Tungsten Inert Gas Welding of 6061-T6 Aluminum Alloy Frame: Finite Element Simulation and Experiment
Abstract
:1. Introduction
2. Experimental Process and Materials
2.1. Materials and Methods
2.2. Build Finite Element Model
SUBROUTINE DFLUX(FLUX, SOL, KSTEP, KINC, TIME, NOEL, NPT, COORDS, JLTYP, 1 TEMP, PRESS, SNAME) INCLUDE ‘ABA_PARAM.INC’ DIMENSION COORDS(3), FLUX(2), TIME(2) real*8 Am, Bm, Cm, Dm, dmm, An, Bn, Cn, Dn, disn, Aw, Bw, Cw, Dw, dww real*8 p1x, p1y, p1z, p2x, p2y, p2z, p3x, p3y, p3z CHARACTER*80 SNAME a = 3 b = 3 c = 3 c2 = 6 ratio = 0.5 ff = 0.66666667 fr = 1.33333333 CI = 280 U = 20 vel = 7 yita = 0.85 power = 1000*yita*U*CI User coding to define FLUX(1) and FLUX(2) RETURN END |
3. Optimization of TIG Welding Process Parameters Based on RSM
3.1. Box–Behnken Experimental Design
3.2. Response Surface Model Fitting and Significance Analysis Test
3.3. Analysis of Response Surface and Contour Map
4. Result and Discussion
4.1. Numerical Simulation Results
4.1.1. Welding Temperature Field Analysis
4.1.2. Welding Stress Field Analysis
4.2. Experiments and Analysis
4.2.1. Structure Property Analysis
4.2.2. Frame Performance Testing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Narsimhachary, D.; Bathe, R.N.; Padmanabham, G.; Basu, A. Influence of temperature profile during laser welding of aluminum alloy 6061 T6 on microstructure and mechanical properties. Mater. Manuf. Process. 2014, 29, 948–953. [Google Scholar] [CrossRef]
- Bansal, A.; Kumar, M.S.; Shekhar, I.; Chauhan, S.; Bhardwaj, S. Effect of welding parameter on mechanical properties of TIG welded AA6061. Mater. Today Proc. 2021, 37, 2126–2131. [Google Scholar] [CrossRef]
- Bansal, A.; Kumar, M.S.; Shekhar, I.; Chauhan, S.; Bhardwaj, S. Numerical simulation and experimental validation of residual stress and welding distortion induced by laser-based welding processes of thin structural steel plates in butt joint configuration. Opt. Laser Technol. 2018, 104, 170–182. [Google Scholar]
- Pan, M.; Li, Y.; Sun, S.; Liao, W.; Xing, Y.; Tang, W. A Study on Welding Characteristics, Mechanical Properties, and Penetration Depth of T-Joint Thin-Walled Parts for Different TIG Welding Currents: FE Simulation and Experimental Analysis. Metals 2022, 12, 1157. [Google Scholar] [CrossRef]
- Costa, S.; Souza, M.S.; Braz-César, M.; Gonçalves, J.; Ribeiro, J.E. Experimental and numerical study to minimize the residual stresses in welding of 6082-T6 aluminum alloy. AIMS Mater. Sci. 2021, 8, 271–282. [Google Scholar] [CrossRef]
- Wu, C.; Wang, C.; Kim, J.W. Bending deformation prediction in a welded square thin-walled aluminum alloy tube structure using an artificial neural network. Int. J. Adv. Manuf. Technol. 2021, 117, 2791–2805. [Google Scholar] [CrossRef]
- Sathish, T.; Tharmalingam, S.; Mohanavel, V.; Ashraff Ali, K.S.; Karthick, A.; Ravichandran, M.; Rajkumar, S. Weldability investigation and optimization of process variables for TIG-welded aluminium alloy (AA 8006). Adv. Mater. Sci. Eng. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Trueba, L.; Torres, M.A.; Johannes, L.B.; Rybicki, D. Process optimization in the self-reacting friction stir welding of aluminum 6061-T6. Int. J. Mater. Form. 2018, 11, 559–570. [Google Scholar] [CrossRef]
