Optimal Transport in Multilayer Networks for Traffic Flow Optimization
Abstract
:1. Introduction
What Makes Multilayer Networks Different Than Single-Layer in Transportation
2. Materials and Methods
2.1. Multilayer Transportation Networks
2.2. The Model
2.3. The Algorithmic Implementation
Algorithm 1 Multilayer optimal transport. |
3. Results
3.1. Results on Synthetic Data
3.2. Results on Real Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Boccaletti, S.; Bianconi, G.; Criado, R.; Del Genio, C.I.; Gómez-Gardenes, J.; Romance, M.; Sendina-Nadal, I.; Wang, Z.; Zanin, M. The structure and dynamics of multilayer networks. Phys. Rep. 2014, 544, 1–122. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Gardenes, J.; Reinares, I.; Arenas, A.; Floría, L.M. Evolution of cooperation in multiplex networks. Sci. Rep. 2012, 2, 620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donges, J.F.; Schultz, H.C.; Marwan, N.; Zou, Y.; Kurths, J. Investigating the topology of interacting networks. Eur. Phys. J. B 2011, 84, 635–651. [Google Scholar] [CrossRef] [Green Version]
- Saumell-Mendiola, A.; Serrano, M.Á.; Boguná, M. Epidemic spreading on interconnected networks. Phys. Rev. E 2012, 86, 026106. [Google Scholar] [CrossRef] [Green Version]
- Dickison, M.; Havlin, S.; Stanley, H.E. Epidemics on interconnected networks. Phys. Rev. E 2012, 85, 066109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Hu, M.B.; Li, M. Traffic-driven epidemic spreading in multiplex networks. Phys. Rev. E 2020, 101, 012301. [Google Scholar] [CrossRef] [PubMed]
- Kurant, M.; Thiran, P. Layered complex networks. Phys. Rev. Lett. 2006, 96, 138701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Pu, C.; Li, L.; Cao, G. Traffic dynamics on multilayer networks. Digit. Commun. Netw. 2020, 6, 58–63. [Google Scholar] [CrossRef]
- Zhuo, Y.; Peng, Y.; Liu, C.; Liu, Y.; Long, K. Traffic dynamics on layered complex networks. Phys. A Stat. Mech. Appl. 2011, 390, 2401–2407. [Google Scholar] [CrossRef]
- Aleta, A.; Moreno, Y. Multilayer networks in a nutshell. Annu. Rev. Condens. Matter Phys. 2019, 10, 45–62. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, G. Multilayer Networks: Structure and Function; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer networks. J. Complex Netw. 2014, 2, 203–271. [Google Scholar] [CrossRef] [Green Version]
- Strano, E.; Shai, S.; Dobson, S.; Barthelemy, M. Multiplex networks in metropolitan areas: Generic features and local effects. J. R. Soc. Interface 2015, 12, 20150651. [Google Scholar] [CrossRef] [Green Version]
- Solé-Ribalta, A.; Gómez, S.; Arenas, A. Congestion induced by the structure of multiplex networks. Phys. Rev. Lett. 2016, 116, 108701. [Google Scholar] [CrossRef]
- Aleta, A.; Meloni, S.; Moreno, Y. A multilayer perspective for the analysis of urban transportation systems. Sci. Rep. 2017, 7, 44359. [Google Scholar] [CrossRef] [PubMed]
- Gomez, S.; Diaz-Guilera, A.; Gomez-Gardenes, J.; Perez-Vicente, C.J.; Moreno, Y.; Arenas, A. Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 2013, 110, 028701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Domenico, M.; Granell, C.; Porter, M.A.; Arenas, A. The physics of spreading processes in multilayer networks. Nat. Phys. 2016, 12, 901–906. [Google Scholar] [CrossRef] [Green Version]
- De Domenico, M.; Solé-Ribalta, A.; Gómez, S.; Arenas, A. Navigability of interconnected networks under random failures. Proc. Natl. Acad. Sci. USA 2014, 111, 8351–8356. [Google Scholar] [CrossRef] [Green Version]
