
Citation: Duchesne, I.; Tong, Q.;

Hans, G. Using Ground Penetrating

Radar (GPR) to Predict Log Moisture

Content of Commercially Important

Canadian Softwoods. Forests 2023, 14,

2396. https://doi.org/10.3390/

f14122396

Academic Editor: František Kačík
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Abstract: The non-destructive testing of wood fibre properties is crucial for informing forest manage-
ment decisions and achieving optimal resource utilization. Moisture content (MC) is an important
indicator of wood freshness and may reveal the presence of wood degradation. However, efficient
methods are still needed to better monitor this property along the forest–wood value chain. The
objective of the study was to develop prediction models to evaluate log MC based on the propagation
of ground penetrating radar (GPR) signals. A total of 165 trees representing four species (black spruce
(Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss), red spruce (Picea rubens Sarg.),
and balsam fir (Abies balsamea (L.) Mill.)) were harvested in two regions of the province of Quebec.
GPR signals were acquired in the green (fresh) state and at three subsequent drying stages. Partial
least squares regression (PLSR) and locally weighted PLSR (LWPLSR) were employed to establish
relationships between GPR signals (antenna frequency: 1.6 GHz) and log properties. The models were
fitted on three calibration sets containing four drying stages and different species mixes. The LWPLSR
models performed better than the PLSR models for predicting log MC, with a lower root mean
square error (RMSEp range: 10.8%–20.2% vs. 13.0%–20.5%) and a higher R2p (0.63–0.87 vs. 0.62–0.82).
Spruce-only models performed considerably better than fir-only models while multi-species models
were in-between. Despite the complex anisotropy of wood and the physics of wave propagation, the
GPR technology can be successfully used to estimate log moisture content, but the GPR-based MC
models should be calibrated for each specific type of wood material.

Keywords: ground penetrating radar (GPR); log; moisture content (MC); PLS regression; LWPLS
regression; spruce; fir; wood

1. Introduction

The Canadian timber supply is currently shrinking due to climate-related disturbances
(insects, wildfires) that increase tree mortality [1,2]. Furthermore, salvage harvesting in-
duces more variation in fibre supply because of the complex spatiotemporal dynamics
of natural disturbances that affect trees in different ways [3]. This additional variability
in turn increases the need for efficient upfront measurements of timber properties and
advanced process control to meet product specifications. Adapting harvest and manufac-
turing processes to timber variability is therefore essential for an optimal and sustainable
utilization of wood. In eastern Canada, massive timber volumes have recently been lost
due to severe spruce budworm outbreaks. Multiyear defoliation has reduced tree growth
and ultimately led to tree death. The cumulative effects of natural disturbances on growth
and wood quality are poorly documented. Many questions remain to be answered. How
can we monitor potential changes in wood quality from healthy to defoliated and dead
trees to better inform salvage operations? Is it worth harvesting and processing dead trees
given their internal condition? In this context, moisture content (MC) is an important
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parameter for evaluating the internal condition of trees and wood logs. MC is also known
to be a major driver of biological wood degradation, but its in situ evaluation is complex.
The development of non-destructive techniques and tools to monitor wood MC along the
forest–wood value chain is greatly needed.

Ground penetrating radar (GPR) has been widely used to evaluate the variation of
water content in soils [4] and concrete [5]. The wave propagation of GPRs is governed by
the electromagnetic properties of a dielectric material such as wood, which is affected by
various material properties such as moisture [6]. In recent years, GPR technology has been
used for the early detection of health issues or defects in trees [7–12]. The GPR technique
has been combined with acoustic tomography for tree decay detection [12,13]. Wen et al.
(2016) [13] reported that GPR was effective in detecting cavities, decay, and cracks in tree
trunks and that the depth of detection by GPR was influenced by the frequency of the
electromagnetic wave used, where higher frequencies achieved shallower depths but higher
resolution. A literature review on the use of GPR for the evaluation of wood structures
highlights some knowledge gaps related to the ability to distinguish the type of internal
feature from the GPR output and the ability to identify internal decay [14].

GPR has been shown to be an effective non-destructive tool for measuring MC in
logs [6,15]. Redman et al. (2016) [16] investigated the impact of wood sample shape and
size on moisture content measurements using a GPR-based sensor and found that sample
size and shape affected the accuracy of the GPR-based sensor. The numerical modelling
showed that the curvature of the log and closeness of the log ends (or boundaries) had
a significant impact on the GPR signal’s amplitude and travel time, resulting in reduced
accuracy in MC measurements [16]. The authors suggested that further research is needed
to optimize the GPR-based sensor for the measurement of MC in wood logs.

GPR sensors have also been used on in-service wooden structures to detect internal
moisture and fungal decay in Douglas-fir beams [17]. The study showed that the accuracy of
GPR was affected by factors such as wood density, moisture content, and beam orientation.
GPR was also able to identify decay in regions of a timber bridge that were not visible to
the naked eye [18].

The global objective of the study was to develop prediction models to evaluate log
moisture content based on the propagation of ground penetrating radar signals. We also
evaluated the possibility of predicting sapwood, heartwood, and bark moisture contents
using GPR. The specific objectives of the study were:

(1) To develop prediction models to evaluate log moisture content (MC) of four com-
mercially important softwood species based on high-frequency, high-resolution GPR
signals acquired in the green state to approximately 10% MC—this range in MC being
typically found along the fibre supply chain, from timber to wood products;

(2) To evaluate whether GPR signals can predict log diameter and bark thickness;
(3) To evaluate whether detailed knowledge of wood properties, including sapwood and

heartwood MC, contributes to the improvement of MC prediction accuracy for newly
harvested logs (i.e., in the green state);

(4) To test and apply the MC prediction models on other materials (degraded logs, live
but partially defoliated trees, and dead trees) to see whether the GPR technology could
provide information on internal wood MC and potentially be deployed to inform
about wood freshness and/or the shelf-life of trees or logs.

This study shows that our GPR-based MC models can successfully predict the moisture
content of logs coming from live/sound trees. On the other hand, the GPR-based MC
models could not be directly applied to other materials such as decayed/degraded logs
(spruces and balsam fir) and standing balsam fir trees (live and dead). It can be concluded
that GPR-based MC models should be calibrated for each type of material.
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2. Materials and Methods
2.1. Trees

A total of 165 trees were harvested from two sites (Table 1). The first site was located in
the boreal forest of the North Shore region of Québec (e.g., Baie-Comeau/Forestville). This
region is periodically affected by spruce budworm (Choristoneura fumiferana) epidemics [3].
The latest outbreak started in 2006, whereas the previous one took place in the 1970s. In late
October 2020, 6 representative blocks were selected within an experimental site established
by the Société de protection des forêts contre les insectes et les maladies (SOPFIM) (Society
for the Protection of Forests against Insects and Diseases). The blocks had received some
aerial pesticide spray treatments by the SOPFIM to limit tree defoliation and mortality
(i.e., to keep trees alive until the end of the outbreak). Seventy-one trees of merchantable
diameter (diameter at breast height (DBH) of 9.1 cm and larger) were harvested within
three age classes (30, 50, and 70 years old). The selected trees represented three species:
black spruce (Picea mariana (Mill.) B.S.P.) (BS), white spruce (Picea glauca (Moench) Voss)
(WS), and balsam fir (Abies balsamea (L.) Mill.) (BF). Sampled trees appeared generally
sound (live), but some sample logs had some wood discoloration. One ca. 30-cm long
log was cut at breast height from each tree, sealed in a plastic bag and stored in a freezer
until analysis.