- Naik, A.B.; Reddy, A.C. Optimization of tensile strength in TIG welding using the Taguchi method and analysis of variance (ANOVA). Therm. Sci. Eng. Prog. 2018, 8, 327–339. [Google Scholar] [CrossRef]
- Shao, Q.; Tan, F.; Li, K.; Yoshino, T.; Guo, G. Multi-Objective Optimization of MIG Welding and Preheat Parameters for 6061-T6 Al Alloy T-Joints Using Artificial Neural Networks Based on FEM. Coatings 2021, 11, 998. [Google Scholar] [CrossRef]
- Nisar, S.; Noor, A.; Shah, A.; Siddiqui, U.; Khan, S.Z. Optimization of process parameters for laser welding of A5083 aluminium alloy. Opt. Laser Technol. 2023, 163, 109435. [Google Scholar] [CrossRef]
- Doshi, S.; Jani, D.B.; Gohil, A.V.; Patel, C.M. Investigations of heat source models in transient thermal simulation of pulsed MIG welding of AA6061-T6 thin sheet//IOP Conference Series: Materials Science and Engineering. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1146, 012015. [Google Scholar]
- Liu, S.; Sun, J.; Wei, F.; Lu, M. Numerical simulation and experimental research on temperature and stress fields in TIG welding for plate of RAFM steel. Fusion Eng. Des. 2018, 136, 690–693. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Yang, L.; Zhang, G. Sequentially combined thermo-mechanical and mechanical simulation of double-pulse MIG welding of 6061-T6 aluminum alloy sheets. J. Manuf. Process. 2022, 77, 616–631. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, S.; Zhao, Z.; Chen, T.; Zeng, J. Numerical simulation of residual stresses in aluminum alloy welded joints. J. Manuf. Process. 2020, 50, 380–393. [Google Scholar] [CrossRef]
- Tlili, I.; Baleanu, D.; Mohammad Sajadi, S.; Ghaemi, F.; Fagiry, M.A. Numerical and experimental analysis of temperature distribution and melt flow in fiber laser welding of Inconel 625. Int. J. Adv. Manuf. Technol. 2022, 121, 765–784. [Google Scholar] [CrossRef]
- Iqbal, M.P.; Jain, R.; Pal, S.K. Numerical and experimental study on friction stir welding of aluminum alloy pipe. J. Mater. Process. Technol. 2019, 274, 116258. [Google Scholar] [CrossRef]
- Duggirala, A.; Kalvettukaran, P.; Acherjee, B.; Mitra, S. Numerical simulation of the temperature field, weld profile, and weld pool dynamics in laser welding of aluminium alloy. Optik 2021, 247, 167990. [Google Scholar] [CrossRef]
- Chen, L.; Mi, G.; Zhang, X.; Wang, C. Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding. J. Mater. Process. Technol. 2021, 298, 117314. [Google Scholar] [CrossRef]
- Kik, T. Computational techniques in numerical simulations of arc and laser welding processes. Materials 2020, 13, 608. [Google Scholar] [CrossRef]
- Azevedo, S.C.; de Resende, A.A. Effect of angle, distance between electrodes and TIG current on the weld bead geometry in TIG-MIG/MAG welding process. Int. J. Adv. Manuf. Technol. 2021, 114, 1505–1515. [Google Scholar] [CrossRef]
