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Abstract: In this paper, we present an algorithm to compute the filtered generalized Čech complex
for a finite collection of disks in the plane, which do not necessarily have the same radius. The key
step behind the algorithm is to calculate the minimum scale factor needed to ensure rescaled disks
have a nonempty intersection, through a numerical approach, whose convergence is guaranteed
by a generalization of the well-known Vietoris–Rips Lemma, which we also prove in an alternative
way, using elementary geometric arguments. We give an algorithm for computing the 2-dimensional
filtered generalized Čech complex of a finite collection of d-dimensional disks in Rd, and we show
the performance of our algorithm.

Keywords: disk system; generalized Čech complex; Čech scale; generalized Vietoris–Rips Lemma;
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1. Introduction

Recently, in the study of data point clouds from a topological approach (cf. [1–5]), the need to
develop algorithms to construct different simplicial structures has arisen, such as the Vietoris–Rips
complex, the Čech complex, the piecewise linear lower star complex, etc. (cf. [6,7]).

Of particular interest to us is the generalized Čech complex structure, whereas the standard
Čech complex is induced by the intersection of a collection of disks with fixed radius, the generalized
version admits different radii (see [8]); when radii are rescaled, using the same scale factor each time,
the corresponding simplicial complexes forms the filtered generalized Čech complex.

There exist efficient algorithms to calculate the standard Čech complex (see, e.g., in [9]),
and software currently available to obtain the associated filtration (cf. [10,11]); also, in [12] the authors
propose an algorithm to approximate the Čech filtration. On the other hand, we can find algorithms to
calculate the generalized Čech complex (see, e.g., in [8]); however, as far as we know, there are neither
algorithms nor software to provide the filtered generalized Čech complex. In the present work, we
show an algorithm to compute the filtered generalized Čech complex for a finite collection of disks,
specifically, in the plane. Actually, we also show an algorithm to build up to the 2-dimensional filtered
generalized structure (or 2-skeleton), for higher-dimensional disk systems, which many applications
only require, as we can see in [13–17].

The key step behind these proposed algorithms, is to calculate the minimum scale factor (called
Čech scale) needed to ensure that the rescaled disks have a nonempty intersection; the generalized
Vietoris–Rips lemma over multiple radii will allow us to calculate these scales numerically.
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We must emphasize that our main algorithm (Algorithm 3) is only generalizable to
higher-dimensional disk systems to obtain the 2-dimensional filtered generalized Čech structure,
as we show as an application. Additionally, we show how our algorithm yields the minimal enclosing
ball for a finite set of points in the plane.

This paper is organized as follows. In Section 2, we introduce basic notions and notation which
will be used throughout the paper. We define the Vietoris–Rips system and the Čech system, associated
to a finite collection of closed disks in the euclidean space (or disk system) in terms of their intersection.
We also introduce the fundamental notions of Vietoris–Rips scale and Čech scale for a disk system,
as the infimum over all rescaling factors such that the disk system becomes a Vietoris–Rips system or a
Čech system, respectively. In Lemma 2, we state and prove a generalization, over multiple radii, of the
well-known Vietoris–Rips Lemma [17] (Theorem 2.5) using elementary geometric arguments. In [18]
there is a proof in the generalized case, following the ideas in [17].

In Section 3 we describe the generalized versions of standard Vietoris–Rips and Čech simplicial
complex structures, to the case of disk systems with different radii. We explain how their respective
filtrations are induced by weight functions, and we propose an algorithm to obtain the Čech-weight
function of a given disk system, associating to each Čech simplex its corresponding Čech scale.

Section 4 focuses on studying the intersection properties of collections of disks in the plane.
We define a real-valuated function associated to each disk system in the plane, such that, if it turns out
to be non-negative, then its Čech scale agrees with its Vietoris–Rips scale, being then easy to compute;
otherwise, the Čech scale will correspond to a root of such function, and we propose a numerical
approach to obtain this Čech scale (Section 5), supported on the generalized Vietoris–Rips Lemma
which provides appropriated bounds.

Section 5 contains our main result, the Cech.scale algorithm, whose input is a disk system in the
plane, and the output is the corresponding Čech scale, as well as the unique intersection point of the
rescaled disk system at its Čech scale (see Lemma 1). We show as a example the miniball problem,
to show how our Cech.scale algorithm yields the minimal enclosing ball for a finite point cloud in
the plane.

Finally, we conclude the paper illustrating in Section 6 an algorithm for computing the Čech
filtration of the 2-skeleton of the generalized Čech complex structure for a d-dimensional disk systems
in an arbitrary euclidean space Rd.

2. Vietoris–Rips and Čech systems

Throughout this paper, a finite collection of closed d-disks in the euclidean space Rd,
with positive radius,

M = {Di(ci; ri) ⊂ Rd | ri > 0, 1 ≤ i ≤ m} (1)

will be called d-disk system, or simply disk system when there is no risk of confusion. In this section,
we introduce and analyze two fundamental subclasses of disk systems, namely, the Vietoris–Rips
systems and the Čech systems. We study the infimum of those scales that turn a disk system into
a Vietoris–Rips or Čech system. We conclude this section presenting a generalized version of the
Vietoris–Rips Lemma, extended to disk systems.

Definition 1. Let M = {D1, D2, . . . , Dm} be a disk system. We say M is a Vietoris–Rips system if Di ∩Dj 6=
∅ for each pair i, j ∈ {1, 2, . . . , m}. Moreover, if the disk system M has the nonempty intersection property⋂

Di∈M Di 6= ∅, then M is called a Čech system.

For each λ ≥ 0, and disk system M as in (1) we define the collection

Mλ := {Di(ci; λri) ⊂ Rd | Di ∈ M}
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and say that λ is a scale. Geometrically, the set Mλ consists of disks with the same centers than those
in M, but with rescaled radii by λ. Clearly, only when λ > 0 the set Mλ will be again a disk system.
Note that M1 = M, and M0 is the set consisting of the centers of the disks in M.

Definition 2. Let M be a disk system. The Vietoris–Rips scale of M is defined by,

νM := inf{λ ∈ R | Mλ is a Vietoris–Rips system}.

