Effect of Spray Characteristic Parameters on Friction Coefficient of Ultra-High-Strength Steel against Cemented Carbide
Abstract
:1. Introduction
2. Cooling Methods
2.1. Cooling System
2.2. Characterization of Spray Characteristic Parameters
3. Experimental Setup and Method
3.1. Discontinuous Sliding Test
3.2. Analysis of Adhesion Friction Coefficient
4. Results and Discussion
4.1. Effect of Air Pressure on Spray Characteristic Parameters
4.2. Effect of Air Pressure on Thickness of Liquid Film
4.3. Effect of Air Pressure on Adhesion Friction Coefficient and Worn Surface
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Zhan, D.; Jiang, Z.; Zhang, H.; Yang, Y.; Zhang, Y. Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: A review. J. Mater. Res. Technol. 2023, 23, 172–190. [Google Scholar] [CrossRef]
- Li, K.; Yang, T.; Gong, N.; Wu, J.; Wu, X.; Zhang, D.; Murr, L. Additive manufacturing of ultra-high strength steels: A review. J. Alloys Compd. 2023, 965, 171390. [Google Scholar] [CrossRef]
- Han, X.; Chen, L.; Hu, X.; Hua, L.; Chai, F. Microstructure and mechanical property evolution mechanisms of 15Cr14Co12Mo5Ni2WA aviation gear steel during cold rotary forging. J. Mater. Res. Technol. 2023, 24, 3005–3022. [Google Scholar] [CrossRef]
- Coelho, R.; Ng, E.; Elbestawi, M. Tool wear when turning hardened AISI 4340 with coated PCBN tools using finishing cutting conditions. Int. J. Mach. Tools Manuf. 2007, 47, 263–272. [Google Scholar] [CrossRef]
- Zeng, H.; Yan, R.; Du, P.; Zhang, M.; Peng, F. Notch wear prediction model in high speed milling of AerMet100 steel with bullnose tool considering the influence of stress concentration. Wear 2018, 408, 228–237. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z.; Wang, B.; Wang, C.; Cheung, C. Friction behaviors in the metal cutting process: State of the art and future perspectives. Int. J. Extrem. Manuf. 2022, 5, 012002. [Google Scholar] [CrossRef]
- Zhuang, K.; Zhu, K.; Wei, X.; Hu, C.; Liu, Z.; Gao, Z. A dual-stage wear rate model based on wear mechanisms analysis during cutting Inconel 718 with TiAlN coated tools. J. Manuf. Process. 2024, 126, 24–34. [Google Scholar] [CrossRef]
- Zhuang, K.; Wu, Z.; Wan, L.; Weng, J.; Yang, Y.; Tian, C.; Li, Y.; Liu, Z. Investigation of different abrasive jet machining methods applied to milling tool coatings for post-treatment. Surf. Coat. Technol. 2024, 491, 131156. [Google Scholar] [CrossRef]
- Kohutiar, M.; Krbata, M.; Escherova, J.; Eckert, M.; Mikus, P.; Jus, M.; Polášek, M.; Janík, R.; Dubec, A. The Influence of the Geometry of Movement during the Friction Process on the Change in the Tribological Properties of 30CrNiMo8 Steel in Contact with a G40 Steel Ball. Materials 2024, 17, 127. [Google Scholar] [CrossRef]
- Krbata, M.; Ciger, R.; Kohutiar, M.; Sozańska, M.; Eckert, M.; Barenyi, I.; Kianicova, M.; Jus, M.; Beronská, N.; Mendala, B.; et al. Effect of Supercritical Bending on the Mechanical & Tribological Properties of Inconel 625 Welded Using the Cold Metal Transfer Method on a 16Mo3 Steel Pipe. Materials 2023, 16, 5014. [Google Scholar] [CrossRef]
- Li, G.; Li, J.; Sun, J.; Jiang, F. Study on the tribological properties between the aluminum alloy 7050-T7451 and the YG8 cemented carbide. J. Mater. Sci. 2011, 46, 723–726. [Google Scholar] [CrossRef]
- Li, D.; Zhang, T.; Zhao, N.; Dong, L.; Wu, M.; Li, G. Investigation on the tribological properties of different coatings of cutting tool with reciprocating friction test. J. Braz. Soc. Mech. Sci. Eng. 2023, 11, 45. [Google Scholar] [CrossRef]
- Jamil, M.; He, N.; Zhao, W.; Khan, A.; Gupta, M.; Meng, L. Tribological behavior of WC-6Co against Ti–6Al–4V alloy under novel cryogenic ethanol-ester oil dry-ice hybrid lubri-cooling. Tribol. Int. 2021, 156, 106812. [Google Scholar] [CrossRef]
- García-Martínez, E.; Miguel, V.; Martínez-Martínez, A.; Manjabacas, M.; Coello, J. Surface integrity and tool wear analysis on turning of copper-nickel 70/30 ASTM B122 alloy under low initial lubrication. Materials 2021, 14, 4868. [Google Scholar] [CrossRef]