- dos Santos Paes, L.E.; Andrade, J.R.; Lobato, F.S.; dos Santos Magalhães, E.; Ponomarov, V.; de Souza, F.J.; Vilarinho, L.O. Sensitivity analysis and multi-objective optimization of tungsten inert gas (TIG) welding based on numerical simulation. Int. J. Adv. Manuf. Technol. 2022, 122, 783–797. [Google Scholar] [CrossRef]
- Omprakasam, S.; Marimuthu, K.; Raghu, R.; Velmurugan, T. Statistical modelling and optimization of TIG welding process parameters using Taguchi’s method. Stroj. Vestn.-J. Mech. Eng. 2022, 68, 200–209. [Google Scholar]
- Zhang, D.K.; Yue, Z.H.A.O.; Dong, M.Y.; Wang, G.Q.; Wu, A.P.; Shan, J.G.; Meng, D.Y.; Liu, X.L.; Song, J.L.; Zhang, Z.P. Effects of weld penetration on tensile properties of 2219 aluminum alloy TIG-welded joints. Trans. Nonferrous Met. Soc. China 2019, 29, 1161–1168. [Google Scholar] [CrossRef]
- Gou, W.; Wang, L. Effects of Welding Currents on Microstructure and Properties of 5052 Aluminum Alloy TIG Welded Joint//IOP Conference Series: Materials Science and Engineering. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 772, 012011. [Google Scholar]
- Ahmed, S.; Saha, P. Selection of optimal process parameters and assessment of its effect in micro-friction stir welding of AA6061-T6 sheets. Int. J. Adv. Manuf. Technol. 2020, 106, 3045–3061. [Google Scholar] [CrossRef]
- Vidyarthy, R.S.; Dwivedi, D.K.; Muthukumaran, V. Optimization of A-TIG process parameters using response surface methodology. Mater. Manuf. Process. 2018, 33, 709–717. [Google Scholar] [CrossRef]
- Zhou, L.; Luo, L.Y.; Wang, R.; Zhang, J.B.; Huang, Y.X.; Song, X.G. Process parameter optimization in refill friction spot welding of 6061 aluminum alloys using response surface methodology. J. Mater. Eng. Perform. 2018, 27, 4050–4058. [Google Scholar] [CrossRef]
- Chludzinski, M.; Dos Santos, R.E.; Churiaque, C.; Ortega-Iguña, M.; Sánchez-Amaya, J.M. Effect of process parameters on pulsed laser welding of AA5083 alloy using response surface methodology and pulse shape variation. Int. J. Adv. Manuf. Technol. 2022, 120, 4635–4646. [Google Scholar] [CrossRef]
- Salleh, M.N.M.; Ishak, M.; Quazi, M.M.; Aiman, M.H. Microstructure, mechanical, and failure characteristics of laser-microwelded AZ31B Mg alloy optimized by response surface methodology. Int. J. Adv. Manuf. Technol. 2018, 99, 985–1001. [Google Scholar] [CrossRef]
- Tsirkas, S.A. Numerical simulation of the laser welding process for the prediction of temperature distribution on welded aluminium aircraft components. Opt. Laser Technol. 2018, 100, 45–56. [Google Scholar] [CrossRef]
- Balram, Y.; Rajyalakshmi, G. Thermal fields and residual stresses analysis in TIG weldments of SS 316 and Monel 400 by numerical simulation and experimentation. Mater. Res. Express 2019, 6, 0865e2. [Google Scholar] [CrossRef]
- GB/T 19869.2-2012; Welding Procedure Qualification Test for Aluminum and Its Alloys. National Welding Standardization Technical Committee: Beijing, China, 2012.