Analogously, the Čech scale of M is defined by,

µM := inf{λ ∈ R | Mλ is a Čech system}.

Let µM be the Čech scale of the disk system M, then we have that
⋂

Di∈M Di(ci; µMri) 6= ∅.
Essentialy, this is a consequence of the completeness of the euclidean space, the fact that⋂

Di∈M Di(ci; λri) ⊂ Rd is a closed subset for every scale λ in the set {λ ∈ R | Mλ is a Čech system}
and

⋂
Di∈M Di(ci; λ′ri) ⊂

⋂
Di∈M Di(ci; λri) for λ′ < λ.

A straightforward calculation shows the following characterizations. M is a Vietoris–Rips system
if and only if, νM ≤ 1 (in particular, νMνM

= 1); similarly, M is a Čech system if and only if, µM ≤ 1.
Note that it is easy to calculate the Vietoris–Rips scale νM for a given disk system

M = {D1, D2, . . . , Dm}: if ri denotes the radius of Di, and ‖ci − cj‖ represents the distance between
the center of Di and Dj, then νM = maxi<j{‖ci − cj‖/(ri + rj)}.

For a disk system M with just one disk, its Vietoris–Rips scale is νM = 0; if M = {D1, D2} has
two disks, then νM = ‖c1 − c2‖/(r1 + r2). Actually, in both cases the Vietoris–Rips scale agrees with
the Čech scale.

On the other hand, calculating the Čech scale is a more complicated issue if the disk system has
at least three disks. Concerning to Čech scales, we have the following lemma, which will become
important for our implementations.

Lemma 1. Let µ ≥ 0 be a scale and let M be a disk system. Then, µ is the Čech scale of M if and only if,
the µ-rescaled system Mµ has only one intersection point, i.e., the set

⋂
Di∈M Di(ci; µri) is unitary.

Such point in
⋂

Di∈M Di(ci; µMri) will be denoted by cM.

Proof. The case µ = 0 happens only when the disk system consists of a single disk or is a collection of
concentric disks. In this case, the claim of the lemma is evident.

Let µ > 0 be the Čech scale of M and suppose there exist a couple of points p1, p2 ∈⋂
Di∈M Di(ci; µri) such that p1 6= p2. By convexity of the disks, it follows that the middle point

p̄ = 1
2 (p1 + p2) must belong to every disk Di(ci; µri). On the other hand, ‖ p̄ − ci‖ < max{‖p1 −

ci‖, ‖p2 − ci‖} for any center ci in the disk system. Let µi < µ be a scale such that p̄ ∈ Di(ci; µiri) for
every disk in M. It follows that µ̄ = max{µi} < µ and p̄ ∈ ⋂Di∈M Di(ci; µ̄ri) which contradicts the
minimality of the Čech scale µ. Therefore, the set

⋂
Di∈M Di(ci; µri) is unitary.

Now, suppose
⋂

Di∈M Di(ci; µri) is unitary and consider the set S = {λ ∈ R | Mλ is a Čech system}.
If
⋂

Di∈M Di(ci; µri) = {p}, then p ∈ ∂Di0(ci0 ; µri0) for some Di0 ∈ M, because otherwise there
would exist a neighborhood of p entirely contained in

⋂
Di∈M Di(ci; µri).

The fact that µ = inf S is a consequence of the following.

• Let λ ∈ S be a scale such that
⋂

Di∈M Di(ci; λri) 6= ∅. If λ < µ, then Di(ci; λri) ⊂ Di(ci; µri)

for any Di ∈ M, and p 6∈ Di0(ci0 ; λri0); thus,
⋂

Di∈M Di(ci; λri) ⊂
⋂

Di∈M Di(ci; µri) = {p} and
p 6∈ ⋂Di∈M Di(ci; λri); therefore,

⋂
Di∈M Di(ci; λri) = ∅. Then, λ ≥ µ, for any λ ∈ S.

• For every ε > 0, we have {p} ∈ Di(ci; µri) ⊂ Di(ci; (µ + ε)ri). Then,
⋂

Di∈M Di(ci; (µ + ε)ri) 6= ∅,
i.e., µ + ε ∈ S.
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Example 1. Figure 1 shows (left picture) the following disk system in R2,

M = {D1((−3, 0); 4), D2((1, 3); 3), D3((2,−1); 2)}.

Figure 1. Vietoris–Rips and Čech systems in the plane.

This 2-disk system is a Vietoris–Rips system and also a Čech system. In this case, we have
νM =

√
26/6 ≈ 0.8498, and, in actuality, the νM-rescaled 2-disk system MνM (center picture) has an empty

intersection, i.e.,
⋂

Di∈M Di(ci; νM ri) = ∅, so it corresponds to a Vietoris Rips system which is not a Čech
system. For such 2-disk system, the Cech.scale algorithm in Section 5 yields to µM = 0.9188 and the Čech
system MµM is shown in the right picture.

There exists a close relationship between Vietoris–Rips systems and Čech systems. Obviously,
every Čech system is also a Vietoris–Rips system, but the opposite statement does not hold in general
(as we saw in the example above). However, we have the following result which extends the standard
Vietoris–Rips Lemma ([17], Theorem 2.5), to any Vietoris–Rips system; such result can be found
in ([18], Theorem 3.2) in the context of weighted simplicial complexes.

The standard Vietoris–Rips Lemma is established in the context of a disk system in which all radii
are equal, and corresponds to a reformulation of the well-known Jung’s Lemma [19]. On the other
hand, for a disk system in general, the Vietoris–Rips Lemma is also valid, although it does not follow
directly from Jung’s Lemma. Next, we propose a proof of the Vietoris–Rips Lemma, for an arbitrary
disk system, using elementary geometrical arguments.

Lemma 2. Let M = {Di(ci; ri) ⊂ Rd | ri > 0} be a finite set of closed disks inRd. If Di(ci; ri)∩Dj(cj; rj) 6= ∅
for every pair of disks in M, then

⋂
Di∈M

Di(ci;
√

2d/(d + 1) ri) 6= ∅.