- Barthélemy, M. Spatial networks. Phys. Rep. 2011, 499, 1–101. [Google Scholar] [CrossRef] [Green Version]
- Solé-Ribalta, A.; Arenas, A.; Gómez, S. Effect of shortest path multiplicity on congestion of multiplex networks. New J. Phys. 2019, 21, 035003. [Google Scholar] [CrossRef]
- Lampo, A.; Borge-Holthoefer, J.; Gómez, S.; Solé-Ribalta, A. Multiple abrupt phase transitions in urban transport congestion. Phys. Rev. Res. 2021, 3, 013267. [Google Scholar] [CrossRef]
- Quercia, D.; Schifanella, R.; Aiello, L.M. The shortest path to happiness: Recommending beautiful, quiet, and happy routes in the city. In Proceedings of the 25th ACM Conference on Hypertext and Social Media, Santiago, Chile, 1–4 September 2014; pp. 116–125. [Google Scholar]
- Kantorovich, L. On the Transfer of Masses. J. Math. Math. Sci. 1942, 133, 2006. [Google Scholar]
- Bonifaci, V.; Mehlhorn, K.; Varma, G. Physarum can compute shortest paths. J. Theor. Biol. 2012, 309, 121–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santambrogio, F. Optimal channel networks, landscape function and branched transport. Interfaces Free. Boundaries 2007, 9, 149–169. [Google Scholar] [CrossRef] [Green Version]
- Facca, E.; Cardin, F.; Putti, M. Towards a Stationary Monge-Kantorovich Dynamics: The Physarum Polycephalum Experience. SIAM J. Appl. Math. 2016, 78, 651–676. [Google Scholar] [CrossRef] [Green Version]
- Facca, E.; Daneri, S.; Cardin, F.; Putti, M. Numerical Solution of Monge-Kantorovich Equations via a Dynamic Formulation. J. Sci. Comput. 2020, 82, 68. [Google Scholar] [CrossRef] [Green Version]
- Facca, E.; Cardin, F.; Putti, M. Branching Structures Emerging from a Continuous Optimal Transport Model. Available online: http://xxx.lanl.gov/abs/1811.12691 (accessed on 28 May 2021).
- Baptista, D.; Leite, D.; Facca, E.; Putti, M.; De Bacco, C. Network extraction by routing optimization. Sci. Rep. 2020, 10, 088702. [Google Scholar] [CrossRef]
- Bonifaci, V.; Facca, E.; Folz, F.; Karrenbauer, A.; Kolev, P.; Mehlhorn, K.; Morigi, G.; Shahkarami, G.; Vermande, Q. Physarum Multi-Commodity Flow Dynamics. Available online: http://xxx.lanl.gov/abs/2009.01498 (accessed on 28 May 2021).
- Kirkegaard, J.B.; Sneppen, K. Optimal Transport Flows for Distributed Production Networks. Phys. Rev. Lett. 2020, 124, 208101. [Google Scholar] [CrossRef]
- Bohn, S.; Magnasco, M.O. Structure, Scaling, and Phase Transition in the Optimal Transport Network. Phys. Rev. Lett. 2007, 98, 088702. [Google Scholar] [CrossRef] [Green Version]
- Banavar, J.R.; Maritan, A.; Rinaldo, A. Size and form in efficient transportation networks. Nature 1999, 399, 130–132. [Google Scholar] [CrossRef]
- Hu, D.; Cai, D. Adaptation and optimization of biological transport networks. Phys. Rev. Lett. 2013, 111, 138701. [Google Scholar] [CrossRef]
- Ronellenfitsch, H.; Katifori, E. Global optimization, local adaptation, and the role of growth in distribution networks. Phys. Rev. Lett. 2016, 117, 138301. [Google Scholar] [CrossRef]
- Katifori, E.; Szöllosi, G.J.; Magnasco, M.O. Damage and Fluctuations Induce Loops in Optimal Transport Networks. Phys. Rev. Lett. 2010, 104, 048704. [Google Scholar] [CrossRef] [Green Version]
- Ronellenfitsch, H.; Katifori, E. Phenotypes of Vascular Flow Networks. Phys. Rev. Lett. 2019, 123, 248101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baptista, D.; De Bacco, C. Principled network extraction from images. arXiv 2020, arXiv:2012.12758. Available online: http://xxx.lanl.gov/abs/2012.12758 (accessed on 28 May 2021).
