Effect of Heat Treatment on the Microstructure and Property of Metastable β Titanium Alloy
Abstract
:1. Introduction
2. Experiments and Methods
2.1. Material
2.2. Heat Treatment (HT) Scheme
2.3. Microstructural Characterization
2.4. Property Tests
3. Results and Discussion
3.1. Effect of Heat Treatment on the Microstructure of TB18 Alloy
3.1.1. Microstructures of Solution Treated Samples
3.1.2. Precipitation of the α Phase During Aging Treatment
3.2. Effect of Heat Treatment on Alloy Mechanical Properties
3.2.1. Effect of the Solution Time on the Mechanical Properties of the TB18 Alloy
3.2.2. Effect of Aging Temperature on the Mechanical Properties of the TB18 Alloy
4. Discussion
4.1. Effect of β Grain Refinement on Stress Distribution During Tensile Process
4.2. Effect of Aging Temperature on α Phase Precipitation
5. Conclusions
- Longer solution times during the solution treatment cause the alloy’s β grain size to rise, which reduces the total β grain boundary. Additionally, stress concentration during the tensile process was successfully decreased by refining the β-phase grain size.
- Throughout the aging treatment, the width of the α grain increases with increasing aging temperature. It is noteworthy that at 530 °C, the α phase precipitates the most, indicating its heightened sensitivity to this temperature. This sensitivity is attributed to the combined effect of temperature on supercooling.
- Tensile tests on the alloy revealed that, for samples treated with the same aging temperature but with varying solution treatments, the alloy’s strength showed minimal change as the solution time increased. However, ductility steadily declined, and it was discovered that this decline was related to the size of the previous β grain.
- After the same solution treatment, the TB18 alloy treated with varying aging temperatures shows a gain in strength but a decrease in ductility as the aging temperature rises. The Hall-Petch formula can be used to explain the correlation between these variations in strength and ductility and the size and mass fraction of the α grain.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sadeghpour, S.; Abbasi, S.M.; Morakabati, M.; Kisko, A.; Karjalainen, L.P.; Porter, D.A. A New Multi-Element Beta Titanium Alloy with a High Yield Strength Exhibiting Transformation and Twinning Induced Plasticity Effects. Scr. Mater. 2018, 145, 104–108. [Google Scholar] [CrossRef]
- Kolli, R.P.; Devaraj, A. A Review of Metastable Beta Titanium Alloys. Metals 2018, 8, 506. [Google Scholar] [CrossRef]
- Cao, M.Z.; He, B.B. A Review on Deformation Mechanisms of Metastable β Titanium Alloys. J. Mater. Sci. 2024, 59, 14981–15016. [Google Scholar] [CrossRef]
- Bao, X.; Chen, W.; Zhang, J.; Yue, Y.; Sun, J. Achieving High Strength-Ductility Synergy in a Hierarchical Structured Metastable β-Titanium Alloy Using through-Transus Forging. J. Mater. Res. Technol. 2021, 11, 1622–1636. [Google Scholar] [CrossRef]
- Chen, W.; Lin, Y.C.; Zhang, X.; Zhou, K. Balancing Strength and Ductility by Controllable Heat-Treatment Twinning in a near β-Ti Alloy. J. Mater. Res. Technol. 2020, 9, 6962–6968. [Google Scholar] [CrossRef]
- Dong, R.; Li, J.; Kou, H.; Fan, J.; Tang, B. Dependence of Mechanical Properties on the Microstructure Characteristics of a near β Titanium Alloy Ti-7333. J. Mater. Sci. Technol. 2019, 35, 48–54. [Google Scholar] [CrossRef]
- Fu, Q.; Yuan, W.; Xiang, W. Constitutive Relationship for Hot Deformation of TB18 Titanium Alloy. Adv. Mater. Sci. Eng. 2020, 2020, 5716548. [Google Scholar] [CrossRef]
- Zhang, F.; Feng, J.; Xiang, W.; Fu, Q.; Yuan, W. Enhanced Mechanical Properties in Metastable β Titanium Alloy via ω-Assisted Nucleation. Mater. Sci. Eng. A 2022, 858, 144082. [Google Scholar] [CrossRef]