In other words, for every Vietoris–Rips system M in Rd, the
√

2d/(d + 1)-rescaled disk system
M√2d/(d+1) is a Čech system.

Proof. First, we prove the result for the case where M has at most d + 1 disks, say M = {D1, . . . , Dd′},
d′ ≤ d + 1. Note that we need to prove that µM ≤

√
2d

d+1 .
Let {cM} =

⋂
i Di(ci; µMri) be the unique intersection point of the µM-rescaled disk system

(see Lemma 1). Without loss of generality, we assume that ‖ci − cM‖ = µMri for c1, . . . , cm and m ≤ d′.
Then, cM belongs to the convex hull of the set {c1, . . . , cm}, for if this were not true, there would

exist an hyperplane across cM such that the set {c1, . . . , cm} is completely contained at one side, let v
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be the normal vector for such hyperplane in the opposite direction, then 〈v, ci − cM〉 > 0 for all
i = 1, . . . , m, therefore

‖ci − cM‖2 = ‖ci − (cM + tv)‖2 + 2t〈v, ci − cM〉 − t2‖v‖2 > ‖ci − (cM + tv)‖2

for every t ∈ Iv := (0, 2〈v, ci − cM〉/‖v‖2); this implies that cM + tv ∈ D(ci; µMri) for any i = 1, . . . , m
and t ∈ Iv, which is a contradiction since cM is the only point in the intersection

⋂
i D(ci; µMri).

Therefore, cM is in the convex hull.
Now, define ĉi := ci − cM and let θij denote the angle between vectors ĉi and ĉj. As cM is in the

convex hull of {c1, . . . , cm}, then the vector 0 ∈ Rd can be written as a convex combination ∑m
j=1 aj ĉj = 0.

Thus, 〈∑m
j=1 aj ĉj, ĉi〉 = 0 for any i = 1, . . . , m, and

m

∑
j=1
〈aj ĉj, ĉi〉 =

m

∑
j=1

aj‖ĉj‖ ‖ĉi‖ cos θji = 0.

Taking out the common factor ‖ĉi‖, we have ∑m
j=1 aj‖ĉj‖ cos θji = 0. Now, taking the sum over i,

we deduce that
m

∑
i=1

m

∑
j=1

aj‖ĉj‖ cos θji =
m

∑
j=1

aj‖ĉj‖
m

∑
i=1

cos θji = 0. (2)

Note that cos θii = 1. On the other hand, if were cos θji > −
1

m− 1
for all 1 ≤ i, j ≤ m, i 6= j,

then for each j we should have ∑m
i=1 cos θji = 1 + ∑m

j=1,j 6=i cos θji > 0. However, this contradicts (2)
because ∑m

j=1 aj = 1 and aj ≥ 0. Therefore, there must exist i 6= j, say i = 1 and j = 2, such that

cos θ12 ≤ −
1

m− 1
≤ −1

d
, then

0 ≤ d
d− 1

(1 + cos(θ12)) ≤ 1. (3)

It follows from inequality above and from the AM-GM inequality, that√
d

d− 1
(1 + cos(θ12)) ·

√
r1r2 ≤

√
r1r2 ≤

r1 + r2

2
. (4)

A straightforward calculation on (4) leads us to the following inequality

(d + 1)(r1 + r2)
2 ≤ 2d(r2

1 + r2
2 − 2r1r2 cos(θ12))

so,

(d + 1)µ2
M(r1 + r2)

2 ≤ 2d(µ2
Mr2

1 + µ2
Mr2

2 − 2µ2
Mr1r2 cos(θ12))

= 2d(‖ĉ1‖2 + ‖ĉ2‖2 − 2‖ĉ1‖‖ĉ2‖ cos(θ12))

= 2d(‖ĉ1‖2 + ‖ĉ2‖2 − 2〈ĉ1, ĉ2〉) = 2d‖ĉ1 − ĉ2‖2

which implies,

µ2
M ≤

2d
d + 1

· ‖ĉ1 − ĉ2‖2

(r1 + r2)2 =
2d

d + 1
· ‖c1 − c2‖2

(r1 + r2)2 ≤
2d

d + 1

(the last inequality holds because M is a Vietoris–Rips system) or equivalently µM ≤
√

2d
d+1 .

For a collection with more than d + 1 disks, the claim of the lemma is a consequence of the Helly’s
Theorem (see [20], Problem 29), which establishes that for any finite collection, with at least d + 1
convex subsets of the d-dimensional euclidean space Rd, if the intersection of every subcolection with
d + 1 of such sets is nonempty, then the whole collection has a nonempty intersection. This concludes
the proof.
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The upper bound
√

2d/(d + 1) in Lemma 2 is optimal: it suffices to take a disk system with d + 1
disks of equal radii and pairwise tangents (cf. [6], Section III.2).

In the Example 1 we can see what the Vietoris–Rips Lemma claim for the 2-disk system M:
µM = 0.9188 < 0.9812 =

√
4/3νM.

To conclude this section, notice that as for a Čech system µM ≤ 1, then the Vietoris–Rips Lemma
implies the following result.

Corollary 1. If M is an arbitrary d-disk system and νM is its Vietoris–Rips scale, then its Čech scale satisfies
that µM ∈ [νM,

√
2d/(d + 1) νM]. In consequence, for every d-disk system M, the rescaled disk system

M√2d/(d+1) νM
is always a Čech system.

In particular, if
√

2d/(d + 1) νM ≤ 1 then MνM is a Čech system.

3. Filtered Generalized Simplicial Structures for Disk Systems

In this section, we introduce two simplicial structures associated with a disk system M, as well as
the filtration induced by rescaling the system M. The importance of these notions lies in their relation
to the topological analysis through persistent homology of filtered simplicial structures, induced by
point clouds with nonhomogeneous neighborhoods.

Let M be a disk system. Denote by VR(M) the family of all Vietoris–Rips subsystems of M,
this is,

VR(M) = {σ ⊂ M | Di ∩ Dj 6= ∅, Di, Dj ∈ σ}.

Analogously, denote by C (M) the set of all Čech subsystems,

C (M) = {σ ⊂ M | ∩Di∈σDi 6= ∅}.