Table 1. Descriptive statistics of black (BS), white (WS), and red (RS) spruce, and balsam (BF) trees
harvested from the SOPFIM and Valcartier Forest Research Station (VFRS) sites and selected for
ground penetrating radar (GPR) scans. Figures in parentheses are standard deviations. DBH: diameter
at breast height; BH: breast height.

Site Species No. of
Trees

DBH
(cm)

Tree Height
(m)

Crown Base
Height (m)

Cambial
Age (BH)

SOPFIM 1 BS 23 15.4 (4.47) 9.9 (2.38) - 50.8 (16.71)
WS 23 17.5 (6.07) 10.8 (2.47) - 49.1 (11.92)
BF 25 15.4 (3.98) 11.8 (2.81) - 49.8 (17.27)

CFS 2 BS 15 23.1 (5.41) 18.3 (2.18) 10.1 (1.50) 68.3 (24.93)
WS 32 22.0 (4.68) 16.0 (3.12) 8.0 (2.91) 51.5 (19.14)
RS 15 23.6 (6.78) 17.6 (3.38) 11.0 (3.35) 64.2 (16.96)
BF 32 22.9 (5.51) 16.0 (3.52) 6.5 (3.20) 40.7 (14.24)

Total 165 51.4 (18.71)
1 One log per tree; 2 Two logs per tree.

The second site was located at the Valcartier Research Forest Station managed by the
Canadian Forest Service (thereafter called ‘CFS’ site) near Québec City, Canada. This forest
region has not been affected by recent spruce budworm outbreaks. A total of 94 healthy trees
were randomly selected in three diameter classes—small (12–20 cm), median (20–26 cm),
and large (26–32 cm)—in late November through mid-December of 2020. The selected
trees consisted of black spruce, white spruce, red spruce (Picea rubens Sarg.) (RS), and
balsam fir. To cover within-tree variation in wood properties, sampling was expanded so
that two ca. 50-cm long logs were collected from each tree, one at breast height, the other
at varying heights above the breast height but within the first 5 m of the trunk to avoid
whorls, large knots, and other defects. Logs were also sealed in a plastic bag and kept
frozen until processing.

2.2. Determining Wood Properties and Log Moisture Content

Before processing, each log was thawed at room temperature for a few days (inside the
plastic bag) to ensure temperature equilibrium with the room (ca. 20 ◦C). Two ca. 4-cm-thick
discs were then extracted from the large end of each log (again avoiding major defects).
One of the discs was used for evaluating bark thickness, moisture content (MC) of the bark
(MCb), sapwood (MCsw), and heartwood (MChw). Bark thickness was computed as the
average of two measurements taken from two positions on the long- and short-diameter
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axes. The disc was debarked, and the bark weighted. After this step, two small wood
blocks (ca. 3 cm × 3 cm) were sawn from two opposite radii (i.e., along one diameter) in the
sapwood (close to the bark) and in the heartwood (close to the pith but avoiding it). The
two MC values per wood type were then averaged. Each portion was weighed on a scale
before and after oven-drying to obtain their initial and oven-dry weight. Wood MC was
determined gravimetrically by dividing the difference between the initial and oven-dry
weights by the oven-dry weight (i.e., dry basis MC) following the ASTM4442 standard [19].
The other disc was used for measuring cambial age and wood density. Green and basic
wood density were determined by the ratio of weight (green and oven-dry, respectively) to
green volume using the water immersion method following the ASTM D2395 standard [20].
Average growth ring width was derived from the log diameter and its cambial age.

The remaining portion of each log was used for obtaining ground penetrating radar
(GPR) signals at different MC levels. Each log was weighed immediately after disc removal
and kept at room temperature to air dry. The logs were weighted three more times at
variable intervals leading to four different drying stages (Figure 1). The logs were then
oven-dried to obtain dry mass. MC for each log at each drying stage was back-calculated
from the oven dry weight.
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Figure 1. Log moisture content (dry basis) over time. The MC of balsam fir wood was clearly higher
than that of spruces.

2.3. GPR Signal Acquisition

GPR signals were acquired on 257 logs using a MALÅ CX GPR system (MALÅ Geo-
science AB, Malå, Sweden) with a central frequency of 1.6 GHz and an antenna separation
of 0.06 m. Scans were acquired during a time window of 8.34 nanoseconds (ns) (containing
312 time-sampling points) at a time interval of 0.01 s. Immediately after weighing, each
log was placed on a workbench with an adjustable opening such that there was an empty
space underneath the log. GPR signals were recorded with the electromagnetic (EM) field
oriented perpendicular to fibre direction and the EM wave propagating along the radial
direction [15]. Through-the-bark GPR scans were performed on four positions 90 degrees
apart around the middle of the log (Figure 2).
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Figure 2. GPR signal acquisition through bark.

2.4. GPR Signal Processing

The majority (95%) of the GPR scans produced around 500 traces depending on the
duration of each individual scan. Direct current (DC) shift was removed from each trace
by subtracting the average of the first 25 amplitude values from each data point in the
trace. The arrival time of the direct wavelet of each trace was selected based on a 14%
maximum amplitude threshold value [15]. Time zero correction was then applied to each
trace according to the selected arrival times so that the traces had the consistent pulse
onset times. After pre-processing, the traces contained 228 time-sampling points, which
was equivalent to a 6.1 ns signal time window. This signal will be referred to as the full
trace/signal hereafter (Figure 3). All traces within each scan were averaged, resulting in a
total of 3810 averaged traces (one average trace representing a scan in this case). The four
traces from the four scanning positions were further averaged for each log at each drying
stage, resulting in 953 traces in total (Table 2). These traces served as the base GPR signal
matrix for estimating log MCs from the GPR signals (with observations as rows and time
samples as columns). Signal preprocessing was carried out using the RGPR package of the
R statistical computing software [21]. Figure 3 presents an example of pre-processed GPR
signals collected at four MC levels from the same log.

Table 2. Moisture content (MC) and number of GPR traces from all logs and four drying stages from
each site and species used for modelling. Standard deviations are in parentheses.

