The Study of Radioactive Contaminations within the Production Processes of Metal Titanium for Low-Background Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods for Studying Samples Using ICP-MS
2.2. Methodology for Analyzing Radioactive Impurities in Titanium Metal Samples at Various Stages of Production Using the HP-Ge Method
2.2.1. Description of the Installation and Measurement Technique
2.2.2. Calculation Technique
2.2.3. Data Processing Technique and Preliminary Measurement Results
3. Results and Discussion
3.1. Analysis of Radioactive Impurities in Master Alloys Used in the Production of Titanium Alloys Using ICP-MS
3.2. Analysis of Radioactive Impurities in Titanium Metal Samples at Various Stages of Production Using ICP-MS
3.3. Analysis of Radioactive Impurities in Titanium Metal Samples at Various Stages of Production Using the HP-Ge Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arbey, A.; Mahmoudi, F. Dark matter and the early Universe: A review. Prog. Part. Nucl. Phys. 2021, 119, 103865. [Google Scholar] [CrossRef]
- Misiaszek, M.; Rossi, N. Direct detection of dark matter: A critical review. arXiv 2023, arXiv:2310.20472v1. [Google Scholar] [CrossRef]
- Wurm, M.; Von Feilitzsch, F.; Lanfranchi, J.C. Neutrino Detectors. In Handbook of Particle Detection and Imaging; Fleck, I., Titov, M., Grupen, C., Buvat, I., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Gavriljuk, J.M.; Gangapshev, A.M.; Gezhaev, A.M.; Kazalov, V.V.; Kuzminov, V.V.; Panasenko, S.I.; Ratkevich, S.S.; Smolnikov, A.A.; Yakimenko, S.P. Working Characteristics of the New Low-Background Laboratory (DULB-4900). Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 729, 576–580. [Google Scholar] [CrossRef]
- Westerdale, S.; Meyers, P.D. Radiogenic Neutron Yield Calculations for Low-Background Experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 875, 57–64. [Google Scholar] [CrossRef]
- Kroll, W. The Production of Ductile Titanium. Trans. Electrochem. Soc. 1940, 78, 35. [Google Scholar] [CrossRef]
- Zykova, M.; Voronina, E.; Chepurnov, A.; Rymkevich, D.; Tankeev, A.; Vlasov, S.; Chub, A.; Avetissov, I. Role of Magnesium in Ultra-Low-Radioactive Titanium Production for Future Direct Dark Matter Search Detectors. Materials 2022, 15, 8872. [Google Scholar] [CrossRef] [PubMed]
- Software Package MCC-MT (Monte Carlo Calculation Multi Thread). Available online: https://www.tals.eu/mcc-mt (accessed on 22 November 2023).
- Zhang, C.; Mei, D.-M.; Kudryavtsev, V.A.; Fiorucci, S. Cosmogenic Activation of Materials Used in Rare Event Search Experiments. Astropart. Phys. 2016, 84, 62–69. [Google Scholar] [CrossRef]
- GOST 17746-96; Sponge titanium. Specifications. IPK Izdatelstvo Standartov: Moscow, Russia, 2000. Available online: http://vsegost.com/Catalog/85/8516.shtml (accessed on 22 November 2023).
Nebulizer Type | Concentric (Meinhard), PFA |
---|---|
Spray chamber | Scott double-pass chamber, PFA |
Argon flow rate, L/min | 1.0 |
through the nebulizer | 0.96 |
Plasma forming | 15 |
Auxiliary | 1.2 |
Generator power, W | 1450 |
Potential on the analog segment of the detector, V | −1750 |
Potential on the pulse segment of the detector, V | 1100 |
Detector discrimination threshold | 12 |
Potential at the deflector, V | −10.5 |
Potential on quadrupole rods, V | −12 |
Sweeps/reading | 30 |
Readings/replicate | 10 |
Replicates | 3 |