- Kaiser, F.; Ronellenfitsch, H.; Witthaut, D. Discontinuous transition to loop formation in optimal supply networks. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Lonardi, A.; Facca, E.; Putti, M.; De Bacco, C. Optimal transport for multi-commodity routing on networks. arXiv 2020, arXiv:2010.14377. Available online: http://xxx.lanl.gov/abs/2010.14377 (accessed on 28 May 2021).
- Halu, A.; Mukherjee, S.; Bianconi, G. Emergence of overlap in ensembles of spatial multiplexes and statistical mechanics of spatial interacting network ensembles. Phys. Rev. E 2014, 89, 012806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, R.G.; Barthelemy, M. Transport on coupled spatial networks. Phys. Rev. Lett. 2012, 109, 128703. [Google Scholar] [CrossRef]
- De Domenico, M.; Solé-Ribalta, A.; Cozzo, E.; Kivelä, M.; Moreno, Y.; Porter, M.A.; Gómez, S.; Arenas, A. Mathematical formulation of multilayer networks. Phys. Rev. X 2013, 3, 041022. [Google Scholar] [CrossRef] [Green Version]
- Tero, A.; Takagi, S.; Saigusa, T.; Ito, K.; Bebber, D.P.; Fricker, M.D.; Yumiki, K.; Kobayashi, R.; Nakagaki, T. Rules for Biologically Inspired Adaptive Network Design. Science 2010, 327, 439–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guibas, L.; Stolfi, J. Primitives for the manipulation of general subdivisions and the computation of Voronoi. ACM Trans. Graph. (TOG) 1985, 4, 74–123. [Google Scholar] [CrossRef]
- Newman, M.E. A measure of betweenness centrality based on random walks. Soc. Netw. 2005, 27, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Brandes, U.; Fleischer, D. Centrality measures based on current flow. In Annual Symposium on Theoretical Aspects of Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; pp. 533–544. [Google Scholar]
- Dixon, P.M.; Weiner, J.; Mitchell-Olds, T.; Woodley, R. Bootstrapping the Gini coefficient of inequality. Ecology 1987, 68, 1548–1551. [Google Scholar]
- Kujala, R.; Weckström, C.; Darst, R.K.; Mladenović, M.N.; Saramäki, J. A collection of public transport network data sets for 25 cities. Sci. Data 2018, 5, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, L.; Jiang, S.; Murga, M.; González, M.C. Origin–destination trips by purpose and time of day inferred from mobile phone data. Transp. Res. Part C Emerg. Technol. 2015, 58, 240–250. [Google Scholar] [CrossRef]
- Wang, P.; Hunter, T.; Bayen, A.M.; Schechtner, K.; González, M.C. Understanding road usage patterns in urban areas. Sci. Rep. 2012, 2, 1001. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Shu, P.; Tang, M.; Wang, W.; Gao, H. Effective traffic-flow assignment strategy on multilayer networks. Phys. Rev. E 2019, 100, 012310. [Google Scholar] [CrossRef] [Green Version]
- Orozco, L.G.N.; Battiston, F.; Iniguez, G.; Szell, M. Extracting the multimodal fingerprint of urban transportation networks. Transp. Find. 2020, 13171. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, A.A.; Lonardi, A.; Bacco, C.D. Optimal Transport in Multilayer Networks for Traffic Flow Optimization. Algorithms 2021, 14, 189. https://doi.org/10.3390/a14070189
Ibrahim AA, Lonardi A, Bacco CD. Optimal Transport in Multilayer Networks for Traffic Flow Optimization. Algorithms. 2021; 14(7):189. https://doi.org/10.3390/a14070189
Chicago/Turabian StyleIbrahim, Abdullahi Adinoyi, Alessandro Lonardi, and Caterina De Bacco. 2021. "Optimal Transport in Multilayer Networks for Traffic Flow Optimization" Algorithms 14, no. 7: 189. https://doi.org/10.3390/a14070189