Site Species No. of Logs No. of GPR
Traces

Log MC (%)
Min–Max Mean Log MC (%)

SOPFIM BS 23 92 18.1–116.6 56 (23.3)
WS 23 91 13.4–133.3 65 (30.6)
BF 25 99 27.4–161.8 74 (33.8)

CFS BS 30 107 14.1–92.5 50 (17.7)
WS 64 231 17.6–158.8 75 (33.2)
RS 30 114 9.1–121.2 64 (26.3)
BF 62 219 22.6–167.6 92 (39.1)

Total 257 953



Forests 2023, 14, 2396 6 of 21Forests 2023, 14, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 3. An example of pre-processed GPR signals measured through the bark of a log at 4 mois-
ture content (MC) levels showing 4 different time windows. 

2.5. Statistical Analysis and Modelling 
ANOVA and Pearson correlation coefficients were used to compare log characteris-

tics and wood properties between different sites and species. Partial least squares regres-
sion (PLSR) and locally weighted PLSR (LWPLSR) were the models employed to establish 
relationships between GPR signal matrix and log properties.  

PLSR searches for a set of components or latent variables (LVs) that perform a simul-
taneous decomposition of X (the matrix of GPR signals) and Y (the matrix of target prop-
erties) with the constraint that these LVs explain as much of the covariance between X and 
Y as possible. This is followed by a regression step, where the decomposition of X is used 
to predict Y. This technique is especially well suited for handling predictors with high-
level collinearity as is the case between time samples of GPR signals. Typically, when us-
ing PLS regression, a calibration model is built, and its accuracy and robustness are then 
assessed with an independent validation dataset. 

LWPLSR is a particular case of weighted PLSR, with the weights depending on the 
dissimilarity (e.g., Euclidian or Mahalanobis distances) between calibration observations 
and new observations to predict [22]. LWPLSR is particularly suited when there are non-
linear relationships between responses and predictors due to the heterogeneity of data 
[22].  

In this paper, both PLSR and LWPLSR models were fitted on the same datasets. The 
hyper-parameters of the models were tuned with a five-fold cross-validation. The goal of 
this tuning for the PLSR models was to find the optimal number of latent variables (nLVs) 
(Figure 4a). For the LWPLSR models, two hyper-parameters were tuned: nLVs and the 
shape of the weight function, h (Figure 4b). A lower h value implies a sharper weight 
function [22]. The optimal hyper-parameters were selected based on a single criterion of 
having the lowest nLVs while RMSE is not greater than the sum of the lowest RMSE and 
an allowance. The allowance was set at 0.25 for models predicting MCs and 0.0125 for 
models predicting log diameter and bark thickness. Figure 4 illustrates this process in the 
case of the log MC model based on the four drying stages and four mixed species. 

Figure 3. An example of pre-processed GPR signals measured through the bark of a log at 4 moisture
content (MC) levels showing 4 different time windows.

2.5. Statistical Analysis and Modelling

ANOVA and Pearson correlation coefficients were used to compare log characteristics
and wood properties between different sites and species. Partial least squares regression
(PLSR) and locally weighted PLSR (LWPLSR) were the models employed to establish
relationships between GPR signal matrix and log properties.

PLSR searches for a set of components or latent variables (LVs) that perform a simulta-
neous decomposition of X (the matrix of GPR signals) and Y (the matrix of target properties)
with the constraint that these LVs explain as much of the covariance between X and Y as
possible. This is followed by a regression step, where the decomposition of X is used to
predict Y. This technique is especially well suited for handling predictors with high-level
collinearity as is the case between time samples of GPR signals. Typically, when using PLS
regression, a calibration model is built, and its accuracy and robustness are then assessed
with an independent validation dataset.

LWPLSR is a particular case of weighted PLSR, with the weights depending on the
dissimilarity (e.g., Euclidian or Mahalanobis distances) between calibration observations
and new observations to predict [22]. LWPLSR is particularly suited when there are
nonlinear relationships between responses and predictors due to the heterogeneity of
data [22].

In this paper, both PLSR and LWPLSR models were fitted on the same datasets. The
hyper-parameters of the models were tuned with a five-fold cross-validation. The goal of
this tuning for the PLSR models was to find the optimal number of latent variables (nLVs)
(Figure 4a). For the LWPLSR models, two hyper-parameters were tuned: nLVs and the
shape of the weight function, h (Figure 4b). A lower h value implies a sharper weight
function [22]. The optimal hyper-parameters were selected based on a single criterion of
having the lowest nLVs while RMSE is not greater than the sum of the lowest RMSE and an
allowance. The allowance was set at 0.25 for models predicting MCs and 0.0125 for models
predicting log diameter and bark thickness. Figure 4 illustrates this process in the case of
the log MC model based on the four drying stages and four mixed species.
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2.6. Response Variables, Covariate Variables, and Time Window Selection

PLSR and LWPLSR analyses were used to predict log MC from GPR signals (Table 3).
We also tested whether a universal model for all species had a sufficient prediction accuracy
by fitting the models for BF and spruces separately, in addition to all species combined
(spruces and BF, multi-). In this case, data from all four drying stages were used (model
group 1).

Table 3. Modelling scheme showing the combinations of parameters in each subset of data for
predicting response variables. MC: log moisture content; DOB: log diameter outside bark; THb:
bark thickness; MCb: bark moisture content; MCsw: sapwood moisture content; MChw: heartwood
moisture content; Db: basic wood density; BF: balsam fir.

Model
Group Response * Covariate Species Drying

Stage
Time Window

(Sampling Points)
Calibration

Size
Validation

Size

1 MC - Spruces, BF

6.1 ns (228)
4.0 ns (150)
2.0 ns (75)
1.1 ns (40)

654–660 286
- Spruces only 1, 2, 3, 4 435–443 191
- BF only 218–222 96

2 DOB -
THb - Spruces, BF 1 164–167 72

3 MC DOB Spruces, BF 1, 2, 3, 4
Thb

DOB, THb 164–167 72

4 MC - Spruces, BF 1 164–167 72
MCb +

MCsw +
MChw

- Spruces, BF 1 164–167 72

* Note: Models for response variables MCb + MCsw + MChw used multivariate approach.

Models were also created to estimate log diameter and bark thickness from GPR signals
(model group 3) since previous studies suggested that log diameter is highly correlated to
GPR signals [23].

To investigate whether including log diameter and bark thickness as additional predic-
tors (i.e., covariates) increases prediction accuracy, the multi-species models were fitted for
GPR signals alone and together with these additional parameters. Since these parameters
changed little throughout the drying process, only the data from the 1st drying stage was
included in these cases (model group 2).