- Wang, Y.; Cong, B.; Qi, B.; Yang, M.; Lin, S. Process characteristics and properties of AA2219 aluminum alloy welded by double pulsed VPTIG welding. J. Mater. Process. Technol. 2019, 266, 255–263. [Google Scholar] [CrossRef]
- Hakem, M.; Lebaili, S.; Mathieu, S.; Miroud, D.; Lebaili, A.; Cheniti, B. Effect of microstructure and precipitation phenomena on the mechanical behavior of AA6061-T6 aluminum alloy weld. Int. J. Adv. Manuf. Technol. 2019, 102, 2907–2918. [Google Scholar] [CrossRef]
- Ahmadi, E.; Ebrahimi, A.R.; Hoseinzadeh, A. Microstructure Evolution and Mechanical Properties of 2219 Aluminum Alloy A–TIG Welds. Phys. Met. Metallogr. 2020, 121, 483–488. [Google Scholar] [CrossRef]
- Qin, Q.; Zhao, H.; Li, J.; Zhang, Y.; Zhang, B.; Su, X. Microstructures and mechanical properties of TIG welded Al-Mg2Si alloy joints. J. Manuf. Process. 2020, 56, 941–949. [Google Scholar] [CrossRef]
- Baskoro, A.S.; Amat, M.A.; Pratama, A.I.; Kiswanto, G.; Winarto, W. Effects of tungsten inert gas (TIG) welding parameters on macrostructure, microstructure, and mechanical properties of AA6063-T5 using the controlled intermittent wire feeding method. Int. J. Adv. Manuf. Technol. 2019, 105, 2237–2251. [Google Scholar] [CrossRef]
- Samiuddin, M.; Li, J.L.; Taimoor, M.; Siddiqui, M.N.; Siddiqui, S.U.; Xiong, J.T. Investigation on the process parameters of TIG-welded aluminum alloy through mechanical and microstructural characterization. Def. Technol. 2021, 17, 1234–1248. [Google Scholar] [CrossRef]
- GB 3565.2-2022; Safety Requirements for Bicycles—Part 2: Requirements for City and Trekking, Young Adult, Mountain and Racing Bicycles. Ministry of Industry and Information Technology of the People’s Republic of China: Beijing, China, 2022.
Chemical Composition of 6061-T6 Aluminum Alloy | ||||
---|---|---|---|---|
Si | Fe | Cu | Mn | Mg |
0.4~0.8 | 0.7 | 0.15~0.4 | 0.15 | 0.8~1.2 |
Cr | Zn | Ti | Al | Other |
0.04~0.35 | 0.25 | 0.15 | residuals | 0.15 |
Alloy Material | Material Properties | 20 °C | 100 °C | 200 °C | 300 °C | 400 °C | 500 °C |
---|---|---|---|---|---|---|---|
6061-T6 | Elastic modulus (MPa) | 6.67 × 104 | 6.08 × 104 | 5.44 × 104 | 4.31 × 104 | 3.60 × 104 | 3.00 × 104 |
Poisson ratio | 0.334 | 0.339 | 0.344 | 0.349 | 0.356 | 0.363 | |
Thermal conductivity | 119 | 121 | 126 | 130 | 138 | 145 | |
Specific heat (J kg−1 K−1) | 900 | 921 | 1010 | 1050 | 1090 | 1130 | |
Yield stress (MPa) | 250 | 225 | 190 | 133 | 20.8 | 8.6 | |
Plastic strain | 0 | 0 | 0 | 0 | 0 | 0 | |
thermal expansion coefficient (mm/mm/°C) | 2.23 × 10−5 | 2.28 × 10−5 | 2.47 × 10−5 | 2.55 × 10−5 | 2.67 × 10−5 | 2.70 × 10−5 |
Absolute zero (°C) | Boltzmann’s constant (W/mm2/°C) | Coefficient of convective heat transfer (mJ/mm2/s/°C) | Radiation heat transfer coefficient |
−273.15 | 5.677 × 10−11 | 0.02 | 8.50 × 10−4 |
Density (t/mm3) | Latent heat (mJ/t) | Solidus temperature (°C) | Liquidus temperature (°C) |
2.70 × 10−9 | 3.90 × 1011 | 615 | 655 |
Factor | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Welding current (A) | 200 | 240 | 280 |