On the other hand, recall that a simplicial structure on a (finite) set V is defined as a family
∆(V) ⊂ 2V of subsets of V such that if σ ∈ ∆(V) and τ ⊂ σ, then τ ∈ ∆(V). Thus, for any σ ∈ VR(M)

every disk subsystem τ ⊂ σ is also in the family τ ∈ VR(M). The same property is valid for the family
C (M). These properties imply that VR(M) and C (M) are simplicial complexes.

We refer to VR(M) as the generalized Vietoris–Rips complex associated to the disk system M,
and to C (M) as the generalized Čech complex of M.

The above construction allows us to perform topological data analysis of point cloud data through
the persistent homology of the generalized Vietoris–Rips or Čech complexes. However, to perform
such analysis it is necessary to construct a filtered simplicial structure. We will define a filtration
through weight functions.

Let ∆ be a simplicial complex and let ω : ∆→ R be a function. We call ω a weight function over
the simplicial complex ∆ if τ, σ ∈ ∆ and τ ⊂ σ, implies ω(τ) ≤ ω(σ).

For example, to the generalized Čech complex C (M) of the disk system M, the function ω :
C (M)→ R, σ 7→ µσ which assigns the Čech scale to any Čech subsystem σ ⊂ M, is a weight function,
called the Čech-weight function. The analogous property holds for the Vietoris–Rips complex and
the Vietoris–Rips scale (see [18] for the construction of the filtered generalized Čech complex using
weighted point clouds).

Moreover, from the definition we have for the Čech-weight function and to every non-negative
scale λ ≥ 0, that

ω−1((−∞, λ]) = C (Mλ).

We denote by CM(λ) the family C (Mλ) for λ ≥ 0, i.e., the family of all Čech subsystems of the
λ-rescaled disk system Mλ, in order to make the dependence explicit with respect the the parameter.
We establish the analogous definition for VRM(λ), for any λ ≥ 0.
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Note that there is no restriction on the scale λ ≥ 0, additional to the non-negativity, i.e., we allow
greater values of λ than 1, in the interest of studying the generalized Čech complex of rescaled disk
systems beyond the original.

For λ′ ≤ λ we have the families contention: VRM(λ′) ⊂ VRM(λ) and CM(λ′) ⊂ CM(λ).
In general, given a simplicial complex ∆ and a weight function ω : ∆→ R, any increasing sequence
λ1 < · · · < λs of real numbers induces a simplicial filtration: ∆1 ⊂ · · · ⊂ ∆s for ∆i := ω−1((−∞, λi]).
Thus, for any disk system M, the generalized Čech complex C (M) has a filtered simplicial complex
structure,

CM(0) ⊂ C (λ1) ⊂ · · · ⊂ CM(λs).

Of course, when we vary the scale λ on a interval the above filtration contains only a finite number
of different sets. Moreover, those sets only change when the Čech scale of some disk system is reached,
and therefore it is enough to compute all sets corresponding to Čech scales to characterize entirely the
filtration. The goal of the next sections is the construction of algorithms to numerically estimate the
Čech scale of every Čech subsystem of M.

The filtered generalized Čech complex can be “approximated” by the Vietoris–Rips structure,
in the following sense. The inclusion C (M) ⊂ VR(M) holds clearly; in consequence, CM(λ) ⊂
VRM(λ) for any scale λ ≥ 0, then by Lemma 2 any Vietoris–Rips d-system σ ∈ VR(M) rescaled by a
factor of

√
2d/(d + 1) is also a Čech d-system: σ√2d/(d+1) ∈ C (M). Therefore, for any d-disk system

M the following relation is fulfilled:

VRM(λ′) ⊂ CM(λ) ⊂ VRM(λ),

where
√

2d/(d + 1) · λ′ ≤ λ.
To any disk system M, the simplicial substructure C (M)(1) given by the 1-skeleton of the

generalized Čech complex of M is a basic combinatorial structure (actually, a graph) that can be
easily defined, it just takes the relationship into account if every two vertices are neighbors: the set
of vertices is M, and there exists an edge {Di, Dj} whenever Di ∩ Dj 6= ∅. The Čech-weight function
restricted to C (M)(1) is, in fact: ω({Di}) = 0 to every vertice, and ω({Di, Dj}) = ‖ci − cj‖/(ri + rj)

to any edge.
In Algorithm 1, we calculate the Čech-weight function ω : CM(λ)(dim) → R, for the dim-skeleton

of a λ-rescaled disk system M. To do this, we assume an arbitrary linear order in the disk system M,
and for every disk D ∈ M we consider the following set.

λ-LowerNbrs(D) = {D̃ ∈ M | D̃ < D, ω({D, D̃}) ≤ λ}.

The following algorithm (based on work in [7]), is a standard expansion algorithm for simplicial
complexes, and we are including the Čech-weight function value of each simplex when it is calculated.
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Algorithm 1: Čech-weight function of a d-disk system.
Input : A d-disk system M, a non-negative parameter λ and an integer dim ≥ 2.
Output : The Čech-weight function ω : CM(λ)(dim) → R.

1 for n← 0 to dim− 1 do
2 for σ ∈ CM(λ)(n)\CM(λ)(n−1) do
3 LNσ ←

⋂
D∈σ λ-LowerNbrs(D);

4 for D ∈ LNσ do
5 N ← {D} ∪ σ;
6 if n ≤ d− 1 then
7 Calculate ω(N)← µN ;
8 else
9 ω(N)← max{ω(τ) | τ  N};

10 end
11 if ω(N) ≤ λ then
12 Update CM(λ)(dim) ← CM(λ)(dim) ∪ {N};
13 end
14 end
15 end
16 end
17 return (CM(λ)(dim), ω : CM(λ)(dim) → R)

We conclude the section with an application of Algorithm 1 to a 2-disk system.

Example 2. Let M be the following 2-disk system,

M = {D1((2.99, 0.56); 1.5), D2((0.99, 0.11); 1.0),

D3((1.69, 1.30); 0.6), D4((1.07, 1.93); 0.4),

D5((1.96, 2.64); 0.8)}.