In addition, attempts were made to predict MCb, MCsw, and MChw from the GPR
signals (model group 4) using a multivariate approach, i.e., the PLS-2 regression model
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(where multiple response variables in the same model are predicted simultaneously). The
optimal nLVs of the multivariate model were determined based on the minimum sum of
the RMSE for each response variable. Since these five response variables were measured at
the first drying stages, only GPR signals from the first drying stage were used.

Each dataset (the combination of response variable(s), time window, species, and
drying stage) was split into calibration and validation sets at a ratio of 0.7:0.3. A random
seeding was adopted for splitting to ensure a consistent splitting result for reproducibility
and comparability of the models. Traces with a Mahalanobis distance falling outside of
3 standard deviations of the mean were removed from each calibration set.

Each time sample in the selected time window was introduced as a predictor in the
PLSR and LWPLSR analyses. In general, PLS algorithms automatically centre data (having
a mean of zero). For the models that included additional predictors (model group 2), all
the predictive variables were further rescaled to have a standard deviation of 1.0 for the
calibration set and the same scaling parameters were applied to the validation set. All
analyses were performed using the R statistical computing software (v4.03; R Core Team
2020). The rchemo package (v0.0-17; [24]) was employed for tuning the hyper-parameters
and fitting the PLSR and LWPLSR models.

3. Results
3.1. Log Characteristics, Wood Properties and MC

As shown in Table 4, the studied logs had similar diameters across all species from the
same site. The logs from the SOPFIM site were on average 2.7 cm smaller (p = 0.0003) and
had a basic density 13 kg/m3 higher (p = 0.0014) than those from the CFS site. Basic wood
density was higher (p = 0.0014) at the SOPFIM site than at the CFS site and followed an
expected trend among these species, i.e., BS (high density) > WS > RS > BF (low density).
There were little differences in bark thickness among sites or species.

Table 4. Log characteristics and wood properties of black (BS), white (WS), and red (RS) spruces
and balsam fir (BF) from the SOPFIM and CFS Valcartier Forestry Research Station sites for ground
penetrating radar (GPR) scans. Numbers in parentheses are standard deviations.

Site Species
No. of
Logs

Log
Diameter

(cm)

Ring
Width
(mm)

Basic
Density
(kg/m3)

Green Wood

Green
Density
(kg/m3)

Green Log
MC
(%)

Sapwood
MC
(%)

Heartwood
MC
(%)

Bark
MC
(%)

Bark
Thickness

(mm)

SOPFIM BS 23 16.6 (4.01) 1.9 (0.42) 415 (39.4) 844
(117.6) 79 (15.9) 102 (23.0) 45 (14.7) 109

(26.3) 5.0 (1.05)

WS 23 19.0 (5.89) 1.9 (0.56) 376 (29.1) 853
(79.7) 94 (21.3) 133 (37.2) 46 (14.2) 120

(32.0) 5.2 (1.63)

BF 25 17.9 (4.42) 1.9 (0.42) 349 (28.0) 864
(96.7) 107 (23.1) 130 (33.9) 78 (37.9) 108

(18.9) 5.1 (1.35)

CFS BS 30 21.0 (4.93) 1.8 (0.38) 394 (23.1) 806
(323.6) 65 (9.1) 96 (19.9) 41 (10.5) 92

(24.2) 5.1 (1.47)

WS 64 19.6 (4.74) 2.4 (1.02) 375 (58.5) 843
(114.8) 99 (22.6) 131 (31.7) 47 (21.8) 112

(18.0) 5.1 (1.20)

RS 30 21.1 (5.96) 1.9 (0.46) 371 (20.2) 795
(176.1) 83 (17.5) 112 (41.7) 37

(9.7)
100

(13.8) 5.5 (1.29)

BF 62 20.5 (4.86) 3.1 (1.19) 328 (26.3) 867
(88.1) 123 (16.1) 138 (28.5) 120 (36.8) 93

(14.4) 5.4 (1.37)

Total 257

At the green state, BF logs had higher sapwood and heartwood MCs (p = 0.000~0.0013)
than spruces. It was also noticed that BS and RS had higher sapwood MCs than WS
(p = 0.000~0.013).

As expected, average log MC had a relatively strong positive correlation with the MC
of sapwood (r = 0.72) and heartwood (r = 0.71), and the correlation between average log
MC and heartwood MC was less strong in the spruces (r = 0.52) than in BF (r = 0.65). BF
heartwood MC (40%–220%) varied over a wider range than average log MC (80%–150%),
which may be attributed to the presence of moisture pockets (wetwood) in BF heartwood.
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3.2. Comparison of Single and Multi-Species Models

For almost all subsets of the data, the LWPLSR models for predicting log MC had a
lower RMSE (10.8%–20.2% vs. 13.0%–20.5%), a higher R2p (0.63–0.87 vs. 0.62–0.82), and a
higher RPD (1.7–2.8 vs. 1.6–2.3) than their counterpart PLSR models using the same dataset
(Table 5). The optimum number of latent variables was also lower for LWPLSR than for
PLSR, which translates to an increase in model robustness. The highest R2, lowest RMSE
and highest RPD were generally achieved using the GPR signals of 228 time-samples for
both models with the exception of BF-only models which exhibited a mixed trend. It is
clear that the GPR signals within the early time window of 1.1 ns did not contain enough
information about MC in logs.

Table 5. Optimum number of latent variables (nLVs), validation coefficients of determination (R2),
root mean square errors (RMSE) and ratios of performance to deviation (RPD) from partial least
squares regression (PLSR) and locally weighted partial least squares regression (LWPLSR) models
predicting log MC from GPR signals of different time window (TW) lengths, ns or number of time-
samples (nTS). The models were fitted on three calibration sets containing four drying stages and
different species mixes.

Species Mix nTS (TW) Calibration n
PLSR LWPLSR

nLVs RMSE R2 RPD nLVs RMSE R2 RPD

Validation n = 286

Spruces, 228 (6.1) 660 20 15.80 0.78 2.16 13 13.87 0.83 2.46
Balsam fir 150 (4.0) 655 17 16.37 0.77 2.08 13 14.14 0.83 2.41

75 (2.0) 654 15 16.93 0.75 2.01 11 15.19 0.80 2.24
40 (1.1) 659 17 19.80 0.66 1.72 10 19.14 0.68 1.78

Validation n = 191

Spruces 228 (6.1) 443 20 13.00 0.82 2.34 19 10.82 0.87 2.81
150 (4.0) 439 16 13.56 0.80 2.24 11 11.67 0.85 2.60
75 (2.0) 435 14 14.13 0.78 2.15 6 12.60 0.83 2.41
40 (1.1) 438 15 17.43 0.67 1.74 11 17.95 0.65 1.69

Validation n = 96

Balsam fir 228 (6.1) 221 12 16.98 0.74 1.97 5 16.26 0.76 2.06
150 (4.0) 222 12 16.84 0.75 1.99 11 17.07 0.74 1.96
75 (2.0) 219 17 16.83 0.75 1.99 17 15.72 0.78 2.13
40 (1.1) 218 14 20.51 0.62 1.63 15 20.21 0.63 1.66

For both model types, spruce-only models performed considerably better than BF-only
ones and multi-species models were in-between.