- Jia, Y.-D.; Cao, S.; Ma, Y.-J.; Huang, S.-S.; Qin, F.-Y.; Li, S.-Q.; Xiang, W.; Wang, Q.; Hu, Q.-M.; Li, B.; et al. Latent Heat of TB18 Titanium Alloy during β to α Phase Transition by DSC and First-Principles Methods. Acta Metall. Sin. (Engl. Lett.) 2023, 36, 1844–1856. [Google Scholar] [CrossRef]
- Xiang, W.; Xiang, Y.; Zhang, F.; Fu, Q.; Yuan, W. Study on Stress Relaxation and Creep Behavior of TB18 Titanium Alloy during the Aging Process. Mater. Sci. Eng. A 2024, 893, 146125. [Google Scholar] [CrossRef]
- Li, C.-L.; Mi, X.-J.; Ye, W.-J.; Hui, S.-X.; Yu, Y.; Wang, W.-Q. Effect of Solution Temperature on Microstructures and Tensile Properties of High Strength Ti–6Cr–5Mo–5V–4Al Alloy. Mater. Sci. Eng. A 2013, 578, 103–109. [Google Scholar] [CrossRef]
- Ren, L.; Xiao, W.; Chang, H.; Zhao, Y.; Ma, C.; Zhou, L. Microstructural Tailoring and Mechanical Properties of a Multi-Alloyed near β Titanium Alloy Ti-5321 with Various Heat Treatment. Mater. Sci. Eng. A 2018, 711, 553–561. [Google Scholar] [CrossRef]
- Filip, R.; Kubiak, K.; Ziaja, W.; Sieniawski, J. The Effect of Microstructure on the Mechanical Properties of Two-Phase Titanium Alloys. J. Mater. Process. Technol. 2003, 133, 84–89. [Google Scholar] [CrossRef]
- Shekhar, S.; Sarkar, R.; Kar, S.K.; Bhattacharjee, A. Effect of Solution Treatment and Aging on Microstructure and Tensile Properties of High Strength β Titanium Alloy, Ti–5Al–5V–5Mo–3Cr. Mater. Des. 2015, 66, 596–610. [Google Scholar] [CrossRef]
- Teixeira, J.D.C.; Appolaire, B.; Aeby-Gautier, E.; Denis, S.; Cailletaud, G.; Späth, N. Transformation Kinetics and Microstructures of Ti17 Titanium Alloy during Continuous Cooling. Mater. Sci. Eng. A 2007, 448, 135–145. [Google Scholar] [CrossRef]
- Sadeghpour, S.; Abbasi, S.M.; Morakabati, M.; Bruschi, S. Correlation between Alpha Phase Morphology and Tensile Properties of a New Beta Titanium Alloy. Mater. Des. 2017, 121, 24–35. [Google Scholar] [CrossRef]
- Ren, L.; Xiao, W.; Han, W.; Ma, C.; Zhou, L. Influence of Duplex Ageing on Secondary α Precipitates and Mechanical Properties of the near β-Ti Alloy Ti-55531. Mater. Charact. 2018, 144, 1–8. [Google Scholar] [CrossRef]
- Ivasishin, O.M.; Markovsky, P.E.; Matviychuk, Y.V.; Semiatin, S.L.; Ward, C.H.; Fox, S. A Comparative Study of the Mechanical Properties of High-Strength β-Titanium Alloys. J. Alloys Compd. 2008, 457, 296–309. [Google Scholar] [CrossRef]
- Weiss, I.; Semiatin, S.L. Thermomechanical Processing of Beta Titanium Alloys—An Overview. Mater. Sci. Eng. A 1998, 243, 46–65. [Google Scholar] [CrossRef]
- Ivasishin, O.M.; Teliovich, R.V. Potential of Rapid Heat Treatment of Titanium Alloys and Steels. Mater. Sci. Eng. A 1999, 263, 142–154. [Google Scholar] [CrossRef]
- Fan, J.; Li, J.; Kou, H.; Hua, K.; Tang, B.; Zhang, Y. Influence of Solution Treatment on Microstructure and Mechanical Properties of a near β Titanium Alloy Ti-7333. Mater. Des. 2015, 83, 499–507. [Google Scholar] [CrossRef]
- Lee, S.W.; Park, C.H.; Hong, J.K.; Yeom, J.-T. Effect of Solution Treatment and Aging Conditions on Tensile Properties of Ti–Al–Fe–Si Alloy. Mater. Sci. Eng. A 2017, 697, 158–166. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Fan, Q.; Sang, Z.; Xu, Y.; Wang, C.; Yao, J.; Zhou, Z.; Yang, L.; Liu, Z.; et al. Effect of Aging Temperature on Microstructure and Mechanical Properties of a Novel Ti-6121 Alloy. J. Alloys Compd. 2023, 947, 169612. [Google Scholar] [CrossRef]
- Fu, Q.; Yuan, W.; Xiang, W. Dynamic Softening Mechanisms and Microstructure Evolution of TB18 Titanium Alloy during Uniaxial Hot Deformation. Metals 2021, 11, 789. [Google Scholar] [CrossRef]
- Wang, M.-X.; Zhu, H.; Yang, G.-J.; Liu, K.; Li, J.-F.; Kong, L.-T. Solid-Solution Strengthening Effects in Binary Ni-Based Alloys Evaluated by High-Throughput Calculations. Mater. Des. 2021, 198, 109359. [Google Scholar] [CrossRef]
- Gil, F.J.; Planell, J.A. Behaviour of Normal Grain Growth Kinetics in Single Phase Titanium and Titanium Alloys. Mater. Sci. Eng. A 2000, 283, 17–24. [Google Scholar] [CrossRef]