The output of Algorithm 1 applied to M, with d = 2, λ = 1 and dim = 2 gives the Čech scales indicated
next to every edge and in the triangle, in Figure 2. The Čech scale of the 2-disk system {D1, D2, D3} was
calculated with the Cech.scale script from Algorithm 3.

Figure 2. The Čech-weight function of the 2-disk system M.
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4. Intersection Properties of Disk Systems

In this section, we focus on studying disk systems in the plane, i.e., 2-disk systems. As we have
seen in the last section, the study of the Čech scale is a key aspect to the construction and study of
filtered generalized Čech complex. In this section, we establish several intersection properties of 2-disk
systems, which will lead us to be able to calculate the Čech scale.

Let ∂Di(ci; ri) := {x ∈ R2 | ‖x − ci‖ = ri} be the boundary of the closed 2-dimensional disk
Di(ci, ri) ⊂ R2.

Let Di and Dj be two closed disks in the plane, such that Di ∩ Dj 6= ∅. We define Di u Dj to be
the unitary set {dij} constructed as follows.

1. If ∂Di ∩ ∂Dj 6= ∅, then dij ∈ ∂Di ∩ ∂Dj is the only one point with the property 〈dij − ci, nij〉 ≥ 0,
where nij = (−b, a) is the normal vector to cj − ci = (a, b),

2. If ∂Di ∩ ∂Dj = ∅, we define dij as the unique intersection point in ∂Di(ci; λri) ∩ ∂Dj(cj; λrj),
for λ given as the minimal scale such that Di(ci; λri) ⊂ Dj(cj; λrj) or Dj(cj; λrj) ⊂ Di(ci; λri),
i.e., λ = ‖ci − cj‖/|ri − rj|.

Clearly, if ∂Di ∩ ∂Dj = ∅, then dij = dji. In particular, when Di and Dj are concentric, then
Di u Dj = {ci} = {cj}. On the other hand, if the closed disks Di and Dj are internally or externally
tangent, then dij = dji. We can think about dij, when ∂Di ∩ ∂Dj is not empty, as the intersection point
of the boundaries at the left of the vector from ci to cj. Figure 3 shows the above construction.

Figure 3. Intersection point dij.

We will denote by dij(λ), instead of simply dij, for the intersection point of the λ-rescaled disks
Di(ci; λri) and Dj(cj; λrj).

In order to study Čech systems, we give the following characterization, according the intersection
points dij.

Lemma 3. Let M = {D1, D2, . . . , Dm} be a 2-disk system. Then M is a Čech system if and only if, there exist
Di, Dj ∈ M such that dij ∈ Di u Dj satisfies dij ∈ Dk for all 1 ≤ k ≤ m.

Proof. Suppose M is a Čech system. Define A :=
⋂

1≤i≤m Di 6= ∅; then, A has only one of the
following geometries.

(i) A = {cM},
(ii) A is a region bounded by more than one circumference arc,
(iii) A = Di0 for some i0 ∈ {1, . . . , m}.

In the first case, necessarily cM belongs to the boundary of two or more disks. Let Di and Dj
be two disks in M such that cM ∈ ∂Di ∩ ∂Dj, it follows that cM = dij or cM = dji, in both cases the
lemma holds.
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For the second case, if a ∈ ∂A ⊂ A belongs to the boundary and is in the intersection of two arcs,
say ∂Di and ∂Dj, then a = dij or a = dji, and it satisfy a ∈ Dk for every 1 ≤ k ≤ m.

For the last case, if A = Di0 for some i0, then for each j 6= i0 we have di0 j ∈ Di0 = A and all of
these points belongs to Dk for all Dk ∈ M.

Therefore, in any case, there exists such point dij. The converse is clear by definition of a
Čech system.

This criterion was presented in ([8], Section III) for a 2-disk system.
Next, we define the map ρ, a key tool for the rest of this work. This map will allow us to discern

the minimal scale in which a 2-disk system has the nonempty intersection property.

Definition 3. Let M = {D1, D2, . . . , Dm} be a Vietoris–Rips system in the plane, with m ≥ 3. We define

ρ(M) := max
1≤i,j≤m

{
min
k 6=i,j
{rk − ‖dij − ck‖}

}
.

If νM is the Vietoris–Rips scale of M, then we define the map ρM : [νM, ∞)→ R, λ 7→ ρM(λ) = ρ(Mλ).

Given three disks Di(ci; ri), Dj(cj; rj) and Dk(ck; rk) in the 2-disk system M = {D1, . . . , Dm},
with Vietoris–Rips scale νM, denote by Λk

i,j : [νM, ∞) → R the map λ 7→ λrk − ‖dij(λ) − ck‖,
where dij(λ) is the element in Di(ci; λri) u Dj(cj; λrj). In other words, Λk

i,j(λ) is the signed distance
from the point dij(λ) to the set Dk(ck; λrk).

If ri 6= rj, then for each k 6= i, j the map λ 7→ λrk − ‖dij(λ)− ck‖ is defined and continuous in the
closed interval

[
‖ci − cj‖/(ri + rj), ‖ci − cj‖/|ri − rj|

]
, as it is the signed distance from an intersection

point of two continuously deforming curves (therefore its position vary continuously as long as the
intersection exists) to the continuously deforming set Dk(ck; λrk) with respect to λ. Also, the map λ 7→
λrk − ‖dij(λ)− ck‖ vary linearly in the range [‖ci − cj‖/|ri − rj|, ∞) because for λ ≥ ‖ci − cj‖/|ri − rj|,
the term ‖dij(λ) − ck‖ remains constant. The left picture in Figure 4 shows in bold red color the
geometric place of {dij(λ), dji(λ)}, which vary continuously respect to the parameter λ and also the
distance from it to the fix point ck.

Figure 4. Geometric place of dij(λ).

On the other hand, for ri = rj, the points {dij(λ), dji(λ)} vary continuously respect to λ on the
line showed in the right picture of Figure 4. Therefore, λrk − ‖dij(λ)− ck‖ also depend continuously
of λ.