Figure 5 shows that both PLSR and LWPLSR calibrated with all species underestimated
BF log MCs and overestimated spruce log MCs. This holds true for the GPR signals of all
four time windows (6.1, 4.0, 2.0, and 1.1 ns). In addition, the prediction error appeared to
be larger when log MC was higher than 80%, especially for BF (Table 5). This warrants
separate models for spruces and BF, as evidenced by the points that were evenly dispersed
along the unity lines, with a few exceptions for spruces (Figure 6). Both PLSR and LWPLSR
models underestimated WS log MCs when it was higher than 120% (Figure 6).
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set containing black (BS), white (WS), and red spruce (RS) (n = 443); (b) PLSR model fitted on a
calibration set containing only balsam fir (BF) (n = 221); (c) LWPLSR model fitted on a dataset
containing the three spruce species (n = 443); (d) LWPLSR model fitted on a calibration containing
only balsam fir (n = 221). Shown are observed and predicted values on the validation sets (n = 191
and 96 for spruces and balsam fir, respectively).

3.3. Prediction of Log Diameter and Bark Thickness

The PLSR and LWPLSR models using full GPR signals presented much better per-
formances for log diameter than for bark thickness prediction (Table 6). The LWPLSR
model using the 4.0 ns time window accounted for a higher variance (81%) in log diam-
eter with an RPD value of 2.30. In contrast, the PLSR and LWPLSR models were most
accurate at predicting bark thickness from GPR signals of 2.0 ns and 1.1 ns, respectively,
with approximately 44%–46% variance explained and a prediction error of 1.1–1.2 mm
(Figure 7).
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Figure 7. Observed vs. predicted log diameter (Dob) using full GPR signals (6.1 ns). (a) partial least
squares regression (PLSR) model; and (b) locally weighted PLSR (LWPLSR) model fitted on a dataset
containing all species at green state (n = 164). Shown are observed predicted values on the validation
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Table 6. Optimum number of latent variables (nLVs), validation coefficients of determination (R2),
root mean square errors (RMSE) and ratios of performance to deviation (RPD) from locally weighted
partial least squares regression (LWPLSR) models predicting log diameter and bark thickness from
GPR signals. Only the time window (TW) in ns or number of time-samples (nTS) that gave the best
overall results are shown. The models were fitted on four calibration sets containing the 1st drying
stage for all species. Values shown were results from tests on a validation set of n = 72.

Response Variable nTS (TW) Calibration (n) nLVs RMSE R2 RPD

Log diameter 150 (4.0) 167 5 2.26 0.81 2.30
Bark thickness 40 (1.1) 165 3 1.08 0.46 1.37

Log diameter 1 150 (4.0) 167 5 2.31 0.80 2.25
Bark thickness 1 40 (1.1) 165 9 1.11 0.43 1.34

1 PLS-2 results.
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3.4. Log Characteristics and Wood Properties as Additional Predictors

PLSR models fitted on the GPR signals from the first drying stage alone had a very
poor prediction quality for log MC. For example, when using all species, R2 values ranged
from 0.02 to 0.31 and RPD from 1.01 to 1.21, depending on the time window. LWPLSR
models had similar results. Table 7 presents only the best models. Including log diameter
and bark thickness as additional predictors of MC did not increase the predictive power of
the models when all species were considered (Table 7). However, including log diameter
and basic density improved the prediction quality, with an increase in R2 values of up
to 0.24 for PLSR and up to 0.27 for LWPLSR and decreases in RMSE of up to 3.3% for
PLSR and up to 3.9% for LWPLSR. Also, including bark thickness, ring width, and green
density further increased R2 values by up to 0.31 (PLSR) and 0.46 (LWPLSR). The inclusion
of log diameter and basic wood density increased R2 values by up to 0.47 (PLSR) and
0.42 (LWPLSR) when only BF was considered, whereas increases were up to 0.30 and 0.40
when including the other three parameters. The RPD values were higher than 1.5 only
when all five additional parameters were included in the models (except for models for
spruces only).

Table 7. Optimum number of latent variables (nLVs), coefficients of determination (R2), root mean
square errors (RMSE) and ratios of performance to deviation (RPD) from locally weighted partial least
squares regression (LWPLSR) models predicting log moisture content (MC) from ground penetrating
radar (GPR) signals. Only the time window (TW) in ns or number of time-samples (nTS) that gave
the best overall results are shown for different sets of additional predictors, including log diameter
(DOB), bark thickness (THb), basic wood density (Db), ring width (Wr), and green density (Dg). The
models were fitted on a calibration set containing the 1st drying stage and all species (spruces and
BF). Values shown were results from tests on a validation set of n = 72. Models by species for all
drying stages are shown in Appendix A (Table A1).

Predictors nTS (TW) Calibration (n) nLVs RMSE R2 RPD

GPR 150 (4.0) 167 5 20.20 0.33 1.23
GPR, DOB, THb 228 (6.1) 164 12 20.93 0.29 1.19
GPR, DOB, Db 228 (6.1) 164 8 16.78 0.54 1.49
GPR, DOB, Db, THb, Wr, Dg 228 (6.1) 164 14 13.95 0.68 1.79

In general, models for spruces only did not perform well, with R2 values swinging
from −0.91 to 0.81, depending on the model, species mix and time window. Models for BF
only showed the most performance gains by including additional predictors.

3.5. Prediction of Bark, Sapwood and Heartwood MC

The best PLSR model had an R2 value of 0.28 for the prediction of bark MC when all
species were considered, with an RPD of 1.18 and a time window of 2.0 ns (Table 8). The
second-best model was the LWPLSR model with an R2 of 0.26. LWPSLR models performed
poorly in general, as did the PLSR and LWPLSR models for spruces or BF, many of which
had negative R2 values. Similarly, most of the models for the prediction of heartwood MC
of all species or BF-only had a negative R2 value and a high RMSE. Models for spruce
heartwood MC had R2 values of 0.20–0.41, with the best model being the one using a 1.1 ns
time window.