Dwell Times | 100 ms for 232Th and 238U |
Sample | Gamma Line, keV (Isotope/Decay Chain) | ||||||||
---|---|---|---|---|---|---|---|---|---|
1332.5 (Co-60) | 1460.8 (K-40) | 186.2 (Ra-226/ U-238) | 351.9 (Pb-214/ U-238) | 185.7 (U-235/ U-235) | 143.8 (U-235/ U-235) | 911.2 (Ac-228/ Th-232) | 238.6 (Pb-212/ Th-232) | 661.7 (Cs-137) | |
Estimated Number of Detected Gamma Rays per 106 Decays | |||||||||
Ti sponge | 10,002 ± 100 | 974 ± 31 | 1674 ± 45 | 11,340 ± 106 | 28,028 ± 167 | 5560 ± 76 | 3571 ± 60 | 18,121 ± 135 | 14,915 ± 122 |
Ti ingot | 3992 ± 63 | 411 ± 20 | 482 ± 24 | 3441 ± 59 | 7088 ± 84 | 1236 ± 36 | 1272 ± 36 | 5099 ± 72 | 5211 ± 72 |
Ti sheet | 5165 ± 72 | 531 ± 23 | 669 ± 29 | 4839 ± 70 | 10,391 ± 102 | 1839 ± 44 | 1735 ± 42 | 7129 ± 84 | 7009 ± 84 |
Sample | Total Purity | Th | U | |
---|---|---|---|---|
wt.% | ppb | ppb | ||
1 | Al-01 | 99.70 | 64 ± 4 | 870 ± 60 |
2 | VAl-70V30Al | 99.82 | 0.24 ± 0.03 | 46.8 ± 0.3 |
3 | Al-Sn-02 | 99.97 | 69 ± 2 | 335 ± 9 |
No. | Samples | Th | U | ||
---|---|---|---|---|---|
ppb | Bq/kg | ppb | Bq/kg | ||
1 | Ti sponge | 0.49 ± 0.10 | 0.002 ± 0.0004 | 1.30 ± 0.01 | 0.016 ± 0.001 |
2 | Ti ingot | 4.18 ± 0.06 | 0.017 ± 0.0002 | 2.67 ± 0.01 | 0.033 ± 0.001 |
3 | Ti sheet | 3.31 ± 0.12 | 0.013 ± 0.0005 | 2.45 ± 0.15 | 0.030 ± 0.002 |
Samples | Gamma Line, keV (Isotope/Decay Chain) | ||||||||
---|---|---|---|---|---|---|---|---|---|
1332.5 (Co-60) | 1460.8 (K-40) | 186.2 (Ra-226/ U-238) | 351.9 (Pb-214/ U-238) | 185.7 (U-235/ U-235) | 143.8 (U-235/ U-235) | 911.2 (Ac-228/ Th-232) | 238.6 (Pb-212/ Th-232) | 661.7 (Cs-137) | |
Estimated Number of Detected Gamma Rays per 106 Decays | |||||||||
Background | 86 ± 6 | 61 ± 6 | ≤99 | 36 ± 6 | ≤99 | 26 ± 8 | 10 ± 3 | 70 ± 8 | ≤11 |
Ti sponge | 62 ± 6 | 72 ± 6 | ≤99 | 52 ± 6 | ≤99 | 18 ± 7 | 15 ± 4 | 79 ± 8 | 54 ± 6 |
Ti ingot | 36 ± 6 | 58 ± 8 | ≤153 | 38 ± 9 | ≤153 | 32 ± 15 | ≤10 | 77 ± 13 | ≤12 |
Ti sheet | 60 ± 7 | 38 ± 6 | ≤165 | 130 ± 12 | ≤165 | ≤23 | 24 ± 6 | 159 ± 14 | ≤9 |
Samples | K-40 | Co-60 | U-238 | U-235 | Th-232 | Cs-137 |
---|---|---|---|---|---|---|
Ti sponge | ≤0.08 | ≤0.004 | 0.005 ± 0.002 | ≤0.06 | 0.003 ± 0.002 | 0.010 ± 0.001 |
Ti sheet | ≤0.008 | ≤0.001 | 0.0044 ± 0.0004 | ≤0.002 | 0.0036 ± 0.0003 | ≤0.0002 |
Ti ingot | ≤0.01 | ≤0.0004 | 0.0008 ± 0.0003 | ≤0.002 | 0.0012 ± 0.0003 | ≤0.0003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zykova, M.; Voronina, E.; Chepurnov, A.; Leder, M.; Kornilova, M.; Tankeev, A.; Vlasov, S.; Chub, A.; Gangapshev, A.; Gezhaev, A.; et al. The Study of Radioactive Contaminations within the Production Processes of Metal Titanium for Low-Background Experiments. Materials 2024, 17, 832. https://doi.org/10.3390/ma17040832
Zykova M, Voronina E, Chepurnov A, Leder M, Kornilova M, Tankeev A, Vlasov S, Chub A, Gangapshev A, Gezhaev A, et al. The Study of Radioactive Contaminations within the Production Processes of Metal Titanium for Low-Background Experiments. Materials. 2024; 17(4):832. https://doi.org/10.3390/ma17040832
Chicago/Turabian StyleZykova, Marina, Elena Voronina, Alexander Chepurnov, Mikhail Leder, Maria Kornilova, Alexey Tankeev, Sergey Vlasov, Alexander Chub, Albert Gangapshev, Ali Gezhaev, and et al. 2024. "The Study of Radioactive Contaminations within the Production Processes of Metal Titanium for Low-Background Experiments" Materials 17, no. 4: 832. https://doi.org/10.3390/ma17040832