From the above argument, each map Λk
i,j is continuous in the interval [νM, ∞), and by the

continuity of the min-max functions and that

ρM(λ) = max
1≤i,j≤m

{
min
k 6=i,j

Λk
i,j(λ)

}
,
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it follows that ρM is also a continuous map in the interval [νM, ∞). However, the map ρM is not
differentiable, in general, to every point in such interval.

The map ρM plays a key role in the rest of this work. We present the next characterization of Čech
systems in terms of ρM.

Lemma 4. Let M be a 2-disk system. Then Mλ is a Čech system if and only if, ρM(λ) ≥ 0. In particular
ρM(
√

4/3νM) ≥ 0.

Proof. By Lemma 3, Mλ is a Čech system in the plane if and only if, there exists dij(λ) such that
dij(λ) ∈ Dk(ck; λ rk) for every k 6= i, j, i.e., Λk

i,j(λ) ≥ 0 for every k 6= i, j, which is equivalent to
ρM(λ) ≥ 0.

On the other hand, from Corollary 1 and taking d = 2, the rescaled system M√4/3νM
is a Čech

system, then by the first assertion, ρM(
√

4/3νM) ≥ 0.

5. The Cech.scale Algorithm

Our main algorithm (Algorithm 3) computes the Čech scale of a given 2-disk system M. The key
aspect on which this algorithm is based, is precisely the function ρM. Before we describe the algorithm,
we need to analyze additional properties of ρM.

It follows immediately from Lemma 4 that ρM(λ) ≥ 0 for every λ ≥ µM. Also, if at the
Vietoris–Rips scale it holds that ρM(νM) ≥ 0, then µM = νM by the minimality of the Čech scale.
We conclude that in this case (this is, ρM(νM) ≥ 0), the Čech scale is easily computable.

On the other hand, if ρM(νM) < 0 then the Čech scale satisfies µM ∈ (νM,
√

4/3νM] and moreover
ρM(µM) = 0. This is a consequence of the continuity of ρM, and the fact that ρM(λ) < 0 for every
νM ≤ λ < µM and ρM(λ) ≥ 0 for µM ≤ λ. Thus, to find the Čech scale of a 2-disk system M for which
ρM(νM) < 0, we need to solve the equation ρM(λ) = 0.

We propose a numerical approach to solve the equation ρM(λ) = 0 and calculate the Čech scale
under the hypothesis ρM(νM) < 0, as in this case, we actually know that µM ∈ (νM,

√
4/3νM] (see

Section 2) as consequence of the generalized Vietoris–Rips Lemma. We chose the bisection method
for this purpose. We will denote the implementation of bisection method for the map ρM through the
interval [a, b], by bisection(ρM, a, b). The output of bisection(ρM, a, b) is a real number λ ∈ [a, b] such
that ρM(λ) = 0. For the numerical method we are working with a precision of 10−12.

It is important to mention that the numerical method regula falsi was also used instead of the
numerical method of bisection, in order to calculating the Čech scale. However, in our context, the
efficiency of the program using the regula falsi numerical method is not better than if the numerical
method of bisection is used.

The Algorithm 2 (below) has as input a 2-disk system M, and produces as output the Čech
scale µM as well as the intersection point {cM} =

⋂
Di∈M Di(ci; µM ri). This algorithm takes a naive

approach to calculate the Čech scale, and is established to completeness and to be a reference for the
principal algorithm (Algorithm 3).
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Algorithm 2: The Čech scale calculation for a 2-disk system.
Input : A 2-disk system M.
Output : The Čech scale µM and the intersection point cM.

1 Calculate µ∗ ← νM;
2 if ρM(µ∗) ≥ 0 then
3 return (µM = µ∗, cM)
4 else
5 Update µ∗ ←

√
4/3 νM;

6 end
7 Update µ∗ ←bisection(ρM, νM, µ∗);
8 Calculate uMµ∗ ← {dij(µ

∗) ∈ Di u Dj | Di, Dj ∈ Mµ∗}
⋂ (⋂

Di∈M Di(ci; µ∗ ri)
)
;

9 if | uMµ∗ | > 1 then
10 Find µ′ ∈ (νM, µ∗) such that ρM(µ′) > 0;
11 Update µ∗ ← µ′;
12 go to (7);
13 end
14 return (µM = µ∗, cM)

The following lemma claims that the Algorithm 2 is consistent.

Lemma 5. For any 2-disk system M, the Algorithm 2 has as output the Čech scale µM of M, and the unique
intersection point {cM} =

⋂
Di∈M Di(ci; µM ri).

Proof. In the case ρM(νM) ≥ 0, it is clear that the algorithm has generated asseverated data
(steps (2)–(3)). In otherwise, for the case ρM(νM) < 0, we assign µ∗ :=

√
4/3 νM.

Then, ρM(νM) · ρM(µ∗) ≤ 0 and lets call again µ∗ the output root in step (7). To check if µ∗ is the
Čech scale we are looking for, we calculate in step (8) the set of pairwise intersection points of the
µ∗-rescaled system, contents in

⋂
Di∈M Di(ci; µ∗ ri).

If the set uMµ∗ is unitary, then necessarily
⋂

Di∈M Di(ci; µ∗ ri) is unitary, due the geometry of its
boundary (see proof of Lemma 3). In such case (negative validation of step (9)) the steps (10)–(13) are
omitted and, from Lemma 1, the algorithm returns the Čech scale as well as the intersection point
uMµ∗ at step (14); in otherwise (positive validation of step (9)), the root µ∗ is not the Čech scale (see
Figure 5), and then we should find another scale µ′ ∈ (νM, µ∗) such that ρM(µ′) > 0, and repeat from
step (7). It is possible, for some configurations of the 2-disk system, that the map ρM has a behavior as
in Figure 5.

Figure 5. Plot of the map ρ : [νM, ∞)→ R.

The last iterative part is a finite process because ρM is algebraic over Q, then eventually the set
uMµ∗ will be unitary and the Čech scale will be calculated.
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The step (8) in Algorithm 2 is necessary, as show the following example, in which the map ρM has
another root along side the Čech scale in the interval [νM,

√
4/3νM].