The LWPLSR model using the 4.0 ns time window had the highest R2 value (0.30) in
predicting sapwood MC when all species were considered (Table 8). When only BF was
considered, the prediction accuracy of both PLSR and LWPLSR models increased, with
the best model having R2 values of 0.34 (time window of 0.4 ns or 0.11 ns) and 0.43 (time
window of 2.0 ns), respectively. However, the models for spruces were not stable.
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Table 8. Optimal number of latent variables (nLVs), coefficients of determination (R2), root mean
square errors (RMSE), and ratios of performance to deviation (RPD) from partial least squares
regression (PLSR) and locally weighted partial least squares regression (LWPLSR) models predicting
bark, sapwood, and heartwood moisture content (MC) from ground penetrating radar (GPR) signals
of different time window lengths (TW) in ns or number of time-samples (nTS). The models were
fitted on a calibration set containing the 1st drying stage and all species (spruces and BF). Values
shown were results from tests on a validation set of n = 72.

Response Variable Model Type nTS (TW) Calibration (n) nLVs RMSE R2 RPD

Bark MC
PLSR 75 (2.0) 166 7 18.16 0.28 1.18

LWPLSR 40 (1.1) 165 9 18.37 0.26 1.17
Sapwood MC LWPLSR 150 (4.0) 167 2 28.27 0.30 1.21
Heartwood MC LWPLSR 150 (4.0) 167 2 27.56 0.21 1.14

4. Discussion
4.1. Log Characteristics, Wood Properties and MCs

Balsam fir had a markedly higher wood moisture content compared to the other
spruces (Table 2); many logs had a very high MC in the heartwood. It is known that the
MC of BF heartwood tends to be higher than that of spruces [25]. It is also possible that
some trees had not yet developed a distinct heartwood, which is usually characterized by a
lower MC compared to sapwood. Finally, the presence of wet pockets that are commonly
found in fir species may have influenced the radar signals (i.e., increased variation). Wet
pockets have been associated with bacterial infections in live trees. These infections make
lumber products more difficult to kiln dry [26,27]. While the three spruces had very similar
wood characteristics, balsam fir clearly differed in its moisture content distribution, which
influenced the GPR signal differently compared with spruces. The observed differences
cannot be attributed to a seasonal variation in MC since all sample trees were harvested in
the fall of 2020.

For balsam fir, we could not observe any clear ‘site’ differences in moisture content
predictions that could have been linked to the fact that some SOPFIM trees from the North
Shore region had been impacted/defoliated by the spruce budworm outbreak over several
years (Appendix A, Figure A2).

4.2. Comparison of Single and Multi-Species Models

Partial least squares regression (PLSR) and locally weighted PLSR (LWPLSR) were
employed to establish relationships between GPR signals (antenna frequency: 1.6 GHz)
and log moisture content. Overall, the LWPLSR models performed better than the PLSR
models for predicting log MC.

Spruce-only models performed considerably better than fir-only models, while multi-
species models were in-between. We observed that balsam fir behaved differently most
likely because the species has a different wood moisture distribution than spruces, and
because the species is prone to the development of moisture pockets. The three spruce
species considered in this study showed limited variations in annual growth rates, had
relatively comparable MC distributions, and shared the same wood anatomical structure.
Therefore, it was acceptable to develop ‘genus-specific’ GPR-based MC models for spruces
rather than ‘species-specific’ models.

4.3. Prediction of Log Diameter and Bark Thickness

The prediction of log diameter was much better than the prediction of bark thickness.
The contrast between the two layers (bark vs. wood log) may be poorly detectable with the
GPR antenna. The smaller wave interaction volume of the outer bark layer (ca. 5 mm in
thickness) compared to the log itself, which had a diameter equal to or larger than 160 mm
(Table 4), may have influenced the prediction power of the models.
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The paths of the GPR wave through cylindrical objects are multiple and complex with
in particular a total internal reflection (TIR) wave that propagates around the circumference
of the log at the outer interface [28]. The structure of the tree composed of rings, and
interfaces between sapwood/heartwood and bark are causing complex internal reflection
patterns that unfortunately results in poor measurement accuracy for some properties
or tissues. Furthermore, the signal is strongly attenuated in living wood; thus, it is very
complicated to record and recognize it [28]. The high moisture of living wood causes high
electrical conductivity and the GPR signal is thus strongly attenuated [29]. Hence, log GPR
data analysis is complex because of their circular shape, and the anisotropic structure of
wood and bark. GPR waveform may propagate more easily along the tracheids of the wood
than in the outer, mostly dead, bark and the inner living bark of trees because bark has a
more amorphous structure than wood. The dielectric properties are strongly dependent on
the grain orientation (longitudinal arrangement of wood fibres) [28].

4.4. Log Characteristics and Wood Properties as Additional Predictors

Including log diameter and bark thickness together did not improve log MC predic-
tions (R2 = 0.29 vs. R2 = 0.33 with GPR only), whereas including log diameter and basic
density together markedly improved log MC predictions (R2 = 0.54). This means that
the improvement is mostly due to basic density since log diameter combined with bark
thickness did not improve the results. Hence, future research could focus on combining
Near Infrared (NIR) spectroscopy and GPR sensors for improving the measurement, given
that NIR can produce good results for wood density prediction [30,31].

Furthermore, including ring width and green density improved log MC predictions
(R2 = 0.68). Measuring basic or green density and ring width takes time and may not always
be economically viable from a practical viewpoint. Hence, there is a need for quick, non-
destructive assessment of wood properties using complementary evaluation techniques.

4.5. Prediction of Bark, Sapwood and Heartwood MC

Although we used a high-frequency, high-resolution 1.6 GHz GPR system, the best
GPR-based multi-species models for predicting bark, sapwood, and heartwood moisture
content could only reach an R2 of 0.21 to 0.30 (Table 8). When only BF was considered,
model accuracy increased with an R2 of 0.43.

In our sample logs, we observe large variations in green moisture contents within and
between species (Table 4). Within black spruce logs, the mean difference in MC between
sapwood and heartwood was 57% for the SOPFIM site and 55% for the CFS site. For white
spruce logs, it was 87% (SOPFIM) and 84% (CFS), respectively. For BF, however, this sap-
vs. heartwood MC difference was only 52% for the SOPFIM site and 18% for the CFS site.
The balsam fir trees sampled in the south (CFS site) were slightly younger (about 9 years at
BH; Table 1) and likely comprised more juvenile wood than the BF sampled in the north,
resulting in less contrast between sapwood and heartwood MC (difference = 18%; Table 4).

The GPR signals interact with the wood structure that varies from pith to bark, with
tree height, age, environmental growth conditions, and genetics. Firstly, the radar signal
propagates through the bark, which has its own morphological and chemical structure,
density, and water content. Secondly, the wave moves through the sapwood characterized
by a very high MC, and through the heartwood characterized by a lower moisture content.
Thirdly, log size and length are reported to influence signal accuracy. Given the circular
shape of trees, knowing precisely how the GPR signal behaves (internal reflections) in
the different layers of wooden logs of different sizes [28], and the relative importance of
each part (sapwood/heartwood) to the final radar recording, remains a challenge. Butnor
et al. [32] reported that reflections originating from the sapwood-heartwood boundaries in
living conifers are much stronger than those caused by decay. The authors also mentioned
that reflections originating from the sapwood–heartwood boundary may prove useful to
determine the thickness of functional sapwood in conifers, but further technical develop-
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ment is required for accurate quantification of sapwood. Hence, more research is needed to
elucidate material interactions.