Welding voltage (V) | 18 | 19.5 | 21 |
Welding rate (mm/s) | 3 | 7.5 | 12 |
Run | Factor 1 A: Welding Current (A) | Factor 2 B: Welding Voltage (V) | Factor 3 C: Welding Rate (mm/s) | Response 1 Stress (MPa) | Response 2 Deformation (mm) | Response 3 Temperature (°C) |
---|---|---|---|---|---|---|
1 | 280 | 19.5 | 12 | 403.949 | 0.468 | 1301.62 |
2 | 280 | 21 | 7.5 | 553.971 | 1.308 | 2296.86 |
3 | 240 | 19.5 | 7.5 | 387 | 0.4 | 1440 |
4 | 240 | 18 | 12 | 405.554 | 0.364 | 1029.57 |
5 | 240 | 19.5 | 7.5 | 420.514 | 0.524 | 1452.93 |
6 | 240 | 19.5 | 7.5 | 422 | 0.48 | 1513 |
7 | 240 | 18 | 3 | 565.88 | 0.957 | 1680.95 |
8 | 280 | 19.5 | 3 | 575.95 | 1.275 | 2139.58 |
9 | 240 | 19.5 | 7.5 | 419.5 | 0.491 | 1390 |
10 | 200 | 18 | 7.5 | 400.682 | 0.424 | 1121.81 |
11 | 280 | 18 | 7.5 | 431.733 | 0.645 | 1534.53 |
12 | 200 | 19.5 | 12 | 408.11 | 0.297 | 954.805 |
13 | 240 | 19.5 | 7.5 | 432 | 0.38 | 1385 |
14 | 200 | 21 | 7.5 | 415.422 | 0.537 | 1328.47 |
15 | 240 | 21 | 3 | 582.853 | 1.179 | 2001.55 |
16 | 200 | 19.5 | 3 | 562.451 | 0.872 | 1547.92 |
17 | 240 | 21 | 12 | 403.535 | 0.426 | 1221.12 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 81,495.28 | 9 | 9055.03 | 61.80 | <0.0001 | significant |
A-current | 2449.16 | 1 | 2449.16 | 16.71 | 0.0046 | |
B-voltage | 1181.71 | 1 | 1181.71 | 80.6 | 0.0251 | |
C-welding speed | 62,181.01 | 1 | 62,181.01 | 424.36 | <0.0001 | |
AB | 2702.86 | 1 | 2702.86 | 18.45 | 0.0036 | |
AC | 0.0625 | 1 | 0.0625 | 0.0004 | 0.9841 | |
BC | 11.35 | 1 | 11.35 | 0.0775 | 0.7888 | |
A2 | 700.98 | 1 | 700.98 | 4.78 | 0.0649 | |
B2 | 1107.72 | 1 | 1107.72 | 7.56 | 0.0285 | |
C2 | 10,312.40 | 1 | 10,312.40 | 70.38 | <0.0001 | |
Residual | 1025.70 | 7 | 146.53 | |||
Lack of Fit | 793.56 | 3 | 264.52 | 4.56 | 0.0885 | not significant |
Pure Error | 232.14 | 4 | 58.04 | |||
Cor Total | 82,520.98 | 16 |
Std. Dev. | Mean | C.V. % | R2 | Adjusted R2 | Predicted R2 | Adeq Precision |
---|---|---|---|---|---|---|
12.10 | 457.68 | 2.64 | 0.9876 | 0.9716 | 0.8417 | 22.7616 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 1.60 | 9 | 0.1781 | 52.86 | <0.0001 | significant |
A-current | 0.2387 | 1 | 0.2387 | 70.86 | <0.0001 | |
B-voltage | 0.0959 | 1 | 0.0959 | 28.47 | 0.0011 | |
C-welding speed | 0.9302 | 1 | 0.9302 | 276.11 | <0.0001 | |
AB | 0.0724 | 1 | 0.0724 | 21.84 | 0.0024 | |
AC | 0.0135 | 1 | 0.0135 | 3.99 | 0.0858 | |
BC | 0.0064 | 1 | 0.0064 | 1.90 | 0.2106 | |
A2 | 0.0697 | 1 | 0.0697 | 20.70 | 0.0026 | |
B2 | 0.0736 | 1 | 0.0736 | 21.84 | 0.0023 | |
C2 | 0.0764 | 1 | 0.0764 | 22.68 | 0.0021 | |
Residual | 0.0236 | 7 | 0.0034 | |||
Lack of Fit | 0.0189 | 3 | 0.0063 | 5.33 | 0.0699 | not significant |
Pure Error | 0.0047 | 4 | 0.0012 | |||
Cor Total | 1.63 | 16 |
Std. Dev. | Mean | C.V. % | R2 | Adjusted R2 | Predicted R2 | Adeq Precision |
---|---|---|---|---|---|---|
0.0580 | 0.6508 | 8.92 | 0.9855 | 0.9669 | 0.8099 | 23.0807 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 2.068 × 106 | 6 | 3.446 × 105 | 33.75 | <0.0001 | significant |