Example 3. Let M = {D1, D2, D3} be the 2-disk system in Figure 6. A direct calculation, yields that
νM = µM = 0.8947. On the other hand, we also have that ρM(νM) = ρM(µM) = ρM(λ) = 0 for λ = 1.
Therefore, the map ρM has more than one root on the interval [νM,

√
4/3νM] = [0.8947, 1.0331].

Figure 6. The 2-disk system M.

In Example 3, the Vietoris–Rips scale νM, of the 2-disk system M, agrees with the Čech scale
µM; however is possible to construct more sophisticated (and symmetric) disk system M such that
νM < µM and ρM(νM) < 0 < ρM(µM), for which there exists µ′ ∈ (ν,

√
4/3νM) with ρM(µ′) = 0.

On the other hand, if the 2-disk system M consists of just three disks and ρM(νM) < 0, then its
Čech scale can be computed with only one application of the numerical method, as we asseverate in
the following lemma.

Lemma 6. Let M = {D1, D2, D3} be a 2-disk system such that ρM(νM) < 0. Then, there exists a unique root
of the map ρM in [νM,

√
4/3νM]. Thus, µM will be the output of bisection(ρM, νM,

√
4/3νM).

Proof. It is straightforward to verify that ρM(νM) ≥ 0 for any configuration with c1, c2 and c3 collinear.
Thus, it follows {c1, c2, c3} is in general position.

Let µM be the Čech scale of the 2-disk system M and cM the intersection point. Define
A(λ) := ∩3

i=1 Di(ci; λri). Note that A(µM) = {cM}.
We claim that there exist at least two distinct points p and q, in the set

{dij(λ) ∈ Di(ci; λri) u Dj(cj; λrj) | Di, Dj ∈ Mλ} ⊂ ∂A(λ).

This is evident if ∂A(λ) is given by two or more circumference arcs. On the other hand, if ∂A(λ) =

∂Di(ci; λri) for some 1 ≤ i ≤ 3, then dij(λ), dik(λ) ∈ Di(ci; λri) for j 6= i and k 6= i. Moreover,
dij(λ) 6= dik(λ) since {c1, c2, c3} is not a collinear set.

If both points p and q belongs to each boundary of the three disks, p, q ∈ ∩3
i=1∂Di(ci; λri),

then {c1, c2, c3} would be also a collinear set. Without loss of generality, we suppose that p = d23(λ) 6∈
∂D1(c1; λr1). Then, ρM(λ) ≥ λr1 − ‖d23(λ)− c1‖ > 0, and the lemma follows. Of course, the choose
of the indexes depend of the value of λ, but the above arguments show that always there exist such
combination which guarantee that ρM(λ) is positive for λ > µM.



Algorithms 2020, 13, 11 14 of 19

The following algorithm takes advantage of the unicity property for the root of ρM, in a 2-disk
system with three disks. Essentially, the algorithm consist in iterating the Algorithm 2 systematically
over every triplet of disks from M.

Algorithm 3: Cech.scale.
Input : A 2-disk system M.
Output : Cech scale µM and intersection point cM.

1 Calculate νM;
2 µ∗ ← νM;
3 if ρM(µ∗) ≥ 0 then
4 return (µM = µ∗; cM)
5 end
6 for 1 ≤ i < j < k ≤ |M| do
7 N ← {Di, Dj, Dk};
8 Calculate νN ;
9 if

√
4/3 νN ≥ µ∗ then

10 if ρN(νN) ≥ 0 then
11 µN ← νN ;
12 else
13 µN ← bisection(ρN , νN ,

√
4/3 νN)

14 end
15 if µN > µ∗ then
16 Update µ∗ ← µN ;
17 end
18 end
19 end
20 return (µM = µ∗; cM)

Theorem 1. For any 2-disk system M, the Algorithm 3 has as output the Čech scale µM of M, and the unique
intersection point {cM} =

⋂
Di∈M Di(ci; µM ri).

Proof. If ρM(νM) ≥ 0, the algorithm returns the right data: steps (1)–(5).
On the other hand, by Helly’s Theorem (cf. [20]) the 2-disk system M = {D1, . . . , Dm}, as a

finite family of convex sets in the plane, has a nonempty intersection
⋂

Di∈M Di if, and only if,
Di ∩ Dj ∩ Dk 6= ∅ for every triplet 1 ≤ i < j < k ≤ m. Let µ be the maximal Čech scale over
every triplet in the disk system M, i.e.,

µ = max{µN | N = {Di, Dj, Dk} ⊂ M}.

It follows that every µ-rescaled triplet has a nonempty intersection. Therefore, the µ-rescaled
2-disk system Mµ also has the nonempty intersection property. Moreover,

⋂
Di∈M Di(ci; µri) ⊂⋂

Di∈N⊂M Di(ci; µri) for every triplet N ⊂ M. Therefore, µ is actually the Čech scale of the 2-disk
system M, this is, µM = µ.

In steps (6)–(19), the algorithm search the scale µ systematically, over every triplet
{Di, Dj, Dk} ⊂ M, updating the maximal scale found if necessary in steps (15)–(17). By Lemma 6,
every Čech scale calculation over any triplet, requires just one application of the bisection method.
This implies the correctness of the algorithm.
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Additionally, the condition in step (9) avoids calculating unnecessary Čech scales of triplets
N = {Di, Dj, Dk}. In effect, if λ∗ is the maximal Čech scale found until the verification of the triplet N,
and the condition in step (9) does not satisfy, i.e.,

µN ≤
√

4/3νM < λ∗,

then, whatever is the Čech scale of N, it would be not greater than λ∗.

The computational evidence to support the Algorithm 3 is more efficient than Algorithm 2, is given
in Figure 7. The graphic shows the average time (in seconds) to computation of both algorithms,
with respect to the number of disks in a randomly generated 2-disk system (see Remark 1).

Figure 7. Average time of the script Cech.scale.

An Example: The Miniball Problem

The miniball problem or smallest-circle problem in the euclidean space is a classical problem,
proposed by James J. Sylvester in 1857.

Given a finite point cloud N ⊂ Rd, the miniball problem consists in finding the center c ∈ Rd and
minimum radius r ∈ R+ of a d-disk D = D(c; r) ⊂ Rd such that N ⊂ D.

