao, A.M. Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites. Opt. Mater. 2015, 39, 182–187. [Google Scholar] [CrossRef]
- Qin, L.; Yi, H.; Zeng, G.; Lai, C.; Huang, D.; Piao, X.; Fu, Y.; He, J.; Li, B.; Zhang, C.; et al. Hierarchical porous carbon material restricted Au catalyst for highly catalytic reduction of nitroaromatics. Hazard Mater. 2019, 380, 120864. [Google Scholar] [CrossRef]
- Li, F.; Li, R.; Feng, Y.; Gong, T.; Zhang, M.; Wang, L.; Meng, T.; Jia, H.; Wang, H.; Zhang, Y. Facile synthesis of Au-embedded porous carbon from metal-organic frameworks and for sensitive detection of acetaminophen in pharmaceutical products. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 95, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Sadrolhosseini, A.R.; Rashid Abdul, S.; Zakaria, A.; Abdul Rashid, S.; Zakaria, A. Synthesis of gold nanoparticles dispersed in palm oil using laser ablation technique. J. Nanomater. 2017, 2017, 6496390. [Google Scholar] [CrossRef]
- Tian, Z.; Yang, X.; Liu, B.; Zhong, D.; Zhou, G.; Wang, W. New heterobimetallic Au (I)–Pt (II) polyynes achieving a good trade-off between transparency and optical power limiting performance. J. Mater. Chem. C 2018, 6, 11416–11426. [Google Scholar] [CrossRef]
- Ipe, B.I.; Thomas, K.G.; Barazzouk, S.; Hotchandani, S.; Kamat, P.V. Photoinduced charge separation in a fluorophore−gold nanoassembly. J. Phys. Chem. B 2002, 106, 18–21. [Google Scholar] [CrossRef]
- Mao, B.; Liang, C.; Li, J.; Dong, W.; Cui, X.; Duan, Q. Synthesis of heteroatom Doped-Carbon dot graphene oxide nanocomposites and investigation of nonlinear optical properties. Opt. Laser Technol. 2023, 164, 109469. [Google Scholar] [CrossRef]
- Saad, N.A.; Ramya, E.; Saikiran, V.; Naraharisetty, S.R.G.; Rao, D.N. Novel synthesis and study of nonlinear absorption and surface-enhanced Raman scattering of carbon nanotubes decorated with silver nanoparticles. Chem. Phys. 2020, 533, 110703. [Google Scholar] [CrossRef]
- Nozdriukhin, D.; Besedina, N.; Chernyshev, V.; Efimova, O.; Rudakovskaya, P.; Novoselova, M.; Bratashov, D.; Chuprov−Netochin, R.; Kamyshinsky, R.; Vasiliev, A.; et al. Gold nanoparticle-carbon nanotube multilayers on silica microspheres: Optoacoustic-Raman enhancement and potential biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111736. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.; Liu, Z.; He, J.; Huang, M.; Zhao, L.; Zou, J.; Lei, Y.; Yang, Q.; Liu, Y.; Tian, D.; et al. Modulating three-dimensional porous carbon from paper mulberry juice by a hydrothermal process for a supercapacitor with excellent performance. Renew. Energy 2024, 227, 120478. [Google Scholar] [CrossRef]
- Ma, F.; Zhao, H.; Zhao, Y. Preparation of nitrogen-doped porous carbon derived from the used down and its application in supercapacitors with high energy storage properties. Diam. Relat. Mater. 2024, 145, 111154. [Google Scholar] [CrossRef]
- Subrahmanyam, K.S.; Manna, A.K.; Pati, S.K.; Rao, C.N.R. A study of graphene decorated with metal nanoparticles. Chem. Phys. Lett. 2010, 497, 70–75. [Google Scholar] [CrossRef]
- Liu, R.; Li, W.; Yang, X.; Lu, H.; Gao, Y.; Shuai, H. Bismuth nanoparticles confined in multi-walled carbon nanotubes toward enhanced sodium storage anodes. J. Alloys Compd. 2023, 967, 171660. [Google Scholar] [CrossRef]
- Xie, H.; Hu, Q.; Huang, J.; Liu, M.; Wei, P.; Xie, Y.; Qi, Y. Enhancing photovoltaic performance of carbon-based perovskite solar cells by introducing plasmonic Au NPs. Opt. Mater. 2023, 146, 114509. [Google Scholar] [CrossRef]
- Li, R.; Yuan, W.; Hu, Y.; Zeng, Y. Photoelectrochemical aptasensor for sensitively detecting S-Propranolol based on Au NPs modified g-C3N4/BiPO4 heterojunction. Sens. Actuators A Phys. 2023, 363, 114737. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, X.; Lu, G.; Du, B.; Liu, M. A highly sensitive and selective photoelectrochemical aptasensor for atrazine based on Au NPs/3DOM TiO2 photonic crystal electrode. J. Hazard. Mater. 2023, 451, 131132. [Google Scholar] [CrossRef] [PubMed]
Au3+ Concentration (mmol) | δ | |
---|---|---|
0 | 0.578 | 0.066 |
0.01 | 0.548 | 0.094 |
0.03 | 0.541 | 0.103 |
0.06 | 0.53 | 0.111 |
0.09 | 0.526 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, B.; Zhao, X.; Yang, L.; Yan, L.; Lin, T.; Si, J. Enhanced Optical Limiting of Gold Nanoparticles/Porous Carbon Nanocomposites. Materials 2024, 17, 3079. https://doi.org/10.3390/ma17133079
Gao B, Zhao X, Yang L, Yan L, Lin T, Si J. Enhanced Optical Limiting of Gold Nanoparticles/Porous Carbon Nanocomposites. Materials. 2024; 17(13):3079. https://doi.org/10.3390/ma17133079
Chicago/Turabian StyleGao, Bo, Xuhui Zhao, Lijiao Yang, Lihe Yan, Tao Lin, and Jinhai Si. 2024. "Enhanced Optical Limiting of Gold Nanoparticles/Porous Carbon Nanocomposites" Materials 17, no. 13: 3079. https://doi.org/10.3390/ma17133079