4.6. Remarks on the Use of GPR to Characterise Various Wood Materials

The fourth objective of our study was to test and apply the MC prediction models
on other materials to see whether the GPR technology could potentially be deployed to
determine wood freshness and/or shelf-life of trees or logs. Firstly, we tested the GPR-based
MC models specifically developed for sound logs cut from living trees on independent
material consisting of 80 short balsam fir logs sampled from 40 spruce-budworm killed trees
harvested in the same North Shore Region of Quebec (SOPFIM control sites). The logs were
stored for two years in a rearing room in Quebec City that mimicked site environmental
conditions. Logs showed evidence of wood degradation by microorganisms (fungi/insects)
and 22.5% of the logs had cracks due to ambient air drying. To test whether or not GPR
could be used to detect MC in degraded logs, and using the method reported in this
paper, we acquired GPR signals on these degraded logs and then tested the MC prediction
capability of our models. We measured the MC on wood discs from each log to validate
the results. Unfortunately, the MC predictions using our GPR-based MC models were not
good for degraded logs, leading to negative R2.

Secondly, we tested the GPR-based MC model developed for balsam fir trees on
independent material consisting of 92 standing balsam fir trees (DBH range: 13–33 cm),
also harvested in the North Shore Region of Quebec (SOPFIM sites). The sample consisted
of live and dead trees which had been affected to different extents by the spruce budworm
outbreaks. For each tree, GPR signals were acquired at breast height and a wood disc was
cut at stump height to determine the ‘measured/observed’ MC. These trees had no visible
cracks at breast height. Similar to the 80 degraded short logs, the prediction of MC using
the GPR-based model developed for BF in this study was not good for these 92 standing
trees, leading to negative R2.

Hence, for balsam fir, our results indicate that GPR-based MC models should be
calibrated for each type of wood material. In this study, it was not possible to ‘scale up’ our
models developed for short sound logs and use them to predict the MC of degraded logs
and standing trees. This may be attributable to GPR signal dependency on log geometry
(size and shape), as reported by Redman et al. (2016) [16]. As a result, more fundamental
research is needed to understand the highly complex interactions between GPR signals and
wood anisotropic structure, geometry (logs vs. trees), wood degradation and its effect on
wood ultrastructure (sound vs. degraded wood), and wood moisture content. Ultimately
the use of a GPR antenna and hardware specifically designed for handling the rounded
shape of logs might be required for achieving higher accuracy.

5. Conclusions

GPR was used to estimate log moisture content and related properties of softwoods.
Partial least squares regression (PLSR) and locally weighted PLSR (LWPLSR) were the
models employed to establish relationships between the GPR signal matrix and log prop-
erties. The LWPLSR models predicting log MC performed well with R2 of 0.78, 0.83, and
0.87 for balsam fir, balsam fir mixed with spruces, and spruces alone, respectively. The
LWPLSR models performed better than the PLSR models for predicting log MC. Adding
log diameter and basic density to the GPR-based models improved log MC prediction
quality. The models for predicting bark, sapwood, and heartwood MC from GPR signals
had poor prediction quality with a maximum R2 of 0.30 in the case of sapwood MC. The
GPR-based models for predicting log diameter performed much better than the models
for predicting bark thickness. This study indicates that non-destructive GPR technology
can successfully estimate log moisture content in four softwood species. However, the
GPR-based models developed on short balsam fir logs appeared not readily applicable to
another log shape (i.e., that of standing balsam fir trees). Hence, more research is needed to
better understand GPR signal interactions in different wood materials.
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where trees were not affected by the SBW.
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Table A1. Optimum number of latent variables (nLVs), coefficients of determination (R2), root
mean square errors (RMSE) and ratios of performance to deviation (RPD) from partial least squares
regression (PLSR) and locally weighted partial least squares regression (LWPLSR) models predicting
log moisture content (MC) from ground penetrating radar (GPR) signals. Results are shown for
additional predictors (Covar), i.e., log diameter (DOB) and bark thickness (THb). The models were
fitted on a calibration set containing either the first drying stage (1) or all drying stages (1234) for all
four species (i.e., Mix of black, white, and red spruces and balsam fir), spruces only, or balsam fir
only. Best model R2s are shown in bold. (MC~GPR, MC~GPR + DOB, MC~GPR + THb, MC!GPR +
DOB + THb for the first drying stage and all drying stages). nTS = number of time-samples.

PLSR LWPLSR
Validation (n = 286) Validation (n = 286)

Species Drying
Stage

GPR
nTS Covar n

Calib
n

Valid nLVs RMSEv R2v RPD nLVs RMSEv R2v RPD

Mix 1 228 164 72 16 22.8 0.15 1.10 2 20.7 0.30 1.20

Mix 1 150 167 72 17 21.0 0.28 1.19 5 20.2 0.33 1.23

Mix 1 75 166 72 13 20.5 0.31 1.21 10 24.8 −0.01 1.00
Mix 1 40 165 72 6 24.5 0.02 1.02 5 22.8 0.15 1.09
Fir 1 228 55 24 2 20.8 0.05 1.05 2 20.4 0.08 1.07

Fir 1 150 55 24 8 15.6 0.47 1.40 2 17.6 0.32 1.24

Fir 1 75 55 24 3 19.2 0.18 1.13 3 18.7 0.23 1.16
Fir 1 40 56 24 2 22.7 −0.14 0.96 2 21.7 −0.03 1.01

Spruces 1 228 109 48 8 23.0 −0.23 0.91 2 15.9 0.42 1.32
Spruces 1 150 107 48 11 20.2 0.06 1.04 3 17.7 0.27 1.19

Spruces 1 75 110 48 5 14.9 0.49 1.41 5 14.8 0.49 1.42

Spruces 1 40 110 48 6 17.4 0.30 1.21 1 18.0 0.25 1.17

Mix 1 228 Dob,
THb 164 72 15 23.0 0.14 1.09 12 20.9 0.29 1.19

Mix 1 150 Dob,
THb 167 72 17 21.9 0.22 1.14 19 24.3 0.04 1.03

Mix 1 75 Dob,
THb 166 72 6 23.6 0.09 1.06 4 24.6 0.01 1.01

Mix 1 40 Dob,
THb 165 72 8 24.9 −0.01 1.00 8 23.9 0.07 1.04

Fir 1 228 Dob,
THb 55 24 2 20.8 0.04 1.05 2 18.1 0.28 1.20

Fir 1 150 Dob,
THb 55 24 3 18.2 0.27 1.20 2 17.1 0.36 1.28

Fir 1 75 Dob,
THb 55 24 2 20.3 0.10 1.07 2 19.5 0.17 1.12

Fir 1 40 Dob,
THb 56 24 2 22.9 −0.16 0.95 2 20.1 0.11 1.08

Spruces 1 228 Dob,
THb 109 48 8 24.8 −0.43 0.85 6 28.2 −0.85 0.74

Spruces 1 150 Dob,
THb 107 48 10 25.5 −0.50 0.83 1 15.2 0.46 1.38

Spruces 1 75 Dob,
THb 110 48 4 17.1 0.32 1.23 4 18.0 0.25 1.17

Spruces 1 40 Dob,
THb 110 48 9 16.7 0.36 1.26 9 16.6 0.36 1.27
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Table A1. Cont.