- El-Tayeb, N.; Yap, T.; Brevern, P. Wear characteristics of titanium alloy Ti54 for cryogenic sliding applications. Tribol. Int. 2010, 43, 2345–2354. [Google Scholar] [CrossRef]
- Zemzemi, F.; Rech, J.; Salem, W.; Dogui, A.; Kapsa, P. Identification of a friction model at tool/chip/workpiece interfaces in dry machining of AISI4142 treated steels. J. Mater. Process. Technol. 2009, 209, 3978–3990. [Google Scholar] [CrossRef]
- Smolenicki, D.; Boos, J.; Kuster, F.; Roelofs, H.; Wyen, C. In-process measurement of friction coefficient in orthogonal cutting. CIRP Ann. 2014, 63, 97–100. [Google Scholar] [CrossRef]
- Sterle, L.; Pušavec, F.; Kalin, M. Determination of friction coefficient in cutting processes: Comparison between open and closed tribometers. Procedia CIRP 2019, 82, 101–106. [Google Scholar] [CrossRef]
- Voss, R.; Seeholzer, L.; Kuster, F.; Wegener, K. Cutting process tribometer experiments for evaluation of friction coefficient close to a CFRP machining operation. Procedia CIRP 2017, 66, 204–209. [Google Scholar] [CrossRef]
- Bonnet, C.; Valiorgue, F.; Rech, J.; Claudin, C.; Hamdi, H.; Bergheau, J.; Gilles, P. Identification of a friction model—Application to the context of dry cutting of an AISI 316L austenitic stainless steel with a TiN coated carbide tool. Int. J. Mach. Tools Manuf. 2008, 48, 1211–1223. [Google Scholar] [CrossRef]
- Klinkova, O.; Rech, J.; Drapier, S.; Bergheau, J. Characterization of friction properties at the workmaterial/cutting tool interface during the machining of randomly structured carbon fibers reinforced polymer with carbide tools under dry conditions. Tribol. Int. 2011, 44, 2050–2058. [Google Scholar] [CrossRef]
- Mondelin, A.; Furet, B.; Rech, J. Characterisation of friction properties between a laminated carbon fibres reinforced polymer and a monocrystalline diamond under dry or lubricated conditions. Tribol. Int. 2010, 43, 1665–1673. [Google Scholar] [CrossRef]
- Abdelali, H.; Claudin, C.; Rech, J.; Salem, W.; Kapsa, P.; Dogui, A. Experimental characterization of friction coefficient at the tool–chip–workpiece interface during dry cutting of AISI 1045. Wear 2012, 286, 108–115. [Google Scholar] [CrossRef]
- Xu, J.; Li, C.; Mansori, M.; Liu, G.; Chen, M. Study on the frictional heat at tool-work interface when drilling CFRP composites. Procedia Manuf. 2018, 26, 415–423. [Google Scholar] [CrossRef]
- Xu, J.; Li, C.; Dang, J.; Mansori, M.; Ren, F. A study on drilling high-strength CFRP laminates: Frictional heat and cutting temperature. Materials 2018, 11, 2366. [Google Scholar] [CrossRef]
- Claudin, C.; Mondelin, A.; Rech, J.; Fromentin, G. Effects of a straight oil on friction at the tool–workmaterial interface in machining. Int. J. Mach. Tools Manuf. 2010, 50, 681–688. [Google Scholar] [CrossRef]
- Fersi, A.; Ayed, Y.; Lavisse, B.; Germain, G. Characterization of friction behavior under cryogenic conditions: Ti–6Al–4V. Tribol. Int. 2024, 195, 109588. [Google Scholar] [CrossRef]
- Courbon, C.; Pusavec, F.; Dumont, F.; Rech, J.; Kopac, J. Tribological behaviour of Ti6Al4V and Inconel718 under dry and cryogenic conditions—Application to the context of machining with carbide tools. Tribol. Int. 2013, 66, 72–82. [Google Scholar] [CrossRef]
- Etri, H.; Singla, A.; Özdemir, M.; Korkmaz, M.; Demirsöz, R.; Gupta, M.; Krolczyk, J.; Ross, N. Wear performance of Ti-6Al-4V titanium alloy through nano-doped lubricants. Arch. Civ. Mech. Eng. 2023, 23, 147. [Google Scholar] [CrossRef]
- Demirsöz, R.; Korkmaz, M.; Gupta, M. A novel use of hybrid Cryo-MQL system in improving the tribological characteristics of additively manufactured 316 stainless steel against 100 Cr6 alloy. Tribol. Int. 2022, 173, 107613. [Google Scholar] [CrossRef]
- Behera, B.; Ghosh, S.; Rao, P. Modeling of cutting force in MQL machining environment considering chip tool contact friction. Tribol. Int. 2018, 117, 283–295. [Google Scholar] [CrossRef]