- Lu, J.-W.; Zhao, Y.-Q.; Ge, P.; Niu, H.-Z. Microstructure and Beta Grain Growth Behavior of Ti–Mo Alloys Solution Treated. Mater. Charact. 2013, 84, 105–111. [Google Scholar] [CrossRef]
- Li, C.; Chen, J.; Li, W.; He, J.J.; Qiu, W.; Ren, Y.J.; Chen, J.L.; Chen, J.H. Study on the Relationship between Microstructure and Mechanical Property in a Metastable β Titanium Alloy. J. Alloys Compd. 2015, 627, 222–230. [Google Scholar] [CrossRef]
- Liu, W.; Deng, H.; Chen, H.; Zhou, L.; Zuo, H.; Xu, P.; Qiu, W.; Chen, L.; Wei, Y.; Xia, Z.; et al. Ti–5Al–5V–5Mo–3Cr–1Zr (Ti-55531) Alloy with Excellent Mechanical Properties Fabricated by Spark Plasma Sintering Combined with in-Situ Aging. Mater. Sci. Eng. A 2022, 847, 143316. [Google Scholar] [CrossRef]
- Liu, C.M. Development of a Pre-Heat Treatment for Obtaining Discontinuous Grain Boundary α in Laser Melting Deposited Ti–5Al–5Mo–5V–1Cr–1Fe Alloy. Mater. Sci. 2014, 604, 176–182. [Google Scholar] [CrossRef]
- Kent, D.; Wang, G.; Wang, W.; Dargusch, M.S. Influence of Ageing Temperature and Heating Rate on the Properties and Microstructure of β Ti Alloy, Ti–6Cr–5Mo–5V–4Al. Mater. Sci. Eng. A 2012, 531, 98–106. [Google Scholar] [CrossRef]
- Liu, C.; Lu, Y.; Tian, X.; Liu, D. Influence of Continuous Grain Boundary α on Ductility of Laser Melting Deposited Titanium Alloys. Mater. Sci. Eng. A 2016, 661, 145–151. [Google Scholar] [CrossRef]
- Wu, C.; Zhan, M. Microstructural Evolution, Mechanical Properties and Fracture Toughness of near β Titanium Alloy during Different Solution plus Aging Heat Treatments. J. Alloys Compd. 2019, 805, 1144–1160. [Google Scholar] [CrossRef]
- Zhang, F.; Feng, J.; Xiang, W.; Fu, Q.; Yuan, W. Grain-Refined Metastable β Titanium Alloy with Suppressed ω-Assisted Nucleation and Enhanced Mechanical Properties. J. Alloys Compd. 2024, 1004, 175986. [Google Scholar] [CrossRef]
- Antonov, S.; Shi, R.; Li, D.; Kloenne, Z.; Zheng, Y.; Fraser, H.L.; Raabe, D.; Gault, B. Nucleation and Growth of α Phase in a Metastable β-Titanium Ti-5Al-5Mo-5V-3Cr Alloy: Influence from the Nano-Scale, Ordered-Orthorhombic O″ Phase and α Compositional Evolution. Scr. Mater. 2021, 194, 113672. [Google Scholar] [CrossRef]
- Zheng, Y.; Williams, R.E.A.; Viswanathan, G.B.; Clark, W.A.T.; Fraser, H.L. Determination of the Structure of α-β Interfaces in Metastable β-Ti Alloys. Acta Mater. 2018, 150, 25–39. [Google Scholar] [CrossRef]
Heat Treatment Scheme | Solution | Aging |
---|---|---|
HT1 | 870 °C/1 h/AC | 530 °C/4 h/AC |
870 °C/2 h/AC | ||
870 °C/3 h/AC | ||
870 °C/4 h/AC | ||
HT2 | 870 °C/2 h/AC | 510 °C/4 h/AC |
520 °C/4 h/AC | ||
530 °C/4 h/AC | ||
540 °C/4 h/AC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Luo, H.; Wu, B.; Liu, W.; Rong, Y.; Chen, D.; Qin, Y.; Zhang, N.; Hao, F.; Deng, H.; et al. Effect of Heat Treatment on the Microstructure and Property of Metastable β Titanium Alloy. Materials 2024, 17, 6294. https://doi.org/10.3390/ma17246294
Tang J, Luo H, Wu B, Liu W, Rong Y, Chen D, Qin Y, Zhang N, Hao F, Deng H, et al. Effect of Heat Treatment on the Microstructure and Property of Metastable β Titanium Alloy. Materials. 2024; 17(24):6294. https://doi.org/10.3390/ma17246294
Chicago/Turabian StyleTang, Jiafeng, Hengjun Luo, Biliu Wu, Wenhao Liu, Yu Rong, Danyang Chen, Yulin Qin, Ning Zhang, Fang Hao, Hao Deng, and et al. 2024. "Effect of Heat Treatment on the Microstructure and Property of Metastable β Titanium Alloy" Materials 17, no. 24: 6294. https://doi.org/10.3390/ma17246294
APA StyleTang, J., Luo, H., Wu, B., Liu, W., Rong, Y., Chen, D., Qin, Y., Zhang, N., Hao, F., Deng, H., Chen, L., Zhu, J., & Yin, M. (2024). Effect of Heat Treatment on the Microstructure and Property of Metastable β Titanium Alloy. Materials, 17(24), 6294. https://doi.org/10.3390/ma17246294