PLSR LWPLSR
Validation (n = 286) Validation (n = 286)

Species Drying
Stage

GPR
nTS Covar n

Calib
n

Valid nLVs RMSEv R2v RPD nLVs RMSEv R2v RPD

Mix 1234 228 660 286 20 15.8 0.78 2.16 13 13.9 0.83 2.46

Mix 1234 150 655 286 17 16.4 0.77 2.08 13 14.1 0.83 2.41
Mix 1234 75 654 286 15 16.9 0.75 2.01 11 15.2 0.80 2.24
Mix 1234 40 659 286 17 19.8 0.66 1.72 10 19.1 0.68 1.78
Fir 1234 228 221 96 12 17.0 0.74 1.97 5 16.3 0.76 2.06
Fir 1234 150 222 96 12 16.8 0.75 1.99 11 17.1 0.74 1.96

Fir 1234 75 219 96 17 16.8 0.75 1.99 17 15.7 0.78 2.13

Fir 1234 40 218 96 14 20.5 0.62 1.63 15 20.2 0.63 1.66

Spruces 1234 228 443 191 20 13.0 0.82 2.34 19 10.8 0.87 2.81

Spruces 1234 150 439 191 16 13.6 0.80 2.24 11 11.7 0.85 2.60
Spruces 1234 75 435 191 14 14.1 0.78 2.15 6 12.6 0.83 2.41
Spruces 1234 40 438 191 15 17.4 0.67 1.74 11 18.0 0.65 1.69

Mix 1234 228 Dob 660 286 23 16.8 0.76 2.03 21 14.7 0.81 2.32

Mix 1234 150 Dob 655 286 18 16.8 0.76 2.02 17 14.7 0.81 2.33

Mix 1234 75 Dob 654 286 16 17.0 0.75 2.01 11 15.4 0.79 2.21
Mix 1234 40 Dob 659 286 14 19.9 0.66 1.71 11 18.6 0.70 1.83

Fir 1234 228 Dob 221 96 20 14.9 0.80 2.25 19 14.1 0.82 2.37

Fir 1234 150 Dob 222 96 25 16.9 0.74 1.99 7 16.7 0.75 2.01
Fir 1234 75 Dob 219 96 17 16.6 0.75 2.02 14 15.6 0.78 2.15
Fir 1234 40 Dob 218 96 11 20.2 0.63 1.66 11 18.5 0.69 1.81

Spruces 1234 228 Dob 443 191 21 13.0 0.82 2.33 20 10.4 0.88 2.92

Spruces 1234 150 Dob 439 191 20 13.2 0.81 2.30 15 11.7 0.85 2.59
Spruces 1234 75 Dob 435 191 17 14.1 0.78 2.16 8 13.9 0.79 2.18
Spruces 1234 40 Dob 438 191 10 17.1 0.68 1.78 11 15.8 0.73 1.92

Mix 1234 228 THb 659 285 24 15.8 0.78 2.12 23 13.9 0.83 2.40

Mix 1234 150 THb 652 285 17 16.4 0.76 2.04 16 14.5 0.81 2.30
Mix 1234 75 THb 653 285 16 17.8 0.72 1.88 14 16.2 0.76 2.06
Mix 1234 40 THb 656 285 13 20.8 0.61 1.61 11 19.9 0.65 1.68
Fir 1234 228 THb 217 95 17 15.8 0.83 2.40 17 15.6 0.83 2.43

Fir 1234 150 THb 220 95 15 15.9 0.82 2.38 20 15.3 0.83 2.47

Fir 1234 75 THb 217 95 14 16.7 0.80 2.27 14 16.7 0.80 2.27
Fir 1234 40 THb 216 95 11 20.0 0.72 1.89 11 20.3 0.71 1.86

Spruces 1234 228 THb 443 191 20 13.2 0.81 2.30 19 10.5 0.88 2.89

Spruces 1234 150 THb 439 191 19 13.3 0.81 2.29 16 11.8 0.85 2.57

Spruces 1234 75 THb 435 191 17 14.1 0.78 2.15 8 14.2 0.78 2.13
Spruces 1234 40 THb 438 191 11 16.6 0.70 1.82 11 16.5 0.70 1.84

Mix 1234 228 Dob,
THb 659 285 23 16.1 0.77 2.08 22 14.1 0.82 2.38

Mix 1234 150 Dob,
THb 652 285 18 16.3 0.76 2.05 16 14.3 0.82 2.34

Mix 1234 75 Dob,
THb 653 285 17 17.8 0.72 1.88 13 16.2 0.77 2.07

Mix 1234 40 Dob,
THb 656 285 14 20.9 0.61 1.60 13 19.5 0.66 1.71
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Table A1. Cont.

PLSR LWPLSR
Validation (n = 286) Validation (n = 286)

Species Drying
Stage

GPR
nTS Covar n

Calib
n

Valid nLVs RMSEv R2v RPD nLVs RMSEv R2v RPD

Fir 1234 228 Dob,
THb 217 95 17 15.7 0.83 2.42 18 15.5 0.83 2.44

Fir 1234 150 Dob,
THb 220 95 16 15.6 0.83 2.43 16 15.6 0.83 2.43

Fir 1234 75 Dob,
THb 217 95 15 16.6 0.81 2.28 15 17.5 0.78 2.16

Fir 1234 40 Dob,
THb 216 95 12 19.8 0.72 1.91 12 20.0 0.72 1.89

Spruces 1234 228 Dob,
THb 443 191 20 13.1 0.81 2.31 20 10.3 0.88 2.94

Spruces 1234 150 Dob,
THb 439 191 19 13.4 0.80 2.26 16 11.5 0.86 2.63

Spruces 1234 75 Dob,
THb 435 191 18 14.1 0.79 2.16 8 13.9 0.79 2.19

Spruces 1234 40 Dob,
THb 438 191 12 16.8 0.69 1.80 12 16.4 0.71 1.86
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