- Chetan; Ghosh, S.; Rao, P. Specific cutting energy modeling for turning nickel-based Nimonic 90 alloy under MQL condition. Int. J. Mech. Sci. 2018, 146, 25–38. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, M.; Zhao, B.; Ding, W.; Liu, G. Developing a novel ultrasonic atomization-based cutting fluid spray system and evaluating its performance during milling processes. J. Manuf. Process. 2023, 104, 334–347. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, S.; Wang, L. Investigation of capillary wave, cavitation and droplet diameter distribution during ultrasonic atomization. Exp. Therm. Fluid Sci. 2021, 120, 110219. [Google Scholar] [CrossRef]
- Chen, B.; Gao, D.; Li, Y.; Chen, C.; Wang, Z.; Zhong, Q.; Sun, P.; Wu, S.; Wang, Z.; Liang, Y. Influence of atomizing core on droplet dynamic behavior and machining characteristics under synergistically enhanced twin-fluid spray. Int. J. Adv. Manuf. Technol. 2020, 110, 2269–2282. [Google Scholar] [CrossRef]
- Emami, M.; Sadeghi, M.; Sarhan, A. Investigating the effects of liquid atomization and delivery parameters of minimum quantity lubrication on the grinding process of Al2O3 engineering ceramics. J. Manuf. Process. 2013, 15, 374–388. [Google Scholar] [CrossRef]
- Zheng, B.; Lin, Y.; Zhou, Y.; Lavernia, E. Gas atomization of amorphous aluminum: Part I. Thermal behavior calculations. Metall. Mater. Trans. B 2009, 40, 768–778. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, M.; Zhao, B.; Ding, W.; Yu, W. Effect of different cooling and lubrication strategies on milling performance of ultra-high strength steel. Int. J. Adv. Manuf. Technol. 2024, 131, 2869–2880. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, L.; Zhou, K.; Wang, X. Microscratch behavior of copper–graphite composites. Tribol. Int. 2013, 57, 38–45. [Google Scholar] [CrossRef]
- Zhu, P.; Hu, Y.; Ma, T.; Wang, H. Molecular dynamics study on friction due to ploughing and adhesion in nanometric scratching process. Tribol. Lett. 2011, 41, 41–46. [Google Scholar] [CrossRef]
- Duan, Z.; Li, C.; Zhang, Y.; Yang, M.; Gao, T.; Liu, X.; Li, R.; Said, Z.; Debnath, S.; Sharma, S. Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant. Front. Mech. Eng. 2023, 18, 4. [Google Scholar] [CrossRef]
- Khan, W.; Hoang, N.; Tai, B.; Hung, W. Through-tool minimum quantity lubrication and effect on machinability. J. Manuf. Process. 2018, 34, 750–757. [Google Scholar] [CrossRef]
- Kudo, T.; Sekiguchi, K.; Sankoda, K.; Namiki, N.; Nii, S. Effect of ultrasonic frequency on size distributions of nanosized mist generated by ultrasonic atomization. Ultrason. Sonochem. 2017, 37, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Ganguli, S.; Kapoor, S. Improving the performance of milling of titanium alloys using the atomization-based cutting fluid application system. J. Manuf. Process. 2016, 23, 29–36. [Google Scholar] [CrossRef]
Contents | Value |
---|---|
Air pressure P (kPa) | 140, 180, 220, 260, 300 |
Flow rate of cutting fluid Q (mL/min) | 15 |
Concentration of cutting fluid W (%) | 12 |
Contents | Value |
---|---|
Tensile strength σb (MPa) | 1780 |
Yield strength σs (MPa) | 1380 |
Density ρ (kg/m3) | 7960 |
Hardness (HRC) | 35 |
Fracture toughness KIC (MPa·1/2) | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Zhang, M.; Zhao, B.; Li, B.; Ding, W. Effect of Spray Characteristic Parameters on Friction Coefficient of Ultra-High-Strength Steel against Cemented Carbide. Materials 2024, 17, 4867. https://doi.org/10.3390/ma17194867
Wu B, Zhang M, Zhao B, Li B, Ding W. Effect of Spray Characteristic Parameters on Friction Coefficient of Ultra-High-Strength Steel against Cemented Carbide. Materials. 2024; 17(19):4867. https://doi.org/10.3390/ma17194867
Chicago/Turabian StyleWu, Bangfu, Minxiu Zhang, Biao Zhao, Benkai Li, and Wenfeng Ding. 2024. "Effect of Spray Characteristic Parameters on Friction Coefficient of Ultra-High-Strength Steel against Cemented Carbide" Materials 17, no. 19: 4867. https://doi.org/10.3390/ma17194867