There exist many different approaches to solve this problem, and a variety of algorithms to reach
the miniball data (e.g., [21,22]). In fact, the Čech scale has a close relation with the miniball problem,
as we establish in the next lemma.

Lemma 7. Let N be a finite point cloud in Rd, and let N1 be the associated d-disk system defined by

N1 := {Di(ci; 1) ⊂ Rd | ci ∈ N}.

Then, the Čech scale µN1 is the radius of the minimal enclosing ball of N, and the intersection point
{cN1} =

⋂
ci∈N Di(ci; µN1) its center.

Proof. Let µN1 be the Čech scale of the disk system N1, and let cN1 be the intersection point of the
µM-rescaled disk system. Then, the point cN1 belongs to every disk Di(ci; µN1 · 1), i.e., ‖ci − cN1‖ ≤ µN1

for any ci ∈ N; thus, N ⊂ D(cN1 ; µN1). On the other hand, by definition of Čech scale, µN1 is the
minimal radius (scale) with such property. Therefore, by uniqueness, D(cN1 ; µN1) must be the minimal
ball enclosing the point cloud N.

In particular, for a point cloud N in the plane we can apply our algorithm Cech.scale
(Algorithm 3) to the 2-disk system N1, and get the minimal enclosing ball of N. However, the Čech
scale of an arbitrary 2-disk system M = {D1(c1; r1), . . . , Dm(cm; rm)} cannot be obtained from the
minimal enclosing ball data of the point cloud M0 = {c1, . . . , cm}.

In Figure 8, we show a point cloud N (black dots) and the 2-disk system N1 (blue circles). Applying
the Cech.scale script to N1 we get the Čech scale µN1 (radio of the red circle) and the point cN1 (red
point, center of the red circle).
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Figure 8. The miniball of the point cloud N.

For the miniball problem there are many efficient algorithms available online, which are easy to
find. For example, the C++ script in [23] can compute the miniball for point clouds in any dimension
(efficiently up to dimension 10,000). Such algorithms are not comparable with the Cech.scale
algorithm because if only disk systems with equal (and unitary) radii were considered, several issues
that were addressed in the case of different radii would be avoided.

6. The Algorithm Cech.scale for Higher-Dimensional Disk Systems

It is not clear how to generalize the Algorithm 3 to determine the Čech scale of a disk system in
Rd with d > 2. However, it is possible to calculate the Čech scale if the d-disk system consists of only
three disks. This makes it possible to calculate the 2-skeleton associated with a d-disk system in an
arbitrary dimension.

The relevance of this application lies in the possibility of calculating the 2-dimensional filtered
simplicial Čech structure of a disk system immersed in a high-dimensional euclidean space.
Many applications in topological data analysis concerns to the study of low-dimensional topological
features associated to a point data cloud immersed in a high-dimensional representation space.

The key observation is that

3⋂
i=1

D(ci; ri) 6= ∅⇔
3⋂

i=1

(D(ci; ri) ∩ P) 6= ∅,

where P is the affine plane generated by the set {c1, c2, c3}.

Thus, the problem of determining whether
3⋂

i=1

(D(ci; ri) ∩ P) is empty or not, can be treated

as one in the plane, constructing a disk system in R2 that preserves the affine configuration of the
points {c1, c2, c3} in the affine space P ⊂ Rd. To do this, we set the first center c1 as the origin in R2,
and “translate” the others centers preserving their original configuration, taking care of moving the
second center on the x-axis, as in Figure 9.
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Figure 9. Affin configuration of the d-disk system.

More precisely, to any d-disk system with three elements, say M = {D1(c1; r1), D2(c2; r2), D3(c3; r3)},
we associate the following 2-disk system, which clearly preserves the affine configuration of the original
centers {c1, c2, c3},

Aff(M) = {D1(c̃1; r1), D2(c̃2; r2), D3(c̃3; r3)}

where c̃1 := (0, 0), c̃2 := (‖c2 − c1‖, 0), c̃3 := (‖c3 − c1‖ cos(θ), ‖c3 − c1‖ sin(θ)), where θ is the angle
between the vectors c2 − c1 and c3 − c1, which satisfies the following relationship:

cos θ =
〈c2 − c1, c3 − c1〉
‖c2 − c1‖ · ‖c3 − c1‖

.

The Algorithm 4 is a variant of Algorithm 1, taking as input a d-disk system in Rd and a
non-negative parameter λ, and as output the Čech weight function of the 2-skeleton of the generalized
Čech complex structure. The algorithm first preprocess each triplet of d-disks as a 2-disk system,
then the Čech scale is calculated.

Algorithm 4: 2-skeletal Čech-weight function.
Input : A d-disk system M and a parameter λ ≥ 0.
Output : The Čech-weight function ω : CM(λ)(2) → R.

1 Calculate CM(λ)(1);
2 for {Di, Dj} ∈ CM(λ)(1) do
3 LNij ← λ-LowerNbrs(Di) ∩ λ-LowerNbrs(Dj);
4 for Dk ∈ LNij do
5 N ← Aff({Di(ci; ri), Dj(cj; rj), Dk(ck; rk)});
6 Calculate ω(N)← µN ;
7 if ω(N) ≤ λ then
8 Update CM(λ)(2) ← CM(λ)(2) ∪ {Di, Dj, Dk};
9 end

10 end
11 end
12 return (CM(λ)(2), ω : CM(λ)(2) → R)

Figure 10 shows the performance (in 10−6 s) of the C/C++ script Cech.scale (available in [24])
and the preprocessing of the d-disk system to a 2-disk system.
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Figure 10. Average time (µs) in high dimensions of the Cech.scale script and preprocessing
disk systems.

Remark 1. All our timings were done on a 64-bit GNU/Linux machine with two Intel Xeon processors
(3.40 GHz), although our script were not threaded and only one core was used per process. We measured all the
timings with clock() from the Standard C library. The average times in both graphics (Figures 7 and 10) are
the mean times for 104 repetitions of each algorithm, for every number of disks multiple of 10 in Figure 7 from 10
to 500, and for every dimension multiple of 200 in Figure 10 from 200 to 10,000.
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