A-current | 6.726 × 105 | 1 | 6.726 × 105 | 65.86 | <0.0001 | |
B-voltage | 2.742 × 105 | 1 | 2.742 × 105 | 26.85 | 0.0004 | |
C-welding speed | 1.025 × 106 | 1 | 1.025 × 106 | 100.33 | <0.0001 | |
AB | 77,192.29 | 1 | 77,192.29 | 7.56 | 0.0205 | |
AC | 14,987.27 | 1 | 14,987.27 | 1.47 | 0.2536 | |
BC | 4163.48 | 1 | 4163.48 | 0.4077 | 0.5375 | |
Residual | 1.021 × 105 | 10 | 10,211.35 | |||
Lack of Fit | 91,165.01 | 6 | 15,194.17 | 5.55 | 0.0595 | not significant |
Pure Error | 10,948.45 | 4 | 2737.11 | |||
Cor Total | 2.170 × 106 | 16 |
Std. Dev. | Mean | C.V. % | R2 | Adjusted R2 | Predicted R2 | Adeq Precision |
---|---|---|---|---|---|---|
101.05 | 1490.57 | 6.78 | 0.9529 | 0.9247 | 0.8058 | 19.9807 |
Test Items | Standard Requires | Test Result |
---|---|---|
Vertical fatigue test of frame | A. Vertical downward force: 1200 N B. Test frequency: 2 Hz C. Test times: 100,000 times Judgment standard of test results: There shall be no visible cracks or fractures on the frame, no parts shall fall off, and the fiber frame shall be broken. The maximum deviation of the force from any direction in the middle position during the test shall not exceed 20% of the original value. | Tested for 100,000 times Pass |
Foot pedal fatigue test of frame | A. Distance: Each pedal shaft is 150 mm away from the center of the frame. B. Load: 1200 N C. Force direction: The center of the frame is tilted 7.5 degrees outwards (accuracy within 0.5 degrees). D. Test times: 100,000 times Judgment standard of test results: There should be no visible cracks on the frame, and no parts of the shock absorber system should not fall off. For the carbon fiber frame, the maximum deviation of the force in any direction deviating from the middle position during the test shall not exceed 20% of the original value. | Tested for 100,000 times Pass |
Horizontal repeated fatigue test of frame | A. Horizontal force F2: 1200 N; F3: 600 N (F2-The forward force; F3-The backward force) B. Test frequency: 2 Hz C. Test times: 100,000 times Judgment standard of test results: There must be no visible cracks or fracture on the frame, and no parts must fall off. The carbon fiber frame, the maximum deviation of the force generated by the force in any direction deviating from the middle position during the test shall not exceed 20% of the original value. | Tested for 100,000 times Pass |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Pei, W.; Ji, H.; Yu, R.; Liu, S. Tungsten Inert Gas Welding of 6061-T6 Aluminum Alloy Frame: Finite Element Simulation and Experiment. Materials 2024, 17, 1039. https://doi.org/10.3390/ma17051039
Hu Y, Pei W, Ji H, Yu R, Liu S. Tungsten Inert Gas Welding of 6061-T6 Aluminum Alloy Frame: Finite Element Simulation and Experiment. Materials. 2024; 17(5):1039. https://doi.org/10.3390/ma17051039
Chicago/Turabian StyleHu, Yang, Weichi Pei, Hongchao Ji, Rongdi Yu, and Shengqiang Liu. 2024. "Tungsten Inert Gas Welding of 6061-T6 Aluminum Alloy Frame: Finite Element Simulation and Experiment" Materials 17, no. 5: 1039. https://doi.org/10.3